Feynman-Kac representation of fully nonlinear PDEs and applications

Abstract : The classical Feynman-Kac formula states the connection between linear parabolic partial differential equations (PDEs), like the heat equation, and expectation of stochastic processes driven by Brownian motion. It gives then a method for solving linear PDEs by Monte Carlo simulations of random processes. The extension to (fully)nonlinear PDEs led in the recent years to important developments in stochastic analysis and the emergence of the theory of backward stochastic differential equations (BSDEs), which can be viewed as nonlinear Feynman-Kac formulas. We review in this paper the main ideas and results in this area, and present implications of these probabilistic representations for the numerical resolution of nonlinear PDEs, together with some applications to stochastic control problems and model uncertainty in finance.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

Contributeur : Huyen Pham <>
Soumis le : mardi 2 septembre 2014 - 10:01:28
Dernière modification le : mercredi 23 janvier 2019 - 10:29:22
Document(s) archivé(s) le : mercredi 3 décembre 2014 - 10:42:22


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01059852, version 1
  • ARXIV : 1409.0625


Huyen Pham. Feynman-Kac representation of fully nonlinear PDEs and applications. 2014. 〈hal-01059852〉



Consultations de la notice


Téléchargements de fichiers