NICE: Non-local Intracranial Cavity Extraction

Abstract : Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and follow-up of many neurological diseases. To estimate such regional brain volumes, the Intracranial Cavity Volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal inter-subject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of pre- labeled brain images to capture the large variability of brain shapes. To this end, an improved non-local label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.
Type de document :
Article dans une revue
International Journal of Biomedical Imaging, Hindawi Publishing Corporation, 2014
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger
Contributeur : Pierrick Coupé <>
Soumis le : mercredi 3 septembre 2014 - 14:35:28
Dernière modification le : jeudi 7 février 2019 - 16:35:48
Document(s) archivé(s) le : jeudi 4 décembre 2014 - 11:21:59


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01060348, version 1



José Manjón, Simon Eskildsen, Pierrick Coupé, José Romero, Louis Collins, et al.. NICE: Non-local Intracranial Cavity Extraction. International Journal of Biomedical Imaging, Hindawi Publishing Corporation, 2014. 〈hal-01060348〉



Consultations de la notice


Téléchargements de fichiers