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MARKET COMPOSITION AND PRICE INFORMATIVENESS IN A LARGE
MARKET WITH ENDOGENOUS ORDER TYPES∗

Edouard Challe† Edouard Chrétien‡

July 28, 2014

Abstract. We analyse the joint determination of price informativeness and the com-

position of the market by order type in a large asset market with dispersed information. The

market microstructure is one in which informed traders may place market orders or full demand

schedules and where market makers set the price. Market-order traders trade less aggressively

on their information and thus reduce the informativeness of the price; in a full market-order

market, price informativeness is bounded, whatever the quality of traders’information about

the asset’s dividend. When traders can choose their order type and demand schedules are (even

marginally) costlier than market orders, then market-order traders overwhelm the market when

the precision of private signals goes to infinity. This is because demand schedules are substi-

tutes: at high levels of precision, a residual fraction of demand-schedule traders is suffi cient to

take the trading price close to traders’signals, while the latter is itself well aligned with the

dividend. Hence, the gain from trading conditional on the price (as demand-schedule traders

do) in addition to one’s own signal (as all informed traders do) vanishes.

1. Introduction

We analyse the joint determination of price informativeness and the composition of the market

by order type in a large, competitive asset market with dispersed information. The market mi-

crostructure we consider is one in which informed traders may place either full demand schedules

or more basic market orders, i.e., order to sell or buy a fixed quantity of assets unconditional on

the execution price.1 There are also “noise”traders who prevent the asset price from being fully

revealing whenever the precision of private signals is bounded, as in, e.g., Grossman and Stiglitz

(1976, 1980), Diamond and Verrecchia (1981) and others. After informed and noise traders have

placed their orders, the trading price is set by a competitive, utility-maximising market making

sector. We characterise the trading intensities associated with each order type, the ex ante utilities

that they generate for the concerned traders (hence their preference for a particular type of order),

and ultimately how the composition of the market interacts with the informativeness of the price.

We first consider the case where exogenous measures of demand-schedule and market-order

traders coexist in the market. In a pure market-order market (as in, e.g., Vives, 1995), the

informativeness of the price is bounded above, however precise private information about the

dividend is. In contrast, whenever demand-schedule traders are in positive mass the informativeness

of the price is unbounded as the quality of private information goes to infinity. The reason for this

difference lies in the way private information is incorporated into the price in either case. Because

∗We are particularly grateful to two anonymous referees for their comments and to the editors for their guidance.
Edouard Challe acknowledges the support of chaire FDIR. All remaining errors are ours.
†CNRS (UMR 7176), Ecole Polytechnique, CREST and Banque de France; Email: edouard.challe@gmail.com.
‡CREST; Email: edouard.chretien.2008@polytechnique.org.
1See Brown and Zhang (1997), Wald and Horrigan (2005) and Vives (2008) for further disscussion of the impor-

tance of market orders in actual asset markets.
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market composition and price informativeness 2

market-order traders face price risk —since their orders are unconditional on the effective trading

price—, they trade less aggressively on their private information than demand-schedule traders,

which reduces the informativeness of the price. In contrast, demand-schedule traders are insulated

from price risk, so their trading intensity grows without bound as their private information becomes

infinitely precise; in the limit, they perfectly align the trading price of the asset with the dividend

(formally, the trading price is at least as informative of the dividend as the signals received by

informed traders, and sometimes more).

Motivated by these observations, we examine informed traders’choices of order type and the

impact of these choices on the composition of the market and the informativeness of the price.

Since demand schedules are more complex than market orders (due to the full conditionality of

the amount of trade on the price), we assume that they are more costly, at least marginally. Our

main result is that, when the precision of private signals is large, then the equilibrium is necessarily

interior (i.e., market-order and demand-schedule traders are both in strictly positive measures),

but market-order traders overwhelm the market (i.e., their measure tends to one as precision goes

to infinity). In other words, when the quality of information is high, the gain from conditioning

one’s trades on the price (as demand-schedule traders do) in addition to conditioning on one’s own

signal only (as market-order traders do) vanishes —and thus falls short of the cost, however small,

for most traders.

There are two potential reasons for which this could be the case, and it is the purpose of the

information structure that we assume —with potentially correlated noise in the signals received by

informed traders—to disentangle them. First, knowledge of the price could become less and less

valuable because one’s own signal becomes more and more aligned with the information of others

as the quality of private information improves (since all signals then get closer to the true value

of the dividend). In other words, the advantage of acquiring information about the distribution of

the signals received by others through the price (as in, e.g., Grossman and Stiglitz, 1976; Diamond

and Verrecchia, 1981) is reduced when this distribution tightens, and vanishes in the limit. The

other reason why knowing the price could become less valuable when private information become

very precise is related to the price impact of noise trading. Demand-schedule traders trade against

observed discrepancies between the trading price and their signals, and their trading intensity rises

with the precision of the signal. As this precision goes to infinity, they trade so aggressively against

noise traders that they effectively close the gap between the trading price and the dividend. By

eliminating noise trader risk, demand-schedule traders reduce the value of knowing the price in

addition to the signal itself. Considering the full spectrum of signal correlations allows us to identify

which of the two informational roles of the price drives our main result. We show that the use of

demand schedules vanishes at high levels of information precision even when signals are perfectly

correlated, i.e. when information about the dividend is public. In this situation the price no longer

plays any role as an aggregator of dispersed information. It follows that it is the reduction in the

impact of noise trading on the equilibrium price that explains why knowledge of the price loses

value as the information about the dividend becomes very accurate. Put differently, our analysis

uncovers a form of substituability between demand schedules: when signals about the dividend

are accurate, a small fraction of demand-schedule traders is enough to keep the price close to the

signals they receive, which are themselves close to the true value of the dividend; hence, it is less
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useful to know the price in addition to one’s own signal, so the incentive to purchase a demand-

schedule is reduced.2 In this sense, the pure demand schedule specification (the benchmark in the

literature on price informativeness) is not innocuous and may not be stable to plausible changes

in the microstructure of the market (here: the availability of a simpler, but cheaper, alternative

order type).

Our analysis relates to at least two strands of the literature: one that explores the properties

of asset prices under alternative order types and market microstructures, and one that studies the

joint determination of information acquisition and equilibrium prices. The focus on market orders

—as opposed to limit orders, stop orders or full demand schedules— in the market microstructure

literature can be traced back to Vives (1995), Medrano (1996) and Brown and Zhang (1997).3

Vives (1995) studies a pure market-order market while Vives (2008) considers a market with

exogenous sets of trader types. Medrano (1996) analyses the order choice of a single monopolistic

trader, in the tradition of the “insider trading”literature. In contrast, we consider the endogenous

determination of the sets of market-order versus demand-schedule traders in a large, competitive

asset market. Brown and Zhang (1997) study traders’order choice in a large market, but in their

model those who do not place market orders are “dealers” who observe the order flow but are

uninformed about the asset dividend. The interest in the joint determination of equilibrium prices

and information acquisition started with Grossman and Stiglitz (1980), followed by Verrecchia

(1982) and more recently Barlevy and Veronesi (2000), Peress (2010) and Vives (2013). While this

literature has traditionally focused on information acquisition about asset payoffs, our focus is on

traders’willingness to purchase an information set that includes the trading price (as is the case

with a demand schedule) —in addition to a free signal about the asset payoff.

Many of our results follow from the fact that market-order traders trade less aggressively than

demand-schedule traders and thereby reduce price informativeness. Let us stress that this is by no

means the only reason why price informativeness may be impeded relative to the competitive, full

demand-schedule benchmark. First, there might be some unlearnable residual uncertainty about

the dividend, a possibility explored by Angeletos and Werning (2006, pp. 1734—5) in a somewhat

different context. They show that this causes the precision of the price signal to be bounded

above, whatever the precision of the private signals on the learnable part of the dividend. Market

frictions may also limit traders’reaction to their information and thus price informativeness. For

example, short-sale constraints limit traders’responsiveness to bad news (Miller, 1977; Diamond

and Verrecchia, 1987; Bai et al. 2006). Similarly, under imperfect competition traders reduce their

trading intensity so as to avoid revealing their private information (Kyle, 1989). Our approach

is closer in spirit to the latter contribution in that limited trading aggressiveness follows from

the microstructure of the market, rather than outside restrictions about the learnability of the

information or the size of trades.

Section 2 presents the trading game. Section 3 analyses the case where order types are exoge-

2This relies on demand schedule traders not reaching measure zero, in which case the price would no longer be
well aligned with their signals. We show, however, that this cannot be the case under endogenous order types. The
reason is that in a full market-order market the aggressiveness of informed traders is bounded above, hence these
traders no longer eliminate noise trader risk when signals are very precise; this makes demand schedules valuable
again and ensures that demand-schedule traders have strictly positive measure.

3See Medrano (1996) and the references therein for a detailed disucssion of the early literature on market orders,
and Vives (2008) for the more recent papers.
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nous, and Section 4 that where they are endogenous. Section 5 concludes the paper.

2. The model

We consider the following competitive model of asset trading. There are two assets: (i) a riskless

bond in perfectly elastic supply and paying out a constant interest rate; and (ii) a risky asset with

trading price p and terminal dividend θ, where θ is drawn from the distribution N
(
θ̄, α−1

θ

)
, αθ > 0,

before any trading takes place. Traders know the distribution of θ but not its realisation.

There is a continuum of informed traders i ∈ I = [0, 1], each of whom gets a free private, noisy

signal about the dividend xi = θ + α
−1/2
x ξi, with αx > 0, ξi ∼ N (0, 1) and cov (ξi, θ) = 0. We

allow the noise in the private signals to be cross-correlated and parameterise this property by the

correlation coeffi cient ρ ∈ [0, 1]. We adopt the convention that the average of i.i.d. random variables

with mean zero is zero and we let ξ̃ ≡
∫ 1

0 ξidi ∼ N (0, ρ) and ηi ≡ ξi − ξ̃ ∼ N (0, 1− ρ) denote,

respectively, the aggregate and idiosyncratic components of the noise in the private signals.4 As ρ

gets closer to one the information received by informed traders gets increasingly shared between

themselves; when ρ = 1 private signals are perfectly correlated and the private signal ξi is just

the public signal ξ̃. In contrast, as ρ goes down then the noise components become increasingly

uncorrelated across traders, and we recover the usual specification with uncorrelated informational

noise with ρ = 0. We may rewrite the private signal xi as follows:

xi = θ + α−1/2
x ξ̃ + α−1/2

x ηi, (1)

which implies that xi provides a noisy signal about θ+α
−1/2
x ξ̃ (with neither θ nor ξ̃ being individ-

ually observed).

Aside from informed traders, there are noise traders in the market, which place a net asset

demand for the risky asset ε ∼ N
(
0, α−1

ε

)
, with αε > 0. Following Vives (1995, 2008), we consider

a competitive market microstructure wherein (a) all or some traders place market orders (rather

than full demand schedules), and (b) a (competitive, risk-neutral) market-making sector sets the

price p. In contrast to a demand schedule, a market order is conditional on the private signal xi
but not on the execution price p; once placed, it is executed irrevocably at whatever value of p is

set by market makers. The market-making sector observes the order book L (·) emanating from
informed and noise traders and sets the price p; competition among risk-neutral market makers

then causes them to undercut each other until p = E [θ|L (·)]. Note that L (·) is itself a function
of p whenever a positive mass of informed traders places demand schedules.

We introduce a general correlation structure for the signals received by informed traders for

the following reason. In our model placing a full demand schedule (as opposed to a market order)

allows a trader to trade conditionally on the price, which is valuable for two very distinct reasons.

First, the price aggregates dispersed private information and thus provides additional information

about the fundamental relative to one’s own signal. Second, it provides information about the

realised amount of noise trading; that is, it effectively allows a trader to partly hedge noise trader

risk (to which a market-order trader is exposed). For ρ ∈ [0, 1), these two informational roles of

price are present, but when ρ = 1 only the second one is. Hence, considering the full correlation

4See Vives (2013) for a model with a similar form of cross-correlation between agent types (formulated in terms
of the marginal utility of a good, rather than a direct signal about an asset payoff).
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spectrum [0, 1] will shed light on which role of the price really matters for our results.

Let M ⊂ I be the set of market-order traders and I\M the complementary set of demand-

schedules traders, of measure ν ≡
∫
I\Mdi ∈ [0, 1]. We will consider both the case whereM and I\M

are exogenous (Section 3) and that where they are endogenous (Section 4). All informed traders

have zero initial wealth (this is without loss of generality) and preferences V (wi; γi) = −e−γiwi ,
where γi > 0 and wi = (θ − p) ki are the risk aversion coeffi cient and terminal wealth of trader i,
respectively. We denote by γ−1

I ≡
∫
I γ
−1
i di the average risk tolerance of informed traders. We rank

informed traders in nondecreasing order of risk aversion and define the nondecreasing function γ :

[0, 1]→ R+. Finally, we assume that (i) γi is increasing and continuous in i and such that γ0 > 0;

and (ii) γ−1
i is independent of ξi − ξ̃, i.e., ∀J ⊂ I,

∫
J γ
−1
i (ξi − ξ̃)di = 0 a.s.

Definition. A Bayesian equilibrium of the trading game is a pair of investment functions for

demand-schedule (kI\M (xi, p; γi)) and market-order (kM (xi; γi)) traders as well as a price function

p(θ, ξ̃, ε) such that (i) kI\M (·) and kM (·) maximise informed traders’expected utility:

∀i ∈ I\M, kI\M (xi, p; γi) ∈ arg max
k∈R

E[V ((θ − p)k; γi)|xi, p], (2)

∀i ∈M, kM (xi; γi) ∈ arg max
k∈R

E[V ((θ − p)k; γi)|xi]; (3)

and (ii) the market-making sector sets the price p = E[θ|L(·)], where

L (p) =

∫
I\M

kI\M (xi, p; γi)di+

∫
M
kM (xi; γi)di+ ε. (4)

We then have the following lemma:

Lemma 1. The trading game has a unique linear Bayesian equilibrium, which is characterised by:

• The investment functions

kI\M (xi, p; γi) =
αθρθ̄ + αxxi − (αx + αθρ) p

γi (1 + (1− ρ)ρB2αε/αx)
and kM (xi; γi) =

β(xi − θ̄)
γi

, (5)

with

β =
[(
α−1
x + α−1

θ

) (
1 +B2ρα−1

x αε
)
−
(
B2αε

(
1 + ρα−1

x αθ
)

+ αθ
)−1
]−1

; (6)

• The price function

p(θ, ξ̃, ε) = (1− λB) θ̄ + λB(θ + α−1/2
x ξ̃ +B−1ε), (7)

with

λ = Bαε
[
B2αε (1 + ραθ/αx) + αθ

]−1
. (8)

In those functions, B > 0 is the unique real solution to the cubic equation:

B =
αxνγ

−1
I\M

1 + (1− ρ)ρB2αε/αx
+

(1− ν) γ−1
M(

α−1
x + α−1

θ

)
(1 +B2ραε/αx)− [B2αε (1 + ραθ/αx) + αθ]

−1 , (9)
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where γ−1
I\M ≡ ν−1

∫
I\M γ−1

i di and γ−1
M ≡ (1− ν)−1 ∫

M γ−1
i di are the average risk tolerance coeffi -

cients of demand-schedule and market-order traders, respectively.

Lemma 1 generalises the trading game in Vives (2008, Sec. 4.3) in two directions: i) heteroge-

nous risk aversion, and ii) correlated noise in the private signals. Heterogeneity in risk aversion is

the dimension along which informed traders sort themselves into demand-schedule versus market-

order traders in Section 4. The possibility that private informational noise be correlated will imply

that our results do not depend on whether the signal xi is private (ρ < 1) or public (ρ = 1).

Equation (7) implies that observing p is equivalent to observing θ + α
−1/2
x ξ̃ + B−1ε. Hence p

provides a public signal that is jointly informative of θ, ξ̃ and ε. Note that the signal extraction

problem faced by demand-schedule traders is more involved when ρ ∈ (0, 1) than when ρ ∈ {0, 1}.
When ρ = 0 we have ξ̃ = 0 a.s., hence p provides a signal about θ with noise B−1ε. When ρ = 1,

the public signal θ+α
−1/2
x ξ̃ is observed (i.e., ηi = 0 ∀i) jointly with p, hence B−1ε can be perfectly

inferred (see (7) again). In contrast, when ρ ∈ (0, 1) then ξ̃ must be inferred together with θ from

the observation of p. This joint signal extraction problem manifests itself by a greater residual

uncertainty about θ (conditional on a given signal xi) when ρ ∈ (0, 1) than when ρ ∈ {0, 1}, which
lowers the responsiveness of the demand for assets by demand-schedule traders to their signal.5

3. Exogenous trader types

We first analyse price informativeness at high signal precision when the distribution of informed

traders across types is exogenous. We then have the following proposition:

Proposition 1. (a) In a pure market-order market (ν = 0), the informativeness of the price signal

is bounded above; formally, αp →
αx→∞

B2
0αε < +∞, where B0 > 0 uniquely solves γMB0(α−1

θ −(
αθ + αεB

2
0

)−1
) = 1. (b) Whenever there is a positive mass of demand-schedule traders (ν > 0),

then the precision of the price signal is unbounded as αx →∞; more specifically,

αp ∼
αx→+∞

1ρ>0 (αx/ρ) + 1ρ=0(ναx/γI\M )2αε

Proposition 1 shows that the speed of information aggregation as αx → +∞ depends on both

the cross-correlation of informed traders’ signals and the share of market-order traders among

them. First, whenever ν > 0, then information aggregation is less effective when ρ > 0 than when

ρ = 0 (the informativeness of the price αp grows at the rate of αx in the former case but at the rate

of α2
x in the latter). Second, information aggregation is less effective when ν = 0 than otherwise

(the informativeness of p is bounded above as αx →∞ in the former case, not in the latter).

The intuition for the second result follows from our assumed information structure and its

implications for the Bayesian updating problem of demand-schedule traders. As stressed above,

this problem is more involved when ρ > 0 than when ρ = 0: in the latter case the quality of the

price signal p is only blurred by the extent of noise trading ε, while in the former it is also blurred

by the common informational noise component ξ̃. As αx increases and private signals become more

and more aligned with θ, the impact of ε on p diminishes (since αε is constant) but that of ξ̃ does

5This effect shows up in the fact that the multiplier αx/
[
γi
(
1 + (1− ρ)ρB2αε/αx

)]
in the investment function

of demand-schedule traders (see (5)) has the term ρ (1− ρ) in the denominator. This product is equal to zero for
ρ ∈ {0, 1} but is positive for ρ ∈ (0, 1) and is maximal at ρ = 1/2.
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not (since its precision 1/V(α
−1/2
x ξ̃) = αx/ρ increases at the rate of αx). In the special case where

ρ = 0 the informativeness of p grows very rapidly (at the rate of α2
x) because the common noise

component effect is absent; whenever it is present, the quality of the price signal cannot grow at

a rate faster than αx. This suggests that the usual specification where ρ = 0 is somewhat special

and that the conclusions drawn from it are not necessarily robust. Here it implies that as αx grows

large then xi (whose precision grows at rate αx) looses value relative to p (whose precision grows

at the rate of α2
x); eventually, demand-schedule traders only base their Bayesian estimate of θ on

p. In contrast, when ρ > 0 and the informativeness of p grows at the same rate as αx, then xi and

p keep constant weights in the computation of the posterior mean of θ as αx → +∞.
The intuition for the first result in the proposition (i.e., that price informativeness is bounded

when ν = 0) is as follows. In a pure demand-schedule market (ν = 1), informed traders can

condition their trades on p, so the only source of risk they face concerns the true value of θ.

As the precision of private signals increases, informed traders collectively trade more and more

aggressively against any discrepancy between p and θ. Formally, from (1) and Lemma 1 the total

asset demand by informed traders in a pure demand-schedule market can be written as:

∫
I

(
αθρθ̄ + αx(θ + α

−1/2
x ξ̃ + α

−1/2
x ηi)− (αx + αθρ) p

γi (1 + (1− ρ)ρB2αε/αx)

)
di = B

(
θ − p+

αθρ

αx

(
θ̄ − p

)
+ α−1/2

x ξ̃

)
,

where B uniquely solves BγI
(
1 + (1− ρ)ρB2αε/αx

)
= αx (since I\M = I and hence ν = 1).

The latter expression implies that B → +∞ as αx → +∞, and thus, by equations (7)—(8), that
p → θ as αx → +∞ —i.e., in the limit p becomes perfectly informative of θ. In contrast, in a

pure market-order market (ν = 0) informed traders do not condition their trades on p and hence

face a residual payoff risk even as the xis get more and more informative of θ. This risk leads

market-order traders to trade relatively less aggressively on the basis of their private signal, which

limits the amount of information that is transmitted into the price. Formally, from Lemma 1 again

the total asset demand by informed traders in a pure market-order market is:

∫
I

(
β(θ + α

−1/2
x ξ̃ + α

−1/2
x ηi − θ̄)

γi

)
di =

β(θ + α
−1/2
x ξ̃ − θ̄)
γM

,

where β is given by (6) B solves (since ν = 0):

(
α−1
x + α−1

θ

) (
1 +B2ραε/αx

)
−
(
B2αε (1 + ραθ/αx) + αθ

)−1
= 1/(γMB)

In this situation, as αx → +∞ we have B → B0 (> 0), where B0 is the unique solution to(
α−1
θ − 1/

(
B2αε + αθ

))
γMB = 1. By implication, the trading intensity of market-order traders

is bounded above as αx → +∞. From (7), as ν = 0 and αx → +∞ we have:

p→
αθθ̄/αε +B2

0

(
θ +B−1

0 ε
)

B2
0 + αθ/αε

.

Thus, asymptotically observing the price is equivalent to observing θ + B−1
0 ε, i.e., p provides

a signal about θ with precision B2
0αε < +∞. The intermediate case ν ∈ (0, 1) retains the main

properties of the pure demand-schedule case, because any positive measure of demand-schedule
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traders is suffi cient for their trading aggressiveness (which is unbounded as αx → +∞) to eliminate
the impact of ε on p. As we show next, this intermediate case is that which necessarily arises in

equilibrium when traders are free to choose their order type and the quality of information is high.

4. Endogenous trader types

We now analyse traders’choice of order type and determine the equilibrium setsM and I\M . The
basic tradeoff is that a demand schedule isolates a trader from price risk, but requires the trader

to place a large (infinite) number of limit orders to generate complete conditionality of trades on

the execution price. We capture this tradeoff by normalising the cost of a market order to zero

and setting that of a full demand schedule to c > 0. We know from the CARA-Normal model that

the value function associated with the information set Gi is:

W (Gi; γi) ≡ max
k
E[V (wi − κc)|Gi; γi] = − exp

(
−E[θ − p|Gi]2

2V[θ − p|Gi]
+ κcγi

)
,

where κ = 1 if Gi = (xi, p) (i.e., the trader places a full demand schedule) or κ = 0 if Gi = xi (i.e.,

the trader places a market order). LetWI\M (xi, p; γi) andWM (xi; γi) denote the expected utilities

of a demand-schedule and a market order trader, respectively, with preferences γi and conditional

on their full information set (i.e., xi or (xi, p)). There are two possible timing assumptions here,

depending on whether we allow informed traders to choose their order type after (“timing 1”) or

before (“timing 2”) observing xi. Under timing 1 traders compare expected utilities conditional

on xi (i.e., WM (xi; γi) and E
[
WI\M (xi, p; γi)

∣∣xi]), while under timing 2 they compare the same
expected utilities integrated over xi (i.e., E [WM (xi; γi)] and E

[
WI\M (xi, p; γi)

]
).6 The following

Lemma shows that the expected utility ratios are the same under the two timing assumptions,

hence both lead to the same discrete choice of order type.

Lemma 2. The ratios of conditional and unconditional expected utilities are given by:

WM (xi; γi)

E
[
WI\M (xi, p; γi)

∣∣xi]︸ ︷︷ ︸
timing 1

=
E [WM (xi; γi)]

E
[
WI\M (xi, p; γi)

]
︸ ︷︷ ︸

timing 2

= e−cγi

√
V[θ − p|xi]
V[θ − p|xi, p]︸ ︷︷ ︸

common value of the ratio

,

where V[θ − p|xi, p] and V[θ − p|xi] are given by equations (A2) and (A4) in Appendix A.

In other words, when we move from timing 1 to timing 2, both expected utilities change but

in the same proportion, leaving the basic tradeoff between order types unchanged. It follows that

under either timing informed trader i places a demand schedule if and only if the relevant ratio is

below or equal to one. Given the value of V[θ− p|xi]/V[θ− p|xi, p], computed from equations (A2)

6The equilibria that we focus on under timing 1 are linear Bayesian equilibria with linear price functionals. In
these equilibria informed traders choose their type on the basis of their risk aversion only (and not, say, on the level
of their signal). Consequently, (i) the distribution of signals remains independent of that of risk aversion within each
set M and I\M , even though these are determined after the signals are observed; and hence (ii) the equilibrium
measure ν is uninformative of the dividend. Note that even in this timing WI\M (xi, p; γi) is not known because it
is a function of p, a random variable at the time the order type is chosen. In contrast WM (xi; γi) is known, since
it is not conditional on the yet unknown value of p (by the mere definition of a market order). This is why traders
must compute E

[
WI\M (xi, p; γi)

∣∣xi] and compare it with WM (xi; γi).
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and (A4) in the appendix, this is equivalent to:

γi ≤ γ̄ =
1

2c

[
ln

(
1

αx + αθ

(
ρ+

ραθ
αx

+
αθ
B2αε

)2

+
ρ(1− ρ)

αx
+

1

B2αε

)

− ln

(
1

αθ

(
1−

(
1 +

ραθ
αx

+
(1− ρ)αθ

αx + (1− ρ)B2αε

)−1
)(

1 +
ραθ
αx

+
αθ
B2αε

)2
)]

, (10)

where, from Lemma 1,

B =

(
αx

(1 + (1− ρ)ρB2αε/αx)

)∫ γ−1(γ̄)

0
γ−1
i di

+

((
1

αx
+

1

αθ

)(
1 +

B2ραε
αx

)
− 1

B2αε (1 + ραθ/αx) + αθ

)−1 ∫ 1

γ−1(γ̄)
γ−1
i di. (11)

with γ−1 (γ̄) = 0 if γ̄ < γ (0) and γ−1 (γ̄) = 1 if γ̄ > γ (1). For (αx, αθ, αε, ρ) ∈ R+3 × [0, 1] given,

the properties of the γ function imply that the solution (γ̄, B) to (10)—(11), if it exists, can be of

three types: it is either such that γ̄ ∈ [γ (0) , γ (1)], in which case the solution is interior (i.e.,M 6= ∅
and I\M 6= ∅); or γ̄ < γ (0), so that the solution is corner and all traders place market orders (i.e.,

(M, I\M) = (I, ∅)); or γ̄ > γ (1) and all traders place demand schedules (i.e., (M, I\M) = (∅, I)).

The intuition for the sorting of traders along the degree of risk aversion is that greater risk aversion

lowers trading aggressiveness, hence the expected benefit from expanding the information set from

xi to (xi, p). Proposition 2 states our main results under endogenous order types:7

Proposition 2. For any (αθ, αε, ρ) ∈ R+2 × [0, 1], and as αx → +∞, (a) the solution (γ̄, B) to
(10)—(11) is unique; (b) both M and I\M have strictly positive measure (i.e., the equilibrium is

interior); (c) γ̄ → γ0 (i.e., market-order traders eventually overwhelm the market); (d) αp goes

to infinity as the same rate as αx; formally, defining the bijection hρ : R+ → (0, 1), hρ (x) =(
ρ+ (1−ρ)

1+(1−ρ)x

) (
ρ+ x−1

)−1 and h−1
ρ its inverse, we have

αp ∼
αx→∞

αx

ρ+
[
h−1
ρ (e−2γ0c)

]−1 .

Our information structure gives us some intuition about why demand-schedule traders vanish

as αx → +∞ (point (c)). In our analysis p plays two distinct informational roles: it provides

information about the distribution of signals received by the other informed traders, and about the

net asset demand of noise traders. In the special case where information about θ is entirely public

(i.e., ρ = 1), there is nothing to learn from the other informed traders by observing p. However,

trading conditional on p is still valuable because this provides insurance against noise trader risk—to

which market-order traders are exposed. That the crowding out of demand-schedule traders by

market-order traders as αx → +∞ also takes place when ρ = 1 suggests that when the quality of

information is high the primary value of a demand schedule relative to a market order comes from

its hedging role against noise trader risk, rather than its role at extracting dispersed information.
7Note from (10) that heterogeneity in c is formally equivalent to heterogeneity in γ. To encompass both cases,

rank traders in nondecreasing orders of g (i) ≡ c (i) γ (i), assume that g (i) is continuous, strictly increasing, that its
reciprocal is continuous, and that 0 < g (0) < g (1) < +∞; then solve for the marginal trader exactly in the same
way as in the case where c is homogenous.
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It follows that for the share of demand-schedule traders to vanish when signals become increasingly

precise, it must be that the gain from hedging noise trader risk itself vanishes. But the reason for

this is immediate: as the precision of information increases, demand-schedule traders trade more

and more aggressively on their information. In so doing, they take p closer and closer to their own

signal xi, which is itself closer and closer to θ. Eventually, they completely eliminate noise trader

risk, and thereby the relative benefit of a demand schedule.

This feature also explains why the equilibrium must necessarily be interior, i.e., why I\M ,
whilst asymptotically vanishing, must always keep positive measure (point (b)). If it were not the

case, then the market would be a full market-order market similar to that examined in Section

3. In this situation, the trading intensity of informed traders would be bounded above, hence the

uncertainty about the dividend would be bounded below (see Proposition 1). But then noise trader

risk would no longer be eliminated even at high levels of precision of the signals, and thus knowing

the price (in addition to the signal about the dividend) to insure against noise trader risk would

become valuable again. Demand schedules thus display a form of substituability: when information

about θ is precise, then a positive but small measure of demand-schedule traders deters all the

other traders from placing a demand schedule (however small c is).

Finally, the informativeness of p (point (d)) is closely related to the composition of the market

(point (c)). As discussed in Section 3, market-order traders tend to reduce information aggregation.

Consequently, the gradual crowding out of demand-schedule traders as αx → +∞ tends to reduce

the pace of information aggregation, relative to the case with constant, exogenous shares of each

type. For example, in the case where ρ = 0 the precision of the price signal grows at the rate of

αx, instead of α2
x when the sets M and I\M are exogenous.

5. Concluding remarks

This paper has analysed the joint determination of price informativeness and the composition of

the market in a large market with dispersed information. By allowing market-order and demand-

schedule traders to coexist, and by letting traders choose their preferred order type, the microstruc-

ture considered here is richer and more realistic than the pure demand schedule/Walrasian auction-

eer specification. Our main result that the set of demand-schedule traders vanishes when signals

become highly informative follows logically from the structure of the trading game, so we expect

it to hold under more general assumptions than those we have assumed. For example, we have

adopted the usual CARA-Normal framework, which is the only tractable specification under our

information structure. However, nothing in our results seem to depend on a particular feature of

preferences, at least in an obvious way; we thus conjecture that they would remain valid under much

more general (risk averse) preferences. Similarly, while our information structure allows for the

presence of both idiosyncratic and common informational noise components, it remains restrictive

in the sense that both components are constrained to vanish at the same rate when the precision

of private information goes to infinity (since the relation between the two is parameterised by the

correlation coeffi cient ρ). We show formally in the online technical appendix that our results can

be generalised to an information structure allowing each noise component to vanish at different

rates.
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6. Appendix

A. Proof of Lemma 1 There are three aggregate shocks (θ, ξ̃, ε), hence three random variables

that may affect p. Equation (1), implies that the effects of θ and α−1/2
x ξ̃ on private signals are

indistinguishable. Hence we define θ̃ ≡ θ + α
−1/2
x ξ̃ and restrict our attention to equilibrium price

functions p(θ̃, ε) that are linear in (θ̃, ε) (so that p is normally distributed). A trader i with

risk aversion coeffi cient γi and information set Gi has a demand for assets ki(Gi) = γ−1
i E[θ −

p|Gi]/V[θ− p|Gi]. We may thus write the demands by demand-schedule and market-order traders
as kiI\M (xi, p) = γ−1

i fI\M (xi, p) and kiM (xi) = γ−1
i fM (xi), respectively, with

fI\M (xi, p) = E[θ − p|xi, p]/V[θ|xi, p], fM (xi) = E[θ − p|xi]/V[θ − p|xi].

A.1. Price function. We conjecture that fI\M , fM have the form fI\M (xi, p) = a(xi −
θ̄) + ζ(p) and fM (xi) = c(xi − θ), where a, c are normalised trading intensities (for a trader with
γi = 1) and ζ (·) is a linear function. Using the convention that the average signal equals θ̃ a.s.,
and recalling that γi is independent from ξi − ξ̃, the order book is given by

L(p) =

∫
I\M

kiI\M (xi, p)di+

∫
M
kiM (xi)di+ ε =

∫
I\M

a(xi − θ̄) + ζ(p)

γi
di+

∫
M

c(xi − θ̄)
γi

di+ ε

=
[
a(θ + α−1/2

x ξ̃ − θ̄)
] ∫

I\M
γ−1
i di+ c(θ + α−1/2

x ξ̃ − θ̄)
∫
M
γ−1
i di+ ε+ ζ(p)

∫
I\M

γ−1
i di

= B(θ + α−1/2
x ξ̃ +B−1ε)−Bθ̄ + γ−1

I\Mνζ(p), with B = aνγ−1
I\M + c (1− ν) γ−1

M .

The market making sector observes L(.), a linear function of p, and sets p = E[θ|L(.)] = E[θ|z],
where z = θ + α

−1/2
x ξ̃ + B−1ε summarises the information provided by the order book. Since z

provides a signal about θ with noise ε̃ ≡ α−1/2
x ξ̃ +B−1ε we have:

p = E[θ|z] =
αθθ̄ + αε̃z

αθ + αε̃
∼ N

(
θ̄,V (p)

)
, where αε̃ =

1

V (ε̃)
=

B2αε
1 + ρB2αε/αx

.

Rearranging the latter expression gives the price function (7) in Lemma 1.

A.2. Investment functions for ρ ∈ (0, 1). We now need to identify the parameters a

and c in the demand functions, which requires computing the conditional moments of θ − p|Gi,
for Gi = (xi, p) (demand schedules) or Gi = xi (market orders). We start with the former and

specifically focus on the moments of θ|xi, p which is without loss of generality. To this purpose
define Θ ≡ [ θ θ̃ p xi ]′∼N4 (E (Θ) ,V (Θ)). From (1), (7) and the fact that θ̃ = θ + α

−1/2
x ξ̃,

we have, for ρ ∈ (0, 1), Θ = [ θ̄ θ̄ θ̄ θ̄ ]′+MS, with

M =


α
−1/2
θ 0 0 0

α
−1/2
θ ρ1/2α

−1/2
x 0 0

λBα
−1/2
θ λBρ1/2α

−1/2
x λα

−1/2
ε 0

α
−1/2
θ ρ1/2α

−1/2
x 0 (1− ρ)1/2 α

−1/2
x

 , S =


α

1/2
θ

(
θ − θ̄

)
ρ−1/2ξ̃

α
1/2
ε ε

(1− ρ)−1/2 ηi

∼N4 (0, I) .

Next, we compute V (Θ) = MM′ and then partition V (Θ) as V (Θ) = [Σkm] , k = 1, 2, with

all four Σkm being 2× 2 matrices. Then, from standard multivariate normal theory we know that
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[ θ θ̃ ]′|p, xi has distribution N2

(
[ θ̄ θ̄ ]′ + Σ12Σ−1

22 [ p− θ̄ xi − θ̄ ]′,Σ11 − Σ12Σ−1
22 Σ21

)
, from

which we infer the following conditional moments:

E [θ|p, xi] = θ̄ +
αx
(
xi − θ̄

)
+ (1− ρ)B2αε (λB)−1 (p− θ̄)

(1− ρ) (1 + ραθ/αx)B2αε + αx + αθ
, (A1)

V[θ|p, xi] =
1 + (1− ρ) ρB2αε/αx

(1− ρ) (1 + ραθ/αx)B2αε + αx + αθ
. (A2)

Substituting these values into kiI\M (xi, p) = γ−1
i E[θ − p|xi, p]/V[θ|xi, p] and rearranging gives

the corresponding asset demand in Lemma 1.

We now turn to the computation of θ−p|xi. We define, still for ρ ∈ (0, 1),Ω ≡[ θ θ̃ θ − p xi ]′

∼N4 (E (Ω) ,V (Ω)) and note that Ω =[ θ̄ θ̄ 0 θ̄ ]′+NT, where

N =


α
−1/2
θ 0 0 0

α
−1/2
θ ρ1/2α

−1/2
x 0 0

(1− λB)α
−1/2
θ −λBρ1/2α

−1/2
x −λα−1/2

ε 0

α
−1/2
θ ρ1/2α

−1/2
x 0 (1− ρ)1/2 α

−1/2
x

 , T =


α

1/2
θ

(
θ − θ

)
ρ−1/2ξ̃

α
1/2
ε ε

(1− ρ)−1/2 ηi

 ,

so that T ∼N4 (0, I). We partition V (Ω) = NN′ as follows: V (Ω) =
[
Σ̄km

]
, k,m = 1, 2, where

Σ̄11 is 3 × 3, Σ̄12 is 3 × 1, Σ̄21 is 1 × 3 and Σ̄22 is 1 × 1. It follows that [ θ θ̃ θ − p ]′|xi has
distribution N3

(
[ θ̄ θ̄ 0 ]′ + Σ̄12Σ̄−1

22

(
xi − θ̄

)
, Σ̄11 − Σ̄12Σ̄−1

22 Σ̄21

)
. After some calculations, we

infer from this joint distribution that:

E [θ − p|xi] =

(
(1− λB)α−1

θ − λBρα−1
x

) (
xi − θ̄

)
α−1
θ + α−1

x
, (A3)

V[θ − p|xi] = (λB)2

((
ρ+ ραθ/αx +B−2αθ/αε

)2
αx + αθ

+
(1− ρ)ρ

αx
+

1

B2αε

)
. (A4)

Substituting (A3)-(A4) into kiM (xi) = γ−1
i E[θ−p|xi]/V[θ−p|xi] and rearranging gives the asset

demand of market-order traders in Lemma 1.

A.3. Investment functions for ρ ∈ {0, 1}. The expressions for fI\M (xi, p), fM (xi), which

have been derived for ρ ∈ (0, 1), can be extended by continuity to ρ ∈ {0, 1}. For example, for
ρ = 0 we have z = θ + B−1ε, and computing the joint distribution of (p, xi, θ) gives the same

conditional moments as those in (A1)—(A4) when setting ρ = 0. Similarly, when ρ = 1 all informed

traders receive the same signal x = θ + α
−1/2
x ξ̃, ξ̃ ∼ N (0, 1), hence observing p does not provide

any more information about θ than observing x. It follows that:

E[θ|p, x] = E[θ|x] =
(
αθθ̄ + αxx

)
/ (αθ + αx) , V[θ|p, x] = V[θ|x] = (αx + αθ)

−1 ,

which is recovered by setting ρ = 1 in (A1)—(A4). Hence the expressions for kI\M (xi, p; γi),

kM (xi; γi) in Lemma 1 are valid for ρ ∈ (0, 1) ∪ {0, 1} = [0, 1].
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A.4. Uniqueness of linear equilibrium. We finally show that B is unique, positive and

finite. To do this, define the function f : R→ R as

f (B) =
ναx

γI\M

(
1 + (1−ρ)ρB2αε

αx

)+
1− ν

γM

((
α−1
x + α−1

θ

) (
1 +B2 ραε

αx

)
−
(
αθ +B2αε

(
1 + ραθ

αx

))−1
)−B,

so that a root of f (B) solves (9). f is continuous and strictly decreasing over [0,+∞) and such

that f (0) = ναx
γI\M

+ (1− ν) αx
γM

> 0 and f (+∞) = −∞. Hence f is a bijection with a unique root
B0 > 0 over [0,+∞). Since f is strictly positive on R−, B0 is the unique root of f in R.

B. Proof of Proposition 1 From (7), p is observationally equivalent to z = θ+α
−1/2
x ξ̃+B−1ε,

so both provide the same information about θ. It follows that the precision of the price signal is:

αp = αz = 1/V(α−1/2
x ξ̃ +B−1ε) = 1/

(
ρα−1

x +B−2α−1
ε

)
(B1)

B.1. Full market-order case. We know from Lemma 1 that B > 0 uniquely solves (9).

Now define the function g : R∗+ × R∗+ → R as follows:

g (B,αx) = γ−1
I

[(
α−1
x + α−1

θ

) (
1 +B2ραε/αx

)
−
(
αθ +B2αε (1 + ραθ/αx)

)−1
]−1
−B,

When ν = 0, B is the unique solution to g (B,αx) = 0. Since g is continuously differentiable,

increasing in ax and decreasing in B on R∗+×R∗+, the implicit function B (αx) defined by g (B,αx) =

0 is continuously differentiable and increasing over R∗+. Moreover, we have:

(
α−1
x + α−1

θ

) (
1 +B2ραε/αx

)
−
(
αθ +B2αε (1 + ραθ/αx)

)−1

≥ α−1
θ −

(
B2αε (1 + ραθ/αx) + αθ

)−1 ≥ α−1
θ −

(
B2αε + αθ

)−1
,

so that B = γ−1
I

[(
α−1
x + α−1

θ

) (
1 +B2ραε/αx

)
−
(
αθ +B2αε (1 + ραθ/αx)

)−1
]−1

≤ γ−1
I

[
α−1
θ −

(
B2αε + αθ

)−1
]−1

= γ−1
I αθ

(
B2αε + αθ

)
≤ γ−1

I αθ
(
1 + αθB

−2α−1
ε

)
The function h+ : B → B − γ−1

I αθ
(
1 + αθ/B

2αε
)
is continuous and strictly increasing over

R∗+, and such that h+(0) = −∞ and h+(+∞) = +∞. It is thus bijective and we denote its
inverse by h−1

+ . Then B ∈ h−1
+ (]−∞; 0]) is bounded above by h−1

+ (0), which is positive and

independent of αx. Hence, B0 ≡ limαx→∞B(αx) is defined and, by continuity, is the unique

solution to γIB =
(
α−1
θ −

(
αθ + αεB

2
)−1
)−1

. From (7) we then infer that limαx→∞ αp = B2
0αε.

B.2. Other cases. When ν ∈ (0, 1], B (αx) is implicitly defined as the unique solution to

(9). When ρ ∈ {0, 1}, we have

B (αx)
ναx
γI\M

= 1 +
(1− ν) /γM(

α−1
x + α−1

θ

)
(1 +B2ραε/αx)−

(
B (αx)2 αε (1 + ραθ/αx) + αθ

)−1

1
ναx
γI\M

,

so that B (αx) ≥ ναx/γI\M . Hence, whenever ρ ∈ {0, 1} and ν > 0 we have limαx→+∞B (αx) =

+∞ and limαx→+∞ [B (αx)]2 /αx = +∞.
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It follows that limαx→+∞B (αx) /
(
ναx
γI\M

)
is equal to

1 + lim
αx→+∞

(1− ν) /γM(
α−1
x + α−1

θ

) (
1 +B (αx)2 ραε/αx

)
−
(
B (αx)2 αε (1 + ραθ/αx) + αθ

)−1

1
ναx
γI\M

= 1,

so that B (αx) ∼
αx→+∞

ναx/γI\M . Now, recall from (7) that αp =
(
ρ/αx +B−2/αε

)−1. Hence,

for ρ = 0 we have limαx→+∞ αp = limαx→+∞ [B (αx)]2 αε = (ναx/γI\M )2αε, that is αp ∼
αx→+∞

(ν/γI\M )2αεα
2
x. However, for ρ = 1 we have αp ∼

αx→+∞
αx. Indeed, in this case we have α−1

p =

α−1
x + B−2α−1

ε , and we know that limαx→+∞B−2α−1
ε /α−1

x = α−1
ε limαx→+∞ αx/B2 = 0, from

which it follows that α−1
p ∼

αx→+∞
α−1
x .

Let us now turn to the case where ρ ∈ (0, 1). In that situation (9) implies that

B (αx) ≥ ναx
γI\M

1

1 + (1− ρ)ρB (αx)2 αε/αx
⇔ B (αx)

α
1/2
x

(
1 + (1− ρ)ρB (αx)2 αε/αx

)
≥ να

1/2
x

γI\M
,

so that limαx→∞B (αx) /α
1/2
x = limαx→∞B (αx)2 /αx = +∞. Moreover, again from (9) we have

B(αx)3

α2
x

=
ν/γI\M

αx/B(αx)2 + (1− ρ)ραε
+

[(1− ν) /γM ]×B(αx)2/α2
x(

1
αx

+ 1
αθ

)(
1 + B(αx)2ραε

αx

)
−
(
B (αx)2 αε

(
1 + ραθ

αx

)
+ αθ

)−1

Now, since

[(1− ν) /γM ]×B(αx)2/α2
x(

1
αx

+ 1
αθ

)(
1 + B(αx)2ραε

αx

)
−
(
B (αx)2 αε

(
1 + ραθ

αx

)
+ αθ

)−1 →
αx→∞

0 and
αx

B (αx)2 →
αx→∞

0,

we get

B3(αx)

α2
x

→
αx→∞

ν/γI\M
(1− ρ)ραε

⇒ B(αx) ∼
αx→∞

(
να2

x/γI\M
(1− ρ)ραε

)1/3

.

Recall that α−1
p = ρα−1

x + B−2α−1
ε , and we have shown that limαx→∞B (αx)2 /αx = +∞.

Hence, limαx→∞ αx/B (αx)2 = 0, so that α−1
p ∼

αx→∞
ρα−1

x .

C. Proof of Lemma 2 Let us first state the version of the law of total variance that is relevant

in our context:

V[E[θ − p|xi, p]|xi] = V[θ − p|xi]− E[V[θ − p|xi, p]|xi] = V[θ − p|xi]− V[θ − p|xi, p], (C1)

and V[E[θ − p|xi]] = V[θ − p]− E[V[θ − p|xi]] = V[θ − p]− V[θ − p|xi]. (C2)

C.1. Timing 1: Order type chosen after the signal is observed Under timing 1 traders

observe xi, know that the price will be a linear function of normally distributed variables, and then

compare WM (xi; γi) and E
[
WI\M (xi, p; γi)

∣∣xi]. We first write WM (·) as

WM (xi; γi) = −e−y
2
M,i , with yM,i ≡

E[θ − p|xi]√
2V[θ − p|xi]

. (C3)
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Similarly, WI\M (xi, p; γi) = −e−y
2
I\M,i+cγi , with yI\M,i ≡ E[θ − p|xi, p]/

√
2V[θ − p|xi, p] and

yI\M,i|xi ∼ N
(

E[θ − p|xi]√
2V[θ − p|xi, p]

,
V[E[θ − p|xi, p]|xi]

2V[θ − p|xi, p]

)
.

Using the fact that y2
I\M,i|xi has a noncentral chi -square distribution (see, e.g., Grossman and

Stiglitz, 1980), the moment-generating function yields:

E
[
WI\M (xi, p; γi)

∣∣xi]
= −E[e−y

2
I\M,i+cγi |xi] = − ecγi√

1 + 2V
[
yI\M,i|xi

] exp

(
−
(
E
[
yI\M,i|xi

])2
1 + 2V

[
yI\M,i|xi

])

= −ecγi
(

V[θ − p|xi, p]
V[θ − p|xi, p] + V[E[θ − p|xi, p]|xi]

)1/2

exp

(
−1

2

(E[θ − p|xi])2

V[θ − p|xi, p] + V[E[θ − p|xi, p]|xi]

)

= −ecγi
√
V[θ − p|xi, p]
V[θ − p|xi]

exp

(
−1

2

(E[θ − p|xi])2

V[θ − p|xi]

)
, (C4)

where we have used (C1) to go from the second to the third line. Comparing (C3) and (C4) gives

the first ratio in Lemma 2.

C2. Timing 2: Order type chosen before the signal is observed Under timing 2,

traders choose their order type before knowing xi. We recover the relevant expected utility levels

by integrating those under timing 1 over xi. First, noting that y2
M,i has a noncentral chi -square

distribution and making use of (C2), we obtain:

E [WM (xi; γi)] = E[− e−y
2
M,i ] = −

(
1 +

V[E[θ − p|xi]]
V[θ − p|xi]

)−1/2

= −
(
V[θ − p]
V[θ − p|xi]

)−1/2

. (C5)

Now, using the law of iterated expectations and integrating (C4) over xi we get:

E
[
WI\M (xi, p; γi)

]
= E

[
E
[
WI\M (xi, p; γi)

∣∣xi]]
= −ecγi

(
V[θ − p|xi, p]
V[θ − p|xi]

)1/2

E

[
exp

(
−1

2

(E[θ − p|xi])2

V[θ − p|xi]

)]
(C6)

But again, (E[θ − p|xi])2 also has a noncentral chi -square distribution and we have:

E

[
exp

(
− (E[θ − p|xi])2

2V[θ − p|xi]

)]
=

(
1 +

V[E[θ − p|xi]]
V[θ − p|xi]

)−1/2

. (C7)

Substituting (C7) into (C6), making use of (C2) and rearranging, we get:

E
[
WI\M (xi, p; γi)

]
= −ecγi

(
V[θ − p]

V[θ − p|xi, p]

)−1/2

. (C8)

Comparing (C5) and (C8) gives the second ratio in Lemma 2.

D. Proof of Proposition 2 See the separate online technical appendix.
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