
HAL Id: hal-01060348
https://hal.science/hal-01060348

Submitted on 3 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NICE: Non-local Intracranial Cavity Extraction
José V. Manjón, Simon F. Eskildsen, Pierrick Coupé, José E. Romero, Louis

D. Collins, Montserrat Robles

To cite this version:
José V. Manjón, Simon F. Eskildsen, Pierrick Coupé, José E. Romero, Louis D. Collins, et al.. NICE:
Non-local Intracranial Cavity Extraction. International Journal of Biomedical Imaging, 2014. �hal-
01060348�

https://hal.science/hal-01060348
https://hal.archives-ouvertes.fr


1 

 

NICE: Non-local Intracranial Cavity Extraction 

 

José V. Manjón1, Simon F. Eskildsen2, Pierrick Coupé3, José E. Romero1, 

D. Louis Collins4, Montserrat Robles1 

 

1
 Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones 

Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, 

Spain.  

2
 Center of functionally integrative neuroscience, Department of Clinical Medicine, Aarhus 

University, Nørrebrogade 44, Denmark  

3
 Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 

5800), PICTURA Research Group, 351, cours de la Libération F-33405 Talence cedex, France.  

4
 McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 

University Street, Montreal, Canada 

 

 

Abstract. Automatic and accurate methods to estimate normalized regional brain volumes from 

MRI data are valuable tools which may help to obtain an objective diagnosis and follow-up of 

many neurological diseases. To estimate such regional brain volumes, the Intracranial Cavity 

Volume (ICV) is often used for normalization. However, the high variability of brain shape and 

size due to normal inter-subject variability, normal changes occurring over the li fespan, and 

abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, 

we present a new approach to perform ICV extraction based on the use of a library of pre-

labeled brain images to capture the large variability of brain shapes. To this end, an improved 

non-local label fusion scheme based on BEaST technique is proposed to increase the accuracy 

of the ICV estimation. The proposed method is compared with recent state-of-the-art methods 

and the results demonstrate an improved performance both in terms of accuracy and 

reproducibility while maintaining a reduced computational burden.  
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1. Introduction 

 

Automated brain image analysis has a huge potential to objectively help in the diagnosis and 

follow-up of many neurological diseases. To perform such analysis tasks, one of the first image 

processing operations is the delimitation of the area of interest. For brain image analysis, this 

operation has received many different names such as brain extraction, skull -stripping or 

intracranial cavity masking. In each case, the aim is to isolate the brain or intracranial tissues 

(depending on area definition) from the raw image. The accurate estimation of the intracranial 

volume plays crucial role to obtain robust and reliable normalized measurements of brain 

structures [1].   

 

The importance of this operation is reflected by the large number of methods proposed over the 

past decade [2-13]. Many of these methods are based on the modeling of brain intensities 

(normally using T1 weighted images due to their excellent contrast for brain tissues) combined 

with a set of morphological operations [3,5,12] or atlas priors [9].  

 

The most widely used automated methods correspond to those that are publically available. For 

example,  the BET (Brain Extraction Tool) software from the FSL image processing library [2]  is 

one of the most used techniques probably due to its accuracy, ease of use and low 

computational load. Other techniques like 3dIntracranial [6], Hybrid Watershed algorithm (HWA) 

[5] or Brain Surface Extractor (BSE) [13] have been also widely used.  

 

Intracranial cavity extraction can also be obtained indirectly as part of a full modeling of brain 

intensities using a parametric model such as done in Statistical Parametric Mapping (SPM) [14] 

or VBM8 (http:/dbm.neuro.uni-jena.de/vbm) software packages. 

 

Over the last decade, methods have been proposed to automatically measure the Intracranial 

Cavity Volume (ICV) by using non-linear registration atlas-based approaches [15,16].  

 

More recent works of special interest for the brain extraction problem are methods like MAPS 

[10] and BEaST [11]. Both methods rely on the application of a multi -atlas label fusion strategy. 

MAPS uses multiple non-linear registrations followed by a voxel-wise label fusion while BEaST 

uses a single linear registration in combination with non-local patch-based label fusion. Both 

techniques scored well on the LONI segmentation validation engine (SVE) [17] comparison for 

brain extraction (see http://sve.loni.ucla.edu) although MAPS has a much larger computational 

load compared to BEaST.  

 

In this paper we present an extension of the BEaST methodology where we aim to improve the 

accuracy while reducing the computational load. The main contributions of the proposed 

method are threefold: First, the use of a new pipeline for the multi-atlas library construction for 
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improved normalization between template library subjects. Second, the use of a new bilateral 

patch similarity measure to better estimate pattern similarities. Finally, a block -wise labeling 

approach that enables significant savings in computational cost and imposing at the sam e time 

a regularization constraint that increases the method’s accuracy.   

 

2. Materials and methods 

 

Since the method proposed in this paper is based on the use of a library of pre-labeled cases to 

perform the segmentation process, we will first describe the template library construction and 

then present the proposed method.  

 

2.1. Template library construction  

 

2.1.1. Library dataset description  

 

A library of manually  labeled templates was constructed using subjects from different publically 

available datasets. To include as large age range as possible, different datasets nearly covering 

the entire human life-span were considered. MRI data from the following databases were used:  

 Normal adults dataset: Thirty normal subjects (age range: 24-75 years) were randomly  

selected from the open access IXI dataset (http://www.brain-development.org/). This 

dataset contains images from nearly 600 healthy subjects from several hospitals in 

London (UK). Both 1.5 T (7 cases) and 3 T (23 cases) images were included in this 

dataset. 3T images were acquired on a Philips Intera 3T scanner (TR = 9.6 ms, TE = 

4.6 ms, flip angle=8°, slice thickness=1.2 mm, volume size=256×256x150, voxel 

dimensions = 0.94×0.94×1.2 mm
3
). 1.5 T images were acquired on a Philips Gyroscan 

1.5T scanner (TR = 9.8 ms, TE = 4.6 ms, flip angle=8°, slice thickness = 1.2 mm, 

volume size=256×256x150, voxel dimensions = 0.94×0.94×1.2 mm
3
). 

 Alzheimer Disease (AD) dataset: Nine patients with Alzheimer's disease (age range= 

75-80 years, MMSE= 23.7±3.5, CDR = 1.1±0.4) scanned using a 1.5 T General Electric 

Signa HDx MRI scanner (General Electric, Milwaukee, WI) were randomly selected.  

This dataset consisted of high resolution T1-weighted sagittal 3D MP-RAGE images 

(TR=8.6 ms, TE=3.8 ms, TI=1000 ms, flip angle=8°, slice thickness=1.2 mm, matrix 

size=256×256, voxel dimensions=0.938×0.938×1.2 mm
3
). These images were 

downloaded from the brain segmentation testing protocol [18] website 

(https://sites.google.com/site/brainseg/) while they belong originally to the open access 

OASIS dataset (http://www.oasis-brains.org/).  

 

 Pediatric dataset: Ten infant datasets were also downloaded from the brain 

segmentation testing protocol [18] website (https://sites.google.com/site/brainseg/).  
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These data were originally collected by Gousias et al. [19] and are also available at  

http://www.brain-development.org (this dataset is property of the Imperial College of 

Science Technology & Medicine and has been used after accepting the license 

agreement). The selected 10 cases are from the full sample of 32 two-year old infants 

born prematurely (age = 24.8 ± 2.4 months). Sagittal T1 weighted volumes were 

acquired from each subject (1.0 T Phillips HPQ scanner, TR=23 ms, TE=6 ms, slice 

thickness=1.6 mm, matrix size= 256×256, voxel dimensions= 1.04×1.04× 1.6 mm
3
 

resliced to isotropic 1.04 mm
3
).  

 

Downloaded images from the different websites consisted of raw images with no preprocessing 

and no intracranial cavity masks were supplied with these data. To generate the template 

library, all 49 selected T1-weighted images were preprocessed as follows: 

 

2.1.2. Denoising and inhomogeneity correction 

 

All images in the database were denoised using the Spatially Adaptive Non -Local Means 

(SANLM) Filter [20] to enhance the image quality. The SANLM filter can deal with spatially 

varying noise levels across the image without the need of explicitly estimate the local noise level 

which makes it ideal to process data with either stationary or spatially varying noise (as in the 

case of parallel imaging) in a fully automatic manner. To further improve the image quality, an 

inhomogeneity correction step was applied using the N4 method [21]. The N4 method is an 

incremental improvement of the N3 method [22] that has been implemented in the ITK toolbox 

[23] and has proven to be more efficient and robust.  

 

2.1.3. MNI space registration  

 

In order to perform the segmentation process, templates and the subject to be segmented have 

to be placed in the same stereotactic space. Therefore, a spatial normalization based on a 

linear registration to the Montreal Neurological Institute (MNI152) space was performed using 

ANTS software [24]. The resulting images in the MNI space have a size of 181 x 217 x 181 

voxels with 1 mm
3
 voxel resolution. 

 

2.1.4. Intensity normalization 

 

As the proposed method is based on the estimation of image similarities using intensity -derived 

measures, every image in the library must be intensity normalized in order to make the intensity 

distributions comparable among them. We use a tissue-derived approach to force mean 

intensities of white matter (WM), grey matter (GM) and cerebro -spinal fluid (CSF) to be as 

similar as  possible across subjects of the library in a similar manner as done by Lotjonen et al.  

[25]. For this purpose, mean values of CSF, GM and WM tissues were estimated using the 
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Trimmed Mean Segmentation (TMS) method [26] which robustly estimates the mean values of 

the different tissues by excluding partial volume voxels from the estimation jointly with the use of 

an unbiased robust mean estimator. Such estimation was performed using only voxels within 

the standard brain mask area of MNI152 template to minimize the inclusion of external tissues. 

Finally, a piecewise linear intensity mapping [25,27] was applied ensuring that WM had an 

average intensity of 250, GM 150 and CSF of 50 (see Fig. 1).  

 

Figure 1.  Proposed intensity normalization via a piecewise linear mapping. CSF, GM and WM mean 

values are automatically estimated using TMS method and mapped to their corresponding normalized 

values (50,150 and 250). 

 

2.1.5. Manual labeling  

 

As commented previously, there is no standard definition of what should be included in brain or 

intracranial masks (it all depends in what you are looking for).  In BEaST, the mask definition 

included the following tissues: 

 

 All cerebral and cerebellar white matter 

 All cerebral and cerebellar gray matter 

 CSF in ventricles (lateral, 3rd and 4th) and the cerebellar cistern  

 CSF in deep sulci and along the surface of the brain and brain stem  

 The brainstem (pons, medulla) 

 Internal brain blood vessels 

    

In the present work we extended that definition by including all external CSF (thus covering total 

CSF of IC) and therefore selecting most of the intracranial cavity volume. We have not included 

other intracranial tissues in our mask definition such as dura, exterior blood vessels or veins 

because they are normally of no interest for brain analysis. This mask definition has been 

traditionally used to estimate the Total Intracranial Volume (TIV) in many methods such  RBM 
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[28], SPM8 or VBM8 methods to normalize brain tissue volumes [29,30] as it is expected to be 

nearly constant in each subject during the adult life-span.  

 

 

Figure 2. Example of mask differences between our mask definition (center) and BEaST mask (right) for 

an Alzheimer case (Left). As can be noticed, all external CSF is included in NICE mask while this is not 

case at the corresponding BEaST mask (example case from Oasis dataset).     

 

To generate the template masks we followed a similar approach as described in BEaST paper 

since full manual labeling was too time consuming and error prone as discussed in Eskildsen et 

al [11]. All template images in the library were automatically segmented using BEaST software 

to have an initial mask.  Conditional mask dilation (only over CSF voxels) was applied to include 

external CSF not already included in the BEaST mask. Finally, all the images were manually 

corrected by an expert on brain anatomy using the ITK -SNAP software [31] to remove 

segmentation errors. In Fig.  2 we show an example of our mask definition compared to BEaST 

definition  for a patient with Alzheimer’s disease.     

 

To further increase the number of available priors on the library all the cases were flipped along 

the mid-sagittal plane using the symmetric properties of the human brain yielding a total number 

of 98 labeled templates (original and flipped) as done in BEaST paper [11].  

 

Compared to BEaST template library creation, main differences are the use of a denoising 

method to improve data quality, the use of a different registration method (ANTS instead of 

ANIMAL) and the application of different intensity normalization method. The scheme of the 

template library construction pipeline is summarized in Fig. 3.  

 

 

Figure 3. Template library construction pipeline. 
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2.2. Proposed Method 

 

While the BEaST technique was designed to improve downstream analysis such as the 

assessment of cortical thickness, our proposed method has extended the mask definition to 

include extra-cerebral spinal fluid as it can be interesting to obtain normalized brain and tissue 

specific volumes in many neurological diseases such as Alzheimer or Parkinson. We will refer 

our proposed method as NICE (Non-local Intracranial Cavity Extraction). Since the method 

proposed in this paper is an evolution of the BEaST brain masking method [11] we refer the 

reader to the original paper for the detailed method overview. Here, we summarize the NICE 

method and present the main improvements introduced to increase the method performance.  

 

2.2.1. Preprocessing 

 

To segment a new case, it must be first preprocessed using the proposed normalization pipeline 

(see section 2.1 and Fig. 2) so that the new case is spatially aligned with the template library 

and to ensure that it has the same intensity characteristics.   

 

2.2.2. Improved Nonlocal means label fusion  

 

In the classical nonlocal means label fusion technique proposed by Coupe et al. [32], for each 

voxel xi from the new image to be segmented the method estimates the final label by performing 

a weighted label fusion v(xi) of all surrounding samples inside the search area Vi from N 

subjects selected from the library:  

N
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where ls,j is the label from the voxel xsj at the position j in the template library subject s and w(xi, 

xs,j) is the weight calculated by patch comparison which is computed depending on the similarity 

of the surrounding patch for xi and for xs,j This weight is estimated as follows: 
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where P(xi) is the patch around the voxel xi , P(xs,j) is the patch around the voxel xj in the 

templates and ||.||2 is the normalized L2-norm (normalized by the number of elements) 

calculated by the distance between each pair of voxels from both patches P(xi) and P(xs,j) and 
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modulated by h parameter. If ss (structural similarity index [33] between patches) is less than a 

threshold th then w is not computed thus avoiding unneeded computations.   

The structural similarity index ss is calculated as follows:  

                                                       (3) 

where µ and σ are the mean and standard deviation of the patches surrounding xi and xs,j at 

location j of the template s. 

 

Finally, the final label L(xi) is computed as: 

 

                                                    (4) 

 

In this paper, we introduce two modifications to this strategy. First, we make use of the fact that 

all the images are registered to a common space and therefore a locality principle can be used, 

assuming that samples that are spatially closer are likely to be more similar in their labels. 

However, this locality principle is limited by residual anatomical variability and registration errors 

in the template library space. Therefore, we redefined the similarity weight to take into account 

not only intensity similarity but also spatial patch proximity:      
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where xi and xj are the coordinates of patch centers and d is normalization constant. We set 

d= 8 mm experimentally which curiously coincides with the typical Gaussian blurring kernel 

size normally used on Voxel Based Morphometry (VBM) to deal with registration error and 

subject anatomical variability. This approach shares some similarities to the bilateral filter 

proposed by Tomasi and Manduchi [34] for image denoising. We experimentally set the 

threshold th to 0.97 instead of 0.95 as used in BEaST (this difference can be explained due to 

the use of filtered data and a different intensity normalization method).  Also a comment about h 

parameter of equation (5) is required since it  plays a major role in the  weight  computation 

process. In [32] this value was set to: 

 

2, )()(minarg)(
,

sji
x
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where ε  is a small constant  to  ensure  numerical stability.  In  [32]  was set to 1 but we found 

experimentally that a value of 0.1 produced better results in the proposed method possibly due 

to the improved intensity normalization.  

 

The second modification concerns the voting scheme. Classical non-local label fusion works in 

a voxel-wise manner which sometimes results in a lack of regularization on the final labels. 

Given that we wish to segment a continuous anatomical structure, some level of regularization 

can be used as a constraint  achieved by a block-wise vote scheme, similar to the one used by 

Rousseau [35] for label fusion and derived from MRI denoising [36]. This bilateral block-wise 

vote is computed as follows:          

 

M
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where is a 3D region which is labeled at the same time. Finally, the vote for the voxel xi is  

obtained in an overcomplete manner by averaging over all blocks containing xi and the label 

L(xi) is decided as in Eq. (4).  

 

With overlapping blocks, it is worth noting that the distance between adjacent block centers can 

be increased to be equal or higher than 2 voxels. Therefore, we can obtain important 

accelerating factors compared to the voxel-wise version of the algorithm (for example for a 

distance equal to 2 voxels in all three directions a speedup factor of 2
3
=8 can be obtained). The 

described approach is used within the multiresolution framework as described in the BEaST 

paper [11].  
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3. Experiments  

 

3.1. Experimental datasets 

 

To validate the proposed method different datasets were used. These datasets can be 

classified two categories: a) those that were used to measure the accuracy of the different 

methods compared and b) those used to measure their reproducibility. 

 

3.1.1. Accuracy datasets 

 

LOO dataset: To measure the accuracy of the proposed method we used the template library 

dataset by using a leave-one-out (LOO) cross validation. The characteristics of this dataset 

have already been described in section 2.1. Each of the 49 (non-flipped) library images was 

processed with the remaining images as priors (after removing the current case and its flipped 

version). The resulting segmentation was compared to the corresponding manual labels in the 

library.  

 

Independent validation dataset: To avoid any factor associated to our IC mask definition that 

could bias the comparison of the compared methods we decided to use an independent dataset 

with its corresponding manual segmentations. Therefore, we performed a validation using an 

independent dataset available in the online Segmentation Validation Engine (SVE) [17]. The 

SVE IC segmentation followed rules similar to those used here. This dataset consists of 40 T1w 

MRI scans and its associated manual labels (20 males and 20 females; age range 19–40). This 

high-resolution 3D Spoiled Gradient Echo (SPGR) MRI volumes were acquired on a GE 1.5T 

system as 124 contiguous 1.5 mm coronal brain slices (TR range 10.0 ms–12.5 ms; TE range 

4.22 ms – 4.5 ms; FOV 220 mm or 200 mm; flip angle 20°) with in-plane voxel resolution of 0.86 

mm (38 subjects) or 0.78 mm (2 subjects).  

 

3.1.2. Reproducibility dataset 

 

Although the accuracy of a method is very important another important feature is its 

reproducibility. Indeed, the capability to detect changes induced by the pathology in a consistent 

manner is a key aspect. To measure the reproducibility of the different compared methods we 

used the reproducibility dataset of the brain segmentation testing protocol website 

(https://sites.google.com/site/brainseg/). This dataset consists of a test-retest set of 20 subjects 

scanned twice in the Same Scanner and Sequence (SSS) and another set of 36 subjects 

scanned twice on Different  Scanner and Different magnetic Field strength (DSDF) (1.5 and 3 

Tesla).  
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SSS dataset: To measure the reproducibility of the different methods compared on the same 

subjects and using the same MRI scanner, we used a subset of the OASIS ( www.oasis-

brains.org) dataset consisting in 20 subjects (age=23.4±4.0 years, 8 females) who were 

scanned using the same pulse sequence two times (1.5 T Siemens Vision scanner, TR=9.7 ms, 

TE=4 ms, TI=20 ms, flip angle=10°, slice thickness=1.25 mm, matrix size=256×256, voxel 

dimensions=1×1×1.25 mm3 resliced to 1×1×1 mm3, averages=1) [37]. 

 

DSDF dataset: To determine the consistency of the segmentations when different MRI 

scanners and different magnetic field strength were used, 36 adult subjects were scanned using 

two MRI scanners (1.5 T and 3.0 T General Electric Signa HDx scanner),mean inter-scan 

interval between 1.5 T and 3 T scanner=6.7±4.2 days) [18].  

 

3.2.  Method parameter settings  

 

To study the impact of the method parameters an exhaustive search of the optimum values was 

performed using the LOO dataset using the library segmentations as gold standard references. 

Each one of the 49 subjects in the library was processed using the remaining cases of the 

library as priors and the resulting segmentation was compared to the manual labeling. To 

measure segmentation accuracy, the Dice coefficient [38] was used. Method parameters such 

as patch size and search area were set as in BEaST method while an exhaustive search for the 

optimal number of templates N used for the segmentation process was carried out (see Fig. 4).  

This search demonstrated that the segmentation accuracy stabilizes around N=[20-30] range 

which is in good agreement with previous results from BEaST. We decided to use N=30 as 

default value given the reduced computational cost of the proposed method.  



12 

 

0 5 10 15 20 25 30 35 40
0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

Number of Atlases

D
IC

E

 

Figure 4. Evolution of segmentation accuracy in function of the number of training subject templates used 

in the segmentation process. 

 

Another parameter of our proposed block-based approach is the spacing between adjacent 

blocks which jointly with patch size defines the degree of overlap between blocks.  We observed 

experimentally that the optimal value for that parameter was 2 voxels in all 3 dimensions since 

the resulting accuracy was virtually the same from full overlap (1 voxel spacing) while 

computation time was greatly reduced. This is in good agreement with previous results on 

block-wise MRI denoising [36]. Higher block spacing resulted in worse segmentation results.      

 

3.3. Compared methods  

 

The proposed method was compared with BEaST and VBM8 methods . Both BEaST and VBM8 

methods were selected because their public accessibility and because they are among the 

highest ranking methods on the online Segmentation Validation Engine website [17] 

(http://sve.loni.ucla.edu/archive/).  

 

To ensure a fair comparison all three methods used the same preprocessing pipeline with the 

exception of the intensity normalization step (that is using ANTS registration to ensure the same 

image space and the same homogenization and filtering to ensure the same image quality). In 

this way only the labeling process was evaluated eliminating other sources of variability.  
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Both NICE and BEaST were run with the same number of preselected templates ( N=30) to 

ensure a fair comparison. We used release 435 of VBM8, which was the latest version at the 

time of writing. To compare the segmentation results of the different methods several 

quantitative metrics were used: DICE coefficient [38], sensitivity and specificity. 

 

4. Results 

 

4.1.  Accuracy results 

 

In Table 1, the average DICE coefficient, sensitivity and specificity for all  49 cases of LOO 

dataset using the different methods compared are provided. Results for all the cases together 

and separated by dataset subtype are provided (Alzheimer Disease (AD), normal infants (Infant) 

and normal adult subjects (Adult)). As can be noticed, NICE method obtained the best results in 

all the situations. Table 2 shows the statistical significance of these differences (paired t -test).  

 

Intracranial cavity volume is normally used to normalize brain tissue volumes to provide a tissue 

measure independent of head size. Therefore, the ability of the compared methods to provide 

an accurate ICV estimation has to be assessed. To this end, volume estimations using the 

different compared methods were obtained and compared to gold standard manual volumes. 

Figure 5 shows the automatic vs. manual volume correlation for all  the compared methods and 

dataset used. As can be noticed, the NICE method had highest overall correlation (0.976) while 

BEaST and VBM8 had 0.923 and 0.778 respectively. In Fig. 6, a visual comparison of the 

segmentation results of three examples belonging to the three different subject populations can 

be performed.  

 

 Table 1. Average DICE coefficient for the different methods compared on the different used datasets. The 

best results from each column are in bold.     

Method Data All (N=49) Adults (N=30) AD (N=9) Infants (N=10) 

NICE 

DICE 0.9911±0.0020 0.9921±0.0015 0.9892±0.0016 0.9899±0.0019 

SEN 0.9907±0.0036 0.9916±0.0035 0.9887±0.0029 0.9898±0.0038 

SPE 0.9971±0.0012 0.9975±0.0010 0.9964±0.0015 0.9965±0.0009 

BEAST 

DICE 0.9880±0.0032 0.9891±0.0030 0.9857±0.0018 0.9866±0.0034 

SEN 0.9889±0.0062 0.9902±0.0060 0.9830±0.0049 0.9900±0.0050 

SPE 0.9955±0.0019 0.9958±0.0017 0.9960±0.0016 0.9940±0.0019 

VBM8 

DICE 0.9762±0.0052 0.9788±0.0026 0.9690±0.0064 0.9750±0.0033 

SEN 0.9740±0.0121 0.9796±0.0051 0.9587±0.0132 0.9710±0.0138 

SPE 0.9926±0.0027 0.9924±0.0019 0.9931±0.0033 0.9926±0.0041 
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Table 2. NICE compared to the other two methods (p-values). Significant differences (p<0.05) are in bold.   

 Method Data All (N=49) Adults (N=30) AD (N=9) Infants (N=10) 

BEAST 

DICE 6.30x10-8 5.50 x10-6 5.16 x10-4 0.014 

SEN 0.074 0.283 0.012 0.913 

SPE 2.54 x10-6 2.97 x10-5 0.498 0.002 

VBM8 

DICE 1.26 x10-33 3.97 x10-32 3.35 x10-7 3.29 x10-10 

SEN 4.99 x10-15 2.60 x10-15 1.61 x10-5 6.18 x10-4 

SPE 2.06 x10-18 2.73 x10-19 0.010 0.009 
 

 

 

Figure 5. Comparison of intracranial cavity volume estimation results. Automatic vs. manual volume 

correlation for all the compared methods and datasets used. The first row shows results for the whole 

library (N=49), the second only for normal adults (N=30), the third only for AD subjects (N=9) and the 

fourth only for infant cases (N=10). Red line represents ideal mapping between estimated and real 

volumes to highlight eventual over or under volume estimations (it does not represents the fitting line).  
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Figure 6. Example segmentation results using NICE (first row), BEaST (second row) and VBM8 (third row) 

methods on the three different population samples. Sagittal slices and 3D renderings of the segmentations 

are shown. Red voxels correspond to correct voxels in the segmentation compared to the gold standard. 

Blue voxels are false positives and green voxels are false negatives (AD case belongs to Oasis dataset 

and the adult and infant cases to the IXI dataset ).  

 

To perform an independent validation of the compared methods the SVE dataset was used. The 

SVE web service allows the comparison of results with hand-corrected brain masks. As done in 

BEaST and MAPS papers we used the brain masks provided by the SVE website which 

included all  the internal ventricular CSF and some external sulcal CSF. Although this mask 

definition slightly differs from our mask definition (not all CSF was included) this does not 

represents a problem for the method´s comparison since all  the methods shared the same 

references.  

 

Validation of NICE using the SVE test dataset  resulted in a mean DICE of 0.9819±0.0024 (see 

http://sve.loni.ucla.edu/archive). At the time of writing, this result was the best (p<0.01) of all the 

methods published on the website. BEaST had a DSC of 0.9781±0.0047 and VBM8 obtained a 

DSC of 0.9760±0.0025. Sensitivity and specificity results are also included in Table 3. A visual 

representation of false positive and false negative as supplied by the website is presented at 

figure 7.  
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Table 3. Segmentation results of SVE dataset using different quality measures. NICE was compared to 

the other two methods (p-values). Best results are in bold (note that in this dataset, BEaST method 

obtained a significant higher sensitivity than NICE at the expense of a lower specificity).   

 

Figure 7. False positive and false negative maps for NICE, BEaST and VBM8 on SVE dataset. VBM8 

tended to produce a systematic over-segmentation compared to the used manual gold standard. The 

errors obtained by NICE and BEaST were more uniformly distributed indicating non -systematic 

segmentation errors. Note that in the images provided by the SVE website the vertical scale measuring 

error is not the same over all images. 

 

 

4.2. Reproducibility results 

 

In Table 4, the average ICV differences for the different methods and datasets is provided. As 

can be noticed, NICE method obtained the most reproducible results in all situations. For the 

SSS dataset experiment (test-retest) NICE significantly improved BEaST method while these 

differences were not significant for VBM8 method. For the DSDF dataset experiment volume 

Method DICE Sensitivity Specificity 

NICE 0.9819 ± 0.0024  0.9857 ± 0.0044 0.9960 ± 0.0015  

BEAST 
0.9781 ± 0.0047 

(p= 9.82x10
-7

) 

0.9887 ± 0.0035 

(p= 0.0001) 

0.9940 ± 0.0025 

(p= 2.11x10
-5

) 

VBM8 
0.9760 ± 0.0025 

(p= 2.56x10
-15

) 

0.9840 ± 0.0046 

(p= 0.06) 

0.9942 ± 0.0014 

(p= 4.31x10
-8

) 
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differences were higher than in the previous experiment. In this case, NICE was found yield 

significantly improved estimates (p<0.05) compared to the two other methods.  

 

Table 4. Percent mean IC volume differences for the SSS dataset. NICE was compared to the other two 

methods (p-values). Best results are in bold.   

 

Finally, execution times of the different methods were compared. NICE method took around 4 

minutes (NICE was implemented as a multithreaded MEX C file), BEaST method took around 

25 minutes (we have to note that no multithreading optimizations were used here) and VBM8 

took around 8 minutes on average (in this time it was also included the different tissue 

segmentations). All the experiments were performed using MATLAB 2009b 64 bits (Mathworks 

Inc.) on a desktop PC with an Intel core i7 with 16 GB RAM running windows 7. 

 

However, it is worth noting that if we reduce the number of selected templates to 10 cases we 

can reduce the processing time to less than 1 minute with only a small reduction of the 

segmentation accuracy (0.9911 to 0.9901 in the LOO accuracy experiment).  

 

Method   SSS Dataset DSDF Dataset 

NICE 1.4046± 0.2447 3.1856± 1.0280 

BEAST 
2.1463± 0.6622 

(p= 3.21x10
-4

) 

5.4696± 1.9097 

(p= 1.55x10
-10

) 

VBM8 
1.4268± 0.3843 

(p= 0.8073) 

3.7741± 1.1627 

(p= 0.0242) 
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5. Discussion 

 

We have presented a new method for intracranial cavity extraction that outperforms related 

state-of-the-art methods and a previously proposed method (BEaST) by our group both in terms 

of accuracy and reduced computational load. In addition, we demonstrated that the new 

proposed method is more robust in terms of measurement reproducibility.  

 

This last point is  of special interest since in many cases we are not only interested in the 

specific brain volume at one time point but in its evolution in a longitudinal study. NICE method 

was demonstrated to be significantly more reproducible and accurate than BEaST method. In 

addition, VBM8 was found to be almost as reproducible as NICE but at the expense of 

introducing larger systematic errors on the segmentations. The high level of reproducibility of 

VBM8 may be explained by the fact that it uses a single template and thus a more deterministic 

pipeline is applied. Also the fact that it operates at 1.5 mm
3
 resolution introduces a blurring 

effect which increases the method reproducibility at the expense of the accuracy. The increased 

reproducibility/accuracy of our proposed method may have a significant impact on the brain 

image analysis methods by increasing their sensitivity to detect subtle changes produced by the 

disease. While the advantage of NICE in segmentation accuracy of 0.9911 vs. 0.9762 for VBM8 

may appear small when compared over the three datasets evaluated, it is statistically significant 

and corresponds to more than a 2 fold reduction in error, from 2.38% to 0.89%. In a large 

volume such as the intracranial cavity (1500cc), this reduction in error can represent a volume 

of approximately 20cc, a non-negligible amount. The improvement over BEaST is smaller (35%)  

but still statistically significant. When evaluated on the SVE dataset, the NICE yields a Dice 

overall of 0.9819, while BEaST and VBM8 yield 0.9781 and 0.9760, corresponding to 20% and 

32% less error on average, respectively .     

 

The improved results of NICE over BEaST can be understood thanks to improvements on two 

parts of the proposed method. First, improvements on template library construction such as the 

improved intensity normalization yield more coherent and better defined priors. This fact 

positively impacts the intensity driven image similarities of the label fusion part. One limitation of 

the first part of our validation is in the use of manually corrected masks that may induce a 

favourable bias toward BEaST and NICE.  However, after the conditional dilation and manual 

correction steps, almost all edge voxels were modified, thus minimizing any bias. Second, the 

block-wise and new bilateral label fusion scheme results in more regular and accurate 

segmentations. The advantages of using a 3D block-wise approach in comparison to the 

previously used voxel -wise are twofold: first, the fact that we label together the whole block 

imposes an intrinsic regularization which forces connected voxels to have similar labels and 

second if a space between block centers is  used a significant speed-up factor can be obtained 

in comparison with the voxel -wise version. Finally, the new similarity measure using spatial 

distance weighting takes into account a locality principle that favors the contribution of closer 
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patches by assuming that after linear registration similar structures are close in a similar manner 

as done for the well-known bilateral filter for image denoising [34].  

   

It is also worth noting that the segmentation accuracy depends on the preexistence of similar 

local patterns within the library. In our method, we do not need to have totally similar templates 

to the case to be segmented within the library since it is able to find locally similar patterns from 

different templates in the library. However, it is also true that if some specific pattern is not 

present in the library it will not be correctly identified and therefore the resulting segmentation 

will be incorrect. This risk is normally reduced when using non-linear registrations at the 

expense of a much higher computational load and the introduction of interpolation artifacts in 

both images and associated labels. However, this issue can be solved more efficiently (mainly 

in terms of computational cost) by increasing library size with uncommon cases and their 

associated corrected manual labels making it unnecessary to perform costly non -linear 

registrations (but making necessary the manual label correction of new library cases). We 

experimentally found that increasing the size of the library just using the symmetric versions of 

the original library improved the segmentation results as previous reported in the BEAST paper.    

Finally, it is also possible to construct disease specific libraries (as done for templates in SPM) 

maximizing the likelihood to find suitable matches for the segmentation process or to improve 

templates preselection by adding extra information such as age or sex which could help to find 

optimal matches (specially useful when the library size will grow).     

 

6. Conclusion 

 

We have presented an improved method to perform intracranial cavity extraction that has been 

shown to be fast, robust and accurate. The improvements  proposed have been shown to 

increase segmentation quality and reduce the computational load at the same time (the 

proposed method is able to work in a reasonable time of approximately 4 minutes). We plan to 

make the NICE pipeline publicly accessible through a web interface in the near future so 

everybody can benefit from its use independently of their location and local comput ational 

resources. Finally, the usefulness of the proposed approach to provide accurate ICV based 

normalization brain tissue measurements has to be addressed on future clinical studies.  
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