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Grenoble Trabc Lab

An experimental platform for advanced

trafbc monitoring and forecasting

Carlos Canudas de Wit, Fabio Morbidi, LuisdreOjeda, Alain Y. Kibangou,

Iker Bellicot, Pascal Bellemain

“The start from the Ocean House was something marvelous to see. The drivers stormed
and scolded, the women shrieked and cried, wheels locked at intervals of perhaps ten minutes.
Occasionally, too, a carriage would capsize, and be hauled over to the fence for repaifs [

(It was) like a huge funeral procession, crawling along at a snail’s pace. It was a feat to get to
the city at all” This is the report of newspapé&ihe Examineof what happened when a multitude

of attendants and their carriages turned to éeaiithe same time after the end of a horse race at
Ingleside Race Track near San Francisco, Galifi, on November 16, 1873, probably one of the
oldest trabc jams on record. Nowadays, motor traflams in road networks occur regularly and
have a critical impact on modern cities in terwisproductivity loss, air pollution and wasteful
energy consumption [1]. According to the INRIX Traf Scorecard Report [2], in 2013 the
French drivers have wasted, on average, 35 hours ihrdraind France tied for third place with
Germany in Europe, in terms of tiad jams (after Belgium and the Netherlands). The situation
is not better in the United States, where the top three wordbdreities in 2013 have been
Los Angeles, Honolulu and San Francisco where drivers have spent 64, 60 and 56 houkrgin traf
jams, respectively. In order to address theHecaissue, since the '80s intelligent transportation

systems (ITS) have emerged tahance the infrastructurelzfiency and provide congestion relief.
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ITS applications, such as dynamic route guidamdth variable message panels, highway access

control and travel-time forecasting, are now being employed successfully worldwide.

Several technologies are available today for collectingrtrafata: stationary detectors
such as Doppler radars, single and double indudbe@ detectors, laser, infrared sensors,
magnetometers and video cameras, are now routinely used ibkelde and they have being
gradually supplemented by a grimg amount of data obtained frormobile detectorsor
tracing vehicles: this includes continuous traceReafing car data, FCD, i.e. satellite geo-
localization, andoating mobile data, FMD, i.e. locaktion via the mobile-phone network),
and point-to-point tracers (Bltmoth tags from telephones and onboard radios, radio-frequency
identibcation for electronic toll collection, WiFi patgoning system, WPS, i.e. localization from
WiFi hotspots) [3]-[5]. Data from stationary @etors, also known as “cross-sectional data”,
complements, in several respects, that coming from mobile detectors: in fact, while stationary
sensors provide a better temporal coverage obtratontinuous tracers are able to produce
highly-accurate trajectories for single vehicles. However, the former are typically more expensive
to install but easier to operate in the long terffihe problems of fusing data from heterogeneous
sources and of data assimilation have become increasingly important in recent years, and are
the subject of active research, see [5, Ch. 5.3] and [6]. Data assimilation is the process by
which observations are incorporated into a nlaafea real system. It is a cyclic procedure: in
each cycle, measurements of the current (and possibly past) state of a system are combined
with the results from a model (the forecast) taguce an analysis, which is considered as the
“the best” estimate of the current state of shetem. The model is then advanced in time and
its result becomes the forecast in the next analysis cycle [5]. A major breakthrough in highway
trafbc modeling came from the discoveof a relationship between tiad density and3ow at

a certain location, through the fundamentahgtam. This diagram is at the basis of thest



Buid-dynamic macroscopic model proposed bghthill, Whitham and Richards in the '50s,

the LWR model, 'For Details, see “Fluidyamic Macroscopic Models for Highway Tkad™".

More recently, the cell transmission model (CTM) [7] and the related switching mode model
(SMM) [8] have attracted considerable attention in the transportation and control literatures.
The SMM is a piecewise-Bhe state-dependent diste-time system based on the CTM which is

well suited for model-based tiad estimation [8]—[12] and controllB]-[15]: in fact, it represents

a good compromise between mathematical simplicity and modeling accuracy (see the second

case study below).

In spite of the aforementioned technologicatlaheoretical advances, the mathematical
physics community, which has been devetapgrowingly-sophisticated dynamical tiraf mod-
els, and the trddc engineering community, which is more concerned with the collection, statistical
analysis and interpretation of real trafdata, have not been able to establish durable links and
a common language so far. In particular, desghe numerous ITS initiatives worldwide, to the
best of the authors’ knowledge there do not exisprasent, easy-to-use@erimental platforms
which allow to test and compare the performance of advanceettrahnagement and monitoring
algorithms on highway data. In order Bl this gap and provide a standardized testbed for the
validation of new theoretical work, the NeCS team, a joint CNRS (GIPSA-lab) and Inria team-
project, has recently developed tGeenoble trabc lab (GTL). A source of inspiration for GTL
was Caltrans Performance Measurement 3ysteeMS) and Tools for Operational Planning
(TOPL) [16], [17]. GTL is an innovative platform for online collection of trafdata coming
from a dense wireless sensor network (130 mégneters over 10.5 km) installed in the south
ring of the city of Grenoble in France, “Rocade sud” in French. It is worth pointing out here that
differently from a sophisticateand general-purpose system such as PeMS (which can be virtually

operated in any road-network topology, ditgdmported from Google Maps), GTL works on a
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Figure 1. The south ring of Grenoble. (a) View of eesth of the south ring, direction north-east
towards Meylan (Image courtesy of DIR-CE);) (Aerial view of the interchange “Rondeau” at
the west end of the south ring (left centarthe image): this site endures heavy batongestion

during the morning and afternoon rush ho(irsage courtesy of Google Maps/Satellite).

smaller scale and fully covers a single iperban corridor: however, this spéxity constitutes

also one of its distinctive strengths. GTL is thelraination of a four-year research effort and

it became operative in winter 2013: the full potential of the system was demonstrated during
a Show Day on trdfc modeling, estimation and control, organized at Grenoble in May 2014.
The synergy with the local tre€ authorities which endorsed the large-scale deployment of a
novel sensor technology, and the characteridéity congestion experienced at the interchange
“Rondeau” (see Fig. 1), make the southg of Grenoble well-suited for tr&t studies and an
attractive working environment for students, practitioners and researchers in the control, applied

mathematics, and transportation communities.

The goal of this paper is to present the miainctional components of GTL, with a special
emphasis on tr&kc estimation and forecasting problems. Space constraints forced us to omit

extensive research on ramp-metering controlhie@ south ring, conducted with state-of-the-art
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trafbc simulators [18]: for more details, the readis referred to [19], [20]. In what follows,
we will proceed to describe in more detail the site of interest and the architecture of GTL.
After presenting the results of statistical analyses on the magnetometer data, we will focus
on two relevant control systems applicationedaconclude the article by highlighting some

promising directions for future research.

Site of Interest and GTL Architecture

Grenoble covers an area of 18.13 %m@nd with a total population of 159953 (as of
January 2014, source INSEE) is the 16th latgaty in France. The city is relativelgat with
an average elevation of 221 meters. The surface circulation is maemildiby the presence of
mountains enclosing the city in the north, west and south-east sides, and by thescoa of
rivers I€re and Drac in the north-west side in the direction of Lyon. These natural boundaries
have prevented the construction of a highway@umnding the overall city until today, thus making
vehicle circulation problematic especialtjuring the peak hours: Grenoble was the third most
congested city in France in 2013, with 41 hourasted on average by the drivers in baf2].
The south ring of Grenoblg‘route nationale 877, is a highway enclosing the southern part of the
city from A41 to A480, completed in 1985. It consists of two carriageways with two lanes, it has
10 on-ramps and 7 off-ramps in the internal roadway, and it stretches between the satellite city
of Meylan (45.20531N, 5.78353 E), and the interchange Rondeau (45.158845.70384 E),
for an overall length of about 10.5 km, see Fig.The south ring is a crucial transportation
corridor for Grenoble: around 90000 vehicles, 5% trucks, with peaks of 110000, drive across it
every day in both directions. The highwasy/operated by the Direction Intexdartementale des
Routes Centre-Est (DIR-CE) and the speedtlranges between 70 km/h and 90 km/h. Because

of its higher criticality for the vehicular cirdation and budget limitations of the NeCS team,
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Figure 2.  Traveling the south ring of Grenobl@) Spatial trajectory, and (b), (c) time
evolution of the position and speed of a car in the south ring on Thursday, December 5,
2013 between 19:48,00 and 19:56,26, recordeth the GPS-based smartphone application
“My Tracks”; (d) Time history of the fuel consumption of an average Diesel-powered family car
in conditions of heavy congestion on Febmnuda8, 2014, estimated using a physics-based
modal model (the black dashed line indicatee “nominal” consumption under light tiad,

cf. [5, Sect. 20.4]).
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Figure 3. Three-level architecture of GTL. Level 1: physical layer, Level 2: data processing

and applications, Level 3: results display.

in GTL only theeast-west directionf the south ring of Grenoble, the carriageway on the left in
Fig. 1(a), is considered. In light-tdad¢ conditions to travel from Meylan to Rondeau takes about
7 minutes and 30 seconds (see Fig. 2(a)-(c)), while under heavy congestion the travel time can

grow up to 45 minutes and fuel consumption up to 80% (cf. Fig. 2(d)).
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Figure 4. Magnetic sensors. (a) Sensys NetwdrkS240 protected by a hardened plastic case
(With permission of Sensys Networkic.); (b) A magnetometer in itbnal location in the
south ring, about 3 cm below the road surface, before being covered with fast-drying epoxy
(the arrow points in the direction of tiat 3ow). A 2 Euro coin is shown near the sensor for

comparison: the actual size is 7.4 em7.4 cmx 4.9 cm and the weight is 300 grams.

In the remainder of this section, we will de#e the different functional levels of GTL.

The reader is referred to Fig. 3 for a w@dw diagram of GTL architecture.

Level 1: Physical Layer

The south ring has been equipped with 54 pairsSehsys Network§DS240 3-axis
wireless magneto-resistive sems embedded in the middle of the fast/slow lanes 4.5 meters
apart, plus 20 sensors in the on-/off-ramps (€fy. 4 and Fig. 5, and Table 1), 'For Details,
see “How Do Magnetic Sensors Detect a Passing Vehicle?”. The magnetometers have a
sampling rate of 128 Hz and are powered with non-rechargeable primary Lithium Thionyl
Chloride (Li-SOCI2) 3.6 V, 7.2 Ah batteriewhich guarantee 10 years of autonomy and up
to 300 million vehicle detections. The magnetometers provide macroscopic information, such
asfBow [veh/h], time-mean speed [km/h] and occupancy[%] (the fraction of time during

which the cross-section is occupied by a védias well as microscopic information, such as
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Figure 5. Sensor disposition in the south ring. (a) Location of the collection pointsf3alyse

(Image courtesy of Google Maps); (b) Graphicabnesentation of road interconnections: the
cyan disks correspond to the collection point&l dhe arrows to the lanes (fast, slow, on-ramp,

off-ramp, etc.) equipped with magnetometers, see Table I.

single-vehicle speed, inter-vehicle time gap and vehicle length. The latter piece of information
can be used, for example, for safety or vehidiss distribution analyses: however, for the

sake of simplicity, in the rest of this article we will exclusively deal wittacroscopic data
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n  Name Lanes ID, Comm. Position [km]
1 Meylan Slow, Fast, On-ramp 3356, f 0.000
2 A41 Grenoble Slow, Fast, On-ramp 3354, f 0.405
3 Taillat (or Carronnerie) Slow, Fast 343c, f 1.168
4  Domaine Univ. (exit) Slow, Fast, Off-ramp 343b, f 1.770
5 Domaine Univ. (entrance) Slow, Fast, On-ramp 343b, f 1.946
6  Gabriel REri (exit) Slow, Fast, Off-ramp 3445, f 2.470
7  Gabriel REri (entrance 1) Slow, Fast, On-ramp 3445, f 2.604
8 Gabriel REri (entrance 2) Slow, Middle, Fast, On-ramp 1b67, g 2.803
9 SMH Slow, Fast 3357, f 3.619
10 SMH Centre (exit) Slow, Fast, Off-ramp 0ddd, f 4.881
10g SMH Centre (queue) On-ramp 0ddd, g 5.093
11 SMH Centre (entrance) Slow, Fast, On-ramp 3355, f 5.406
110 SMH Centre (overequip.) Slow, Fast 3355, f 5.606
12 Eybens (exit) Slow, Fast, Off-ramp 21d1, f 6.291
12g Eybens (queue) On-ramp 21d1, f 6.507
13 Eybens (entrance) Slow, Fast, On-ramp 343f, f 6.770
14  Echirolles (exit) Slow, Fast, Off-ramp 1b5c, g 7.418
14q Echirolles (queue) On-ramp left, On-ramp right 1b5c, g 7.742
15 Echirolles (entrance) Slow, Fast, On-ramp 25eb, f 7.981
150 Echirolles (overequip.) Slow, Fast 25eb, f 8.243
16 Etats Gfnéraux (exit) Slow, Fast, Off-ramp 25ea, f 8.637
16q Etats Gfnéraux (queue) On-ramp 1c99, g 9.015
17 Etats Gfnéraux (entrance) Slow, Fast, On-ramp 13c6, f 9.195
18 Liberation (exit) Slow, Fast, Off-ramp 3444, f 9.645
19 Libéeration (entrance) Slow, Fast, On-ramp 25ec, f 10.049
20 Rondeau Left, Middle, Right 343e, f 10.346

TABLE |

COLLECTION POINTS IN THE SOUTH RING SEEFIG. 5. “ID” IS A HEXADECIMAL SERIAL

NUMBER ASSOCIATED TO GROUPS OF MAGNETOMETERSIHE COMMUNICATION IS VIA

OPTICAL FIBER, “f”, ORGPRS, “g".

Notice that since = v, thedensity [veh/km] can be estimated from the availafBlew and
speed measurements. The magnetometers musdtra-low power 2.4 GHz TDMA protocol to

communicate with a nearby access point ¢gured and remotely operated with Sensys software
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“TrafpcDOT2"), which sends the data to a server in the Grenobledrebntrol center at the DIR-

CE via opticalbber, “f”, or via a wireless GPRS (General Packet Radio Service) connection,
“g”, see Table I. If the magnetometer, whidas a transmit/receive bit rate of 250 kbps, is
outside a radius of 45 meters from the access painépeater (mounted on the vertical signage)
is used to relay the signal to it. Overall, 19 access points and 21 repeaters are active in the
south ring. The trdfc data are monitored and stored in a database (DB in short) at DIR-CE,
where every 15 seconds an FTP data exportehgagishem to a server located at Inria Grenoble
Rhéne-Alpes, see Fig. 3. The access to the rawptrafata is currently restricted to the members
of our research group. The physical installation andbgamation of the magnetometers, and
testing of the platform took approximately ogear, between September 2012 and September
2013: the overall sensor network became fully rgienal at the end of 2013. A time-consuming
statistical analysis of the speed ples of the magnetometers was necessary to validate location
and labeling (note that the sensors sharihg same communication channel have the same
hexadecimal serial number or ID, see Table I)li¢ation issues related to the vehicle-counting
task and problems of data consistency over tineeenalso encountered, cf. the section “Platform

Operation and Data Validation” below.

Level 2: Data Processing and Applications

Level 2 consists of ampperandlower layer, which are here described in detail.

¢ Upper layer: the raw macroscopic tra€ data coming every 15 seconds from the Sensys
magnetometers (see Level 1) are storedidatabase and then passed through a suite of
signal-processing algorithms @gn box in Fig. 3), which perform:
— Imputation and diagnostics: if some data are lost or erroneous (for instance, as a result
of communication problems or temporary sen malfunction), suitable imputation

algorithms [21], [22] are run foiblling in the missing data with estimated values,
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see Level 3. In this respect, each magnetometer is evaluated not as a standalone
but together with its neighbors and their past measurement history (see [23] and
“Vehicle counting” under “Data analysis” in [24]).

— Aggregation: high-resolution trdfc data tend to be noisy. In order not to capture
dynamics that are not physically meaningfiilis then fundamental to aggregate the
data into time slots of 1, 5 or 6 minutes, depending on the scenario under investigation.
Even after the aggregation of the raw tafdata, high-frequency oscillations might still
be present because of data-collection latency and intrinsic measurement noise: it may
be then opportune to apply a low-pddter with an appropriate ¢off frequency (e.g. a
prst-order low-pass Butterworthlter).

— Model calibration: if model-based algorithms are utilized in the lower layer for
computing the trdfc indicators (see below), the parameters of tBaid-dynamic)
models are automatically estimated from the data: for example, a least-squares based
method inspired by [25] is employed foomputing the parameters of the fundamental

diagram in the SMM, which is in turn used for trefdensity estimation.

e Lower layer: in this layer the pre-processed data is utilized to compute, at the present time
and in the future, several tfd indicators: the travel time [min], the number of vehicles,
the congestion length [km], the fuel consumption [L/100km], and, @@/100km], NQ
[0/100km] emissions for an average family car and the safety index [s] (see the magenta
boxes in Fig. 3). The fuel consumption and £@€missions are estimated using a physics-
based modal consumption model [5, Sect.42@or a Diesel-powered vehicle (61.3% of
French private cars were Diesel in Janu2013, according to the INSEE), while for the
NO, emissions we relied on the statisticalbdal model proposed in [26]. Finally, the

safety index is computed according to a constant time-headway spacing policy with a
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nominal time headway of two seconds as a reference [27]. As it is known, the “two-
second distance rule” tells a driver tmeinimumdistance needed to reduce the risk of
collision with the vehicle directly in frontunder ideal driving conditions: two seconds

is a safety buffer, and the rule attempts to respect a distance which is consistent with
human reaction time (approxitey 1.5-2 s). For the sake of simplicity, the algorithms
that generate the aforementioned indicatare coded as Simulink blocks: MEXes are

used to interface the blocks with the database on one side and with the result-visualization
tools (see Level 3, below) on the other. The MATLAB/Simulink environment offers great
Rexibility and modularity, and allows the user to easily add or delete connections between the
blocks and implement new ttad-management algorithms. The instantaneous and forecast
indicators yielded by our Simulink blocks are stored in a dedicated database. More details
about two algorithms for tr&t density estimation and travel-time forecasting recently

developed by the our group, are given in the forthcoming “Case studies” section.

Level 3: Results Display

The indicators computed by the algorithms in Lie2ecan be visualized using different media,
including a:
¢ Web interface: the interface includes four panels, 9ég. 6. In the upper-left panel, eight

gauges display the indicators relative to the instantaneouxctcainditions in the south ring
(together with the worst daily values: blyminters). The upper-right panel reports space-
time heat maps relative to the current and forecasberafdicators, and by clicking on the
right top dialog box, predicted time-indexed ees are displayed. In the lower-left panel,
the user can select an on-ramp and an off-ramp of the south ring and compute the forecast
arrival/departure times. Four alarms, in the forml3&afshing images, are also displayed in

this portion of the interface. Finally, the lower-right panel, which has been partially built
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Figure 6. The four panels of GTL web interface. Clockwise from top left: 1) gauges displaying
the indicators relative to the instantaneoushcatonditions, 2) space-time heat map relative
to the current and forecast traf indicators, and predicted time-indexed curves, 3) selection
of the on-ramp/off-ramp in the south ring and qaumation of the forecast exit/entrance times,
4) visualization of the collection points irhé¢ south ring, and of color-coded average Heaf

speed in each road segment (Image courtesy of Google Maps).

upon Google Maps, shows the collection points in the south ring, and the color-coded
average trdfc speed in each road segment. For demonstration purposes, the web interface
is available at the address in [28].

¢ Mobile device an Android smartphone applicationlieal “GTLMobile” has been developed
in collaboration with the Institut Carnot ILSof Grenoble, to display salient tiad

information (forecast travel time and G@missions) to the drivers. The functionalities of the
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application have been Bred by collecting the traveling preferences of over 200 commuters
of the south ring via an online questionnaire.

e Showroom the four panels of the web interface,upl additional diagnostic information
about data quality (vehicle-coting performance), are displayed 24/7 in seven monitors in

a dedicated room at Inria Grenoble dtig-Alpes.

Platform Operation and Data Validation

In this section we describe the tiraf prables of a typical weekday in the south ring,
and present the results of a statistical datalysis that we conducted to test the performance
of the network of magnetometers. These studies were instrumental in developing and setting up

the GTL platform.

Analysis of Typical Trafbc Patterns

In order to design effective and reliable trafestimation and forecasting algorithms, it
is crucial to be fully aware of the physical limit# the infrastructure and of recurrent traf
patterns. Fig. 7(a) reports the speed contouthef south ring for the fast and slow lanes on
Thursday, January 16, 2014: as it is evident infigare (horizontal red stripes) heavy congestion
originating from the Rondeau interchange, a bottleneck where the speed limit decreases from
90 to 70 km/h and the highway branches off south, west and north, is experienced during the
morning and afternoon rush hours. In Fig. 7(lm)e reported the time evolution (from 2:00
onward) of mainstrearfiow (black) and speed (green) in location Fdts Gsnéraux, exit) for
January 16, 2014: to improve the readability, the raw signals haveleszad using drst-order
low-pass Butterworthipiter. From thisbgure we can notice that the minimal volume of bafs at

3:00 in the morning and that four tixd regimesR1, R2, R3, R4, can be identied in a typical
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Figure 7. Typical trabc patterns in the south ring. (a) Speed contour of January 16, 2014:
the two red horizontal stripes correspondth@ morning and afternoon rush hours; (b) Time
evolution of mainstrearfBow [veh/h] (black) and speed [km/h] (green) in location 16 on January
16, 2014; (c) Vehicle speed against bafilow for bve weekdays (January 7, 8, 9, 10 and 16,

2014) at location 16. In (b) and (c), four tkaf regimesR1, R2, R3, R4, are highlighted.

working day (see Table II): regimiel corresponds to light tr&t conditions (early morning and

late evening)R3 to the highway operating near the maximal capacify, andR4 is relative
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Traf bc regime Flow [veh/h] (2 lanes) Aver. speed [km/h] Approx. time interval

R1, Light 0 < 1500 v > 60 21:00-7:00

R2, Fluid 1500 < 2500 v > 60 9:30-13:00, 19:00-21:00

R3, Intense 2500 M v > 60 13:00-17:00

R4, Congested 1500 M v 60 7:00-9:30, 17:00-19:00
TABLE I

THE FOUR TRAFFIC REGIMES IN THE SOUTH RING

to the morning and afternoon ttaf peaks, where speed drops below 40 km/h. Finally, in the
intermediate regimdR2, the trabc load is moderate (see also “Speed calendar” under “Data
analysis” in [24]). The four regimes are also displayed in Fig. 7(c), where we plotted vehicle
speed against tra€ Row (red dots) forbve weekdays, January 7, 8, 9, 10 and 16, 2014, at
location 16. The black curve in thegure has been obtained via least-squdmitisig using an
(implicit) exponential function oRow and speed; (, v ) = aexp€é b€v§§§aé, wherea (even),

b, c, d are positive parameters to be determined. The tip of this curve approximately represents

the maximal capacity of the highway at location 16, i.e. the maximal number of vehicles that

can cross this location in one hour.
Magnetometers Versus Inductive-Loop Detectors: Performance Comparison

In order to assess the performance @ thagnetic sensors, we compared fRlogv/speed
measurements of Sensys magnetometers wélctiiresponding measurements of two SIREDO
inductive double-loop detectors v belong to a nation-wide tda¢-monitoring network [29].
These two detectors, which are not part of the GTL platform, are located between collection
points 9 and 10, and 110 and 12, at 4.319 km and 5.9 km from Meylan, respectively.

They cover the fast and slow lanes, and provide indepenBent speed and occupancy
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measurements, with an aggregation time of 6 minutes. In our tests, we considered the days
between September 2 and September 20, 20&€g8kends excluded. During the working hours
(8:00-18:00), we observed a good tetang between the averadew (Figs. 8(a), (c)) and
average-speed measurements over the 15 days. &g), (d)): however, the data from the loop
detectors appeared to be, overall,rm@orrelated and smoother. Thaaedings are consistent

with previously publishé studies [30]—-[32].
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Figure 8. Magnetometers versus inductive-latgiectors. Comparison between the measure-
ments of magnetometers (green) and inducto@pldetectors (blue) between September 2 and
20, 2013, without weekends. (a), (c) Averadews over the 15 days in correspondence to the
Prst and second loop detector; (b), (d) Avezagpeeds over the 15 days in correspondence to

the brst and second loop detector.
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Flow-Error Analysis

An additional test was performed to asséss counting performance of Sensys magne-
tometers in the south ring. In order to make the pre¢ation of the results precise, it is convenient
to introduce here some terminology regardmggworkf3ow theory[33]. A networkG is a triple
consisting of two set& andN , the set of arcs and of nodes, respectively, and a function that
assignsto each E apair(iy, i) NxN suchthai; = i,. Nodei, is called thenitial node
of j andi, theterminal node The arcj is said to bencidentto i, andi,, where these nodes,
by virtue of the existence of such an arc, are said t@djecentto each other. We henceforth
assume thafN| = n and |E| = m, where| - | denotes the cardinality of a set. Thede-arc
incidence matrixE = [g;] of G is debned as follows:g; = 1 if i is the initial node of the
arcj, g = S1if i is the terminal node of the aic and g; = 0 otherwise. Note thaE is
ann x m matrix, and that each column & has exactly one-1 and oneS1. The Row of an
arc is a variable that measures the quantity of matds@ating through an arc of the network.
Mathematically, theBow of an arcj is a real nonnegative number which we denote by
In order to analyze what happens t®aw at a certain nodg, in particular if the node “leaks”,
it is useful to introduce the notion afivergence Given a networkG, the divergence of th&w
at nodei N , denoted byy;, is the quantityy; = ; ¢ & ;, thatis, the total3ow departing
from nodei minus the totaRow arriving ati. Let =[ 1,..., m]" be theRow vector A node
i is said to be aourcefor the Bow vector if y; > 0 and asinkif y; < 0. If y; =0, the Row
is conservedat i. Note that if we cally = [yi,...,Y.]" the divergence vectoassociated with
the Bow vector , we have thay = E . In a network, the total amount ®ow created at the
sources always equals the total amount gstd at the sinks. This is expressed by th&l

divergence principle

yi = for y = E
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Location Feb.7 Feb.8 --- Feb. 15 Feb. 16 Feb. 17 Aver. Std Min Max

1 2 n.a. na--- n.a. n.a. n.a. n.a. n.a. n.a. n.a.
2 3 0.1 0.5 e 0.9 0.1 0.4 0.04 0.57 -0.8 0.9
3 4 0.5 -0.03 --- 0.5 0.3 0.5 0.33 0.23 -0.04 0.7
4 5 -0.1 0.1 e 0.1 -0.05 0.02 001 0.1 -0.19 01
5 6 0.9 0.3 e -7.6 0.2 -1.2 -0.94 251 -76 0.9
6 7 n.a. na--- n.a. n.a. n.a. n.a. n.a. n.a. n.a.
7 8 n.a. na --- n.a. n.a. n.a. n.a. n.a. n.a. n.a.
8 9 -0.5 0.8 ... -13.6 -0.5 -3.4 -6.31 6.54 -154 0.8
9 10 0.1 0.01 --- -0.2 -0.3 -0.2 -0.19 0.2 -05 0.1
10 11 -0.6 -04 .. -0.1 -0.4 -0.6 -0.39 0.16 -06 -0.1
11  1lo -2 1.4 .- -1.9 -1.4 -0.4 -1.6  0.44 -2 -0.4
11lo0 12 2.9 2 e 2.4 2.1 0.8 2.14 052 0.8 2.9
12 13 0.2 -0.04 --. 0.1 0.2 0.1 0.01 0.23 -05 0.2
13 14 -1.7 -1.5 ... 13 -0.4 1 443 6.48 -1.7 13.2
14 15 -3.1 -1.8 .- -14 -1 -4.9 -8.23 7.03 -19 -1
15 150 -1.3 -0.2 .- 0.02 -0.04 -1.3 -0.75 0.53 -1.3 0.02
150 16 0.4 0.2 e 0.2 -0.2 0.4 0.23 0.23 -0.2 0.6
16 17 0.1 0.7 ... 115 -1 -2.1 -5.23 6.1 -13.7 1.7
17 18 -1 -0.1  --- -0.7 -0.2 -0.5 -0.62 032 -11 -0.1
18 19 -152 -198 --- -28 1.8 -6.8 -9.09 10.24 -28 9.5
19 20 -23 16.8 .- 23.6 -1.6 -25,5 -3.56 21.78 -50.5 23.6
TABLE Il

STATISTICAL ANALYSIS OF THE RELATIVE DIVERGENCE OF DAILY FLOWS[%] IN THE
SOUTH RING OVER10 DAYS (FROM FEBRUARY 7 TO FEBRUARY 17, 2014). “n.a."STANDS

FOR“NOT AVAILABLE .

TheBows in Gsuch thatt = 0, i.e. is conserved agéverynode, are calledirculations
(note that analogously, in physics, a vectoeld with constant zero divergence is called
incompressibleor solenoida). The set of all circulations forms a linear subspaceRdt, the

circulation spaceC = ker(E), whereker(:) denotes the kernel of a matrix.

Let us now return to the task of evaluating the counting performance of the magnetometers
in the south ring of Grenoble. Consider the graphregresentation of the south ring in Fig. 5(b),

and assume that the 26 Sensys collecpoimts represent the nodes of a netw@dg and the
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arrows the arcs ofsg (through which vehiclegow). It is then easy to verify that the incidence
matrix E of Gsg has 26 rows and 70 columns, from which we can compute the daily divergences
in the south ring by using the measured dd$yws ;,] { 1,2,...,7G. In order to simplify

the analysis, let us introduce thelative divergence of the dailgow at locationi (in %)

y% = 100x ! 4 .
max | & il i

. ’
j E g =51 j E g =1

Note that according to this &aition, y¢ is a signed quantity. Unfortunately, we will never have
yﬁ/}’ =0 in the real world, since a counting error will always be present, due to the technological
limitation of sensors or to vehicles stuak a road section: we can then only hope tlyég!ﬂ <,

i, where is a suitable small threshold. From an inspection of Table Il in which we reported
the average, standard deten, minimal and maximal rakive divergence of the dailgow over
10 days in February 2014 (because of the spamestraints, Table Il does not show tRBew
of all days), we can notice that except for two locations in which environmental disturbances
and vehicle lane-changing armportant sources of uncertainty, the absolute value of average
relative divergence is always smaller th@fo, see “Vehicle counting” under “Data analysis”
in [24]. The counting performance appeared to digantly depend on the sensor calibration

accuracy and, notably, on the sensitivity threshold over the three axes of the magnetometers.
Case studies

GTL provides direct access to real trafdata, which allows, in turn, to synthesize and
test new algorithms with unprecedented rapidatyd accuracy. In this section we report two
examples of recently-developed algorithms which use tools of control systems theobrsthe
one relies on the adaptive Kalmé&tier and speed measurements $bort-term multi-step ahead
travel-time forecasting34], and the second one leverages amhlberger-like observer based on
the CTM fortraflbc-density estimatioff] in the south ring. The development of these algorithms

has greatly beri®ed from the unique features of the GTL platform.
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Multi-Step Ahead Travel-Time Forecasting

The problem of highway travel-time forecasting has been widely studied and several
solutions have been proposed in the literaturpeteling on how the available historical and
current-time trapc information is handled [35]38]. In this section, we brig/ present the main
features of a novel travel-time forecasting algorithm based on the noise-adaptive Kealleran
(AKF) (for further details, see [23], [34]). Our algorithm considpregressiverafc conditions,

i.e. it accounts for the spatial and temporal dtinds encountered by a potential driver along
the road, 'For Details, see “Travel Time Forecasting”. Fig. 9 shows the main functional
blocks of the forecasting algorithm. Three typokegiof data, obtained from the available speed
measurements, feed the algorithm: the histortcabel-time information (“Historical data”) in

all theM = 21 links of the south ring (a link is ded as the stretch between two collection
points, recall Table I), the travel-time information at present tikgein the link i, and the
travel-time information from nunight of the current day up to timle, in the linki (“Same-

day past data”). In order to reduce spatial complexity and maximize correlation, the historical

data has been clustered irftge time zones (00:00-7:00, 7:00-10:00, 10:00-16:00, 16:00-19:00,

Historical - i i
Estimate thg covariance
data of observation noise R (k)
Data at present

time k, Onlinecluster| | 1 v Rowsed I
— assignment Compute the | 92in K (k) Kalman
Kalman gain
filter

pseudo-observations

Estimated
Estimate the covariance | traveltime (k)
of process noise q(k)

Same-day
past data

N Generate the : y (k) A

Noise-adaptive Kalman filter

Figure 9. Block diagram of the triaf forecasting algorithm based on the Kalni@ier from [23].
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and 19:00-24.00) using the standard k-means dlgar(as a preliminary step, a separation into
working and non-working days, i.e. Sundays antidays, is also performed). The clustered data
are used to produgeseudo-observationsa two predictors which rely on the average of historical
data, and on the data at the present time and historical increment, respectively, and to estimate
the covariance matrix of the observation noRé&k) R¥?for k { kp, kp+1,...,k,+ H},
whereH is the forecasting horizon. Note that by imdiucing pseudo-observations the forecasting
problem is conveniently converted into a standdatering problem. MatrixR (k) and the
covariance of the process nogik) R, which is estimated from the forcing residuals [39, Sect.
4.7], are used to compute a revised gKiftk) R?*? for the Kalmanblter which outputs the
estimated travel-time; (k) in link i for k { kp, kp+1,...,k,+ H}. Fig. 10 reports the results

of several tests that we conducted under typicabtrafonditions. In particular, Figs. 10(a), (c)
show the forecast travel time provided by the pragbsethod (purple solid, circle) against the
travel time computed from a simple average of thetdmical data (blue dashed, cross), and the
ground truth (black solid, star) &, = 8 : 45 on September 17, 2013 and kgt = 17 : 15 on
September 11, 2013, respectively. Figs. 10(b),rébort the corresponding forecast trajectories
in the (space, time)-speed plane against the grdwntl for departure times at intervals of 15
minutes. From thd>gures, we notice that the proposed method always outperforms the average
of historical data, and that the congestion buifgland phase-out times are correctly captured by
the algorithm. For cross-validating the propdsalgorithm, let us now introduce the estimated
cumulative travel timérom the current link to the destinationlink (i=j) { 1,2,..., M}) at
timek, as ; (k) jzi (k) wherek = kg, + (ks1), and theabsolute percentage error
(APE) at timek in the overall south ring, as ARE) 100 1 w(k) S 1 m K|/ 1 wm(K).

Fig. 11 reports the cumulative distribution function (CDF) of the APE for different forecasting

horizonsH’s using the proposed algorithm (black) atite average of historical data (red),
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Figure 10. Performance of the travel-time forecasting algorithm. (a) Forecastipg=a8 : 45

on September 17, 2013 (the forecasting step and hokkzame 5 and 45 minutes, respectively),
and (b) corresponding predicted trajectory fdeparture times at intervals of 15 minutes;
(c) Forecasting &t, = 17 : 150n September 11, 2013, and (d) cepending predicted trajectory.

The proposed method based on the adaptive Kalbtign (AKF) is shown in magenta.

whenk, varies between 6:00 and 22:00 for 15 working days. As it is evident in Figs. 11(a)-
(c), the smallerH the more accurate the forecasting: moreover, although the performance of
the proposed algorithm is always comparable wpesior than that obtained with the historical

average, for largél, as expected, the differences between the two approaches become negligible.
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Figure 11. Performance of the travel-time forecasting algorithm. Cumulative density function
(CDF) of the absolute percentage error (APE) using the proposed algorithm (AKF, black) and
a simple average of historical data (red), for different forecasting horizonsi @0 minutes

(present time); (bH = 15 minutes; (c)H = 45 minutes.
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Figure 12. Density reconstruction in the soutigrusing the CTM-based observer. (a) Measured
density, and (b) estimated density on Febru28y2014; (c) Measured density, and (d) estimated

density on March 7, 2014.

Traf bc-Density Estimation

In this Pnal section, we illustrate the perforn@nof a recently-developed Luenberger-
like trafbc density estimator based on the graph-t@ised SMM: for the detailed mathematical
formulation, the reader is referred to [9], [1123]. The south ring has been subdivided in 48 cells
with average length of 220 meters and the density in each cell has been reconstructed using the
model-based observer and the availaBtev measurements: the data have been aggregated to
1 minute and then resampled to 5 seconds, aa&tiM has been automatically calibrated using

a robust algorithm similar to the one proposed[2®], cf. “Level 2” above. Figs. 12(b), (d)
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show the density contour estimated by the proposed observer on Friday, February 28, 2014
(the eve of French student holidays, when tbeathk ring was heavily congested all afternoon),

and on Friday, March 7, 2014, respectively. Fig&(a), (c) report the corresponding measured
densities, that is the densities reconstructed from the avaiavieand speed measurements in

the collection points of the south ring (our groutmdth). The gray vertical stripes in Fig. 12(a)
correspond to three collection points (Meylan, GabrietiRntrance 1, SMH Centre exit) which
were not operative on February 28. In spite oé thmissing data, we observe a satisfactorily

agreement between the measured and estimated densities.

Conclusions and Future Work

In this article we have described tiig&enoble trabc lab (GTL), a novel experimental
platform for advanced tr&t research, and we have presented some activities built around it that

our group has recently carried out.

GTL is an ongoing and living research projewhich serves as a basis for more ambitious
forthcoming undertakings: in the near futureg &wim at customizing the GTL web interface for
different categories of vehicles, elg.e trucks, ambulances, patrol and passenger cars. Looking
further into the future, we also plan to extend oetwork of sensors to the major urban arterials
of Grenoble in order to have a wider city-level coverage ofrcabehavior, and to fuse tiad

data coming from heterogeneous sensors (e.ggmetometers and GRSuipped vehicles).
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Sidebar 1: Fluid-Dynamic Macroscopic Models for Highway Trafc

Macroscopic trabc models describe the evolution of vehicle positions in a highway in
term of macroscopic variables such as the dengity<) and average speedt, x) of the vehicles,
wheret andx are the time and space indices, respectively. The simplest macroscopic model is
the scalar one proposed independently by Lighthill and Whitham in 1955 and by Richards in
1956 (the LWR model). Thigrst-order model is based on the conservation law of vehicles
and is described by, + (X'V) =0 where (t,x) [0, m] being ., the maximal density of
cars on the highway, and tHaux ( ,v) is given by v. In most cases we can assume that

the average speed depends only on the density of the vdbg (in fact, the vehicles tend to
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travel at an equilibrium speed), thus ,v) = ( ) and its graph is called the fundamental
diagram. For simplicity, it is typically assumed that ) is concave and has a unique maximum

in (0, ) [S1]. In a triangular fundamental diagna one of the most used in the literature,
there are only two distinct propagation velocities of density variations, one for frdec trgf

and one for congested tfaf, w. The transition from a regime to the other is determined by the
critical density .. The most common integration method for the LWR model is the Godunov
scheme [S2]. The discrete version of the RWhodel with triangular dndamental diagram, is
formulated as an iterated coupled map with time apdce discretized into time steps and cells,
respectively, and supplementeg d special “supply-demand” updatdeuo describe interactions
between adjacent highway cells as well as shockwaves. This model is known as cell transmission

model (CTM) [7].
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Sidebar 2: How Do Magnetic Sensors Detect a Passing Vehicle?

Magnetic sensors are passive devices that indicate the presence of a metallic object by
detecting the perturbation (known as agnetic anomaly) in the Earth’s magnelteld created
by the object [S3]. Fig. S1 shows the distortion induced in the Earth’s magpelit as a
vehicle enters and passes through the dieteczone of a magnetic sensor embedded in the

roadway. In particular, Fig. S1(right) depicts the magnéid as the vehicle approaches the
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sensor (gray rectangle). Fig. S1(center) showsHd lines ofl3ux (red) as the vehicle begins

to pass through the sensor’s detection zared Fig. S1(left) illustrates the lines 8tix when

the entire vehicle is over the sensor. Two- and three{axigate magnetometedetect changes

in the vertical and horizontal coponents of the Earth’'s magnetreld produced by a ferrous
metal vehicle and are able to idegtgtopped and moving cars. Two-afgxgate magnetometers
contain a primary winding and two seconddsgnse” windings on a bobbin surrounding a high
permeability soft magnetic materiabre. In response to the magnebeld anomaly, i.e. the
magnetic signature of a vehicld)et magnetometer’s electronicgrcuitry measures the output
voltage generated by the secondaindings. The vehicle detection criterion is for the voltage to
exceed a predmed thresholdSensys NetworRéDS240 are three-axis magneto-resistive sensors
that measure thg-, y-, andz-components of the Earth’s magnebeld. They are installed by
coring a 10-cm diameter hole approximately 6rb deep, inserting the sensor into the hole so
that it is properly aligned with the direction of tkaf [3ow, and sealing the hole with fast drying
epoxy. The sensor maintains two-way wireless communication with an access point device over
a range of 23 to 46 meters. Sin€eixgate magnetometers arespave devices, they do not
transmit an energyreld, and a portion of the vehicle must pass over the sensor for it to be
detected. Therefore, a magnetometer can detect two vehicles separated by a distance of 30 cm.
This potentially makes the magnetometer as adeusa or better than an inductive loop detector

at counting vehicles. However, magnetometers are not precise at locating the perimeter of a

DU I
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=

Figure S1. From right to left: perturbation of Earth’s magné&std (red lines) produced by a

vehicle approaching and passing through the dietezone of a magnetic sensor (gray rectangle).
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vehicle: in fact, an uncertainty of about 45 cmtypically experienced. A single magnetometer
is therefore seldom used for determining occupancy and speedin trefnagement applications,

and two closely-spaced sensors are usually preferred for that function.
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Sidebar 3: Travel Time Forecasting

Consider a vehicle traversing the road segnjgptxo] R in the time intervaltp, to],
see Fig. S2. We are here interested in determining a formula for the exit{iftiee current time)
given the entry time, and the extrema of the segment. Note that if the veldegly v(t, x) in
[Xp, Xo] iIs known, then the ipnitesimal travel time of the vehicle is given lat = v(t, x) dx.

By writing this equation in integral form, we obtain the following expressiontfor

X
to= ty+  v(t,x)dx. (S1)

Xp
Since the velocitybeld v(t, x) is not known in general, but suitable measurement points are
available within the roadegment, we can approximatét, x) by discretizing the intervgk,, Xo].
By subdividing[xp, Xo] into n rectangles of width x; and assuming that the speed is constant

in each rectangle (see Fig. S2), we can rewrite equation (S1) as

n X

to = tp+ L S2
0= BT (X)) 52
wherev;( ( X;)) is the space-mean speed in ikl rectangle and
iS1 X;
Xj) = tp+ , S3
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Figure S2. Computation of forecast progressive travel time.

is the time at which the vehicle reaches the upstream boundary of reciarigee that (S3)
accounts for the tr&t progression along the road. Equations (S2) and (SX)eléheprogressive
travel time(PTT). This differs from the instantaneotravel time (ITT), frequently encountered

in the literature, which assurmehat the conditions in each rectangle remain the same as at the
entry timet,, i.e.to = t,+ [ v (txpi) (in other words, time is “frozen”). Note that while the PTT

is consistent with the tr&E conditions that a driver encounters along the road, the computation
of ITT is based on an assumption that is not necessarilypgdrin the real world, and which
becomes more critical as the width of the rectangles increases. Let us now determine the
forecast arrival timet; of the vehicle at the poinks, given the current time, and current

position Xy (see Fig. S2). By using (S2) and (S3), and assuming a space discretizatibn in

S1 % By debning

rectangles, we obtaiy = to+ M Xi ( xi)=to+t 21,y
] ]

=L ovi( (X)) |
i (k) as the forecast progressive travel time in rectangiethe discrete timé&, and , (k) as
the cumulative progressive travel time from the entry paignto the downstream boundary of
rectanglel at the discrete tim&, webnd ,, i(K)= «, isi(K)+ i(k+ «, i51(K)), i(k)=

W ’f‘él(k)) wherei { 1,...,M}, k { ko+1,...,ko+ H} andH is the forecasting horizon.
il xg i
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