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Abstract. This paper aims at comparing transformation-based appro-
aches built to deal with relational data, and in particular two approaches
which have emerged in two different communities: Relational Concept
Analysis (RCA), based on an iterative use of the classical Formal Con-
cept Analysis (FCA) approach, and Propositionalisation coming from
the Inductive Logic Programming community. Both approaches work by
transforming a complex problem into a simpler one, namely transform-
ing a database consisting of several tables into a single table. For this
purpose, a main table is chosen and new attributes capturing the in-
formation from the other tables are built and added to this table. We
show the similarities between those transformations for what concerns
the principles underlying them, the semantics of the built attributes and
the result of a classification performed by FCA on the enriched table.
This is illustrated on a simple dataset and we also present a synthetic
comparison based on a larger dataset from the hydrological domain.

1 Introduction

In several applications, data present various characteristics (e.g. many-valued,
temporal, spatial) which are not easy to take into account. Relational data in
particular are generally transformed into a single table to be processed by data
mining methods. In the field of Inductive Logic Programming, propositionali-
sation approaches (PA) aim at performing such transformations [1]. These ap-
proaches can be divided into database-oriented and logic-oriented such as the
HiFi method [2]. HiFi allows to build features that are first-order logic conjunc-
tions from related tables. In the field of Formal Context Analysis (FCA, [3]),
relational information is addressed by Relational Concept Analysis (RCA, [4]).
It has been designed to handle several formal contexts, corresponding to several
categories of objects, and several relations between these objects, based on an
iterative use of the classical Formal Concept Analysis algorithm. RCA classifies
the objects of the different categories in lattices that are connected via relational



attributes. The analysis often focuses on a main category of objects, classified in
a lattice which is the central point for analyzing data, while navigating towards
the other, secondary lattices. Both methods enable us to turn the objects linked
to a given object into special attributes, that are propositional features for PA
or relational attributes for RCA.

In this paper we propose to compare the two methods, focusing on the se-
mantics of the built attributes, in the context of acyclic data. FCA was used
as a common classification method: it was applied on the propositional features
obtained by the HiFi method from a given relational dataset and the resulting
lattice was compared to the one obtained by the RCA method on the same re-
lational dataset. We detail our comparison on a simple example about pizzas
and their ingredients. Another comparison is also performed on a larger dataset
from the hydrological domain. The lattices obtained appeared to be isomorphic
and allowed to reveal the links between the propositional features in HiFi and
the concept generators in RCA.

The paper is organized as follows. Section 2 describes a simple example that is
used in Section 3 and 4 to introduce the principles of the RCA and Proposition-
alisation approaches. Section 5 details the results of the comparison performed
both on the simple example and on the real dataset. Related work is described
in Section 6. Section 7 concludes and draws some perspectives of this work.

2 A motivating example

The considered objects of our dataset (see Table 1) are people, pizzas, and in-
gredients. People are farmers described by their current production method-
ology (organic versus conventional). Pizzas are described by some typology of
their shape (thin, thick, calzone). Ingredients are described by their category
(fruit/vegetable, meat, fish, dairy). Two relations link these objects: People pre-
fer some pizzas, pizzas have some ingredients.

A group of people (Juliet, Nancy and Alice) likes at least one pizza containing
one dairy ingredient. A subgroup of this group (Nancy and Alice) corresponds
to the conventional farmers and we deduce that in this dataset all conventional
farmers like at least one pizza containing one dairy ingredient.

For extracting this kind of knowledge from the various relations, it is worth
noting that several of them have to be crossed (here the relations Prefers and
HasIngredient). Besides, the group Juliet, Nancy and Alice has initially no
pizza in common and no common production methodology, because Juliet is an
organic farmer, while Nancy and Alice are conventional farmers. Thus there is
no direct reason for grouping these three people. The group Juliet, Nancy and
Alice can be formed after two classification steps: (1) the recognition of pizzas
Arctic, Lorraine, ThreeCheeses, and FourCheeses as belonging to the group D

of pizzas with at least one dairy ingredient; (2) the fact that Juliet, Nancy and
Alice like at least one pizza from the D group.
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Such a kind of classification is the objective of the two approaches that we
study in the following of this paper. This simple dataset can thus be used to
exemplify the properties of these two approaches.

Table 1. The dataset

People

Name ProdMethod

Arthur OrganicFarmer

John OrganicFarmer

Alice ConventionalFarmer

Juliet OrganicFarmer

Nancy ConventionalFarmer

Pizza

PizzaName Shape

Forest Thick

Occitane Calzone

ThreeCheeses Thin

FourCheeses Thin

Lorraine Thin

Arctic Thick

Ingredient

IngName Category

TomatoSauce FruitVegetable

Cream Dairy

Onion FruitVegetable

Bacon Meat

Salmon Fish

SoyCream FruitVegetable

Mozza Dairy

GoatCheese Dairy

Emmental Dairy

FourmeAmbert Dairy

EggPlant FruitVegetable

Mushroom FruitVegetable

Prefers

Name PizzaName

Arthur Forest

John Occitane

Alice
FourCheeses

Lorraine

Juliet
ThreeCheeses

Arctic

Nancy Arctic

HasIngredient

PizzaName IngName

Forest
SoyCream

Mushroom

Occitane

TomatoSauce

Onion

EggPlant

ThreeCheeses

TomatoSauce

Mozza

GoatCheese

Emmental

FourCheeses

TomatoSauce

Cream

Mozza

GoatCheese

Emmental

FourmeAmbert

Lorraine

Cream Onion

Bacon

Mozza

Arctic

TomatoSauce

Cream Salmon

Mozza

3 Relational Concept Analysis

In this part, the principles of relational concept analysis are presented based on
the example described in Section 2. For more details about RCA, the reader is
invited to read [5] which refines notations of [4].

The pizza dataset cannot be directly handled by RCA, it must first be trans-
formed. Here, we choose to make a nominal scaling of the three tables People,
Pizza and Ingredient to obtain three object-attribute contexts, respectively
KPeople, KPizza and KIngredient. For example, in KPeople object-attribute con-
text, objects (GPeople) are people and attributes (MPeople) are OrganicFarmer

and ConventionalFarmer. IPeople contains a pair (p,m) if and only if p has
the ProdMethod m in People table of the initial dataset, e.g., the pair (Arthur,

OrganicFarmer) belongs to IPeople. Tables Prefers and HasIngredient give
rise to rPrefers and rHasIngredient object-object relations also using a nominal
scaling, e.g. rPrefers contains (Arthur, Forest). Finally we obtain a set of con-
texts and a set of relations between these contexts: {KPeople,KPizza,KIngredient},
{rPrefers, rHasIngredient}. More generally, such a structure is called a Relational
Context Family and defined as below.

Definition 1 (Relational Context Family (RCF)). A Relational Context
Family (denoted RCF) is a (K,R) pair where:
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– K = {Ki}i=1,...,n is a set of Ki = (Gi,Mi, Ii) formal contexts (object-
attribute relations), where Gi is the set of objects, Mi is the set of attributes
and Ii ⊆ Gi ×Mi.

– R = {rj}j=1,...,m is a set of rj object-object relations where rj ⊆ Gi1 × Gi2

for some i1, i2 ∈ {1, . . . , n}.

The principle of RCA consists in integrating object-object relations as new at-
tributes (called relational attributes) in formal contexts. A naive approach would
be to directly integrate relations as attributes of the form (relation, targetobject),
e.g. (HasIngredient,Mushroom), an attribute that could be assigned to the
Forest pizza. Such an approach would be able to discover the concept of pizzas
with dairies. But it is limited to this one-step deduction and it cannot go beyond.
The objective of RCA is to infer classifications based on the composition of sev-
eral relations, e.g. RCA will be able to group people preferring pizzas having at
least one dairy product among their ingredients. This is implemented in RCA
via the transformation of the object-object relations into relations between ob-
jects of one category, and concepts formed on objects of another category. Such
a transformation is made thanks to relational attributes and scaling operators.
These relational attributes will have the form q r(C) where q is a quantifier, r is
the relation and C is a concept. Theoretically, quantifiers can be chosen within
the set Q = {∀, ∃, ∀∃,≥,≥q,≤,≤q}. The most used quantifiers are:

– the existential quantifier (∃) which encodes the fact that an object o is in
relation by ∃r with a concept C if r(o) has a non-empty intersection with
Extent(C);

– the strict universal quantifier (∀∃) which encodes the fact that an object o

is in relation by ∀∃r with a concept C if r(o) is non-empty and included in
the extent of C.

Let us now consider the concept lattices given in Fig. 1, built using any
standard algorithm for FCA from the three formal contexts KPeople, KPizza,
and KIngredient. In the following we examine the transformation of the pizza-
ingredient relation rHasIngredient during its integration as new attributes for
describing pizzas. In the lattice of ingredients, Concept_Ingredient_5 repre-
sents the group of dairies. Besides, we observe that all pizzas, except Forest

and Occitane pizzas, contain at least one ingredient which is a dairy. This is
introduced as a relational attribute ∃HasIngredient(Concept_Ingredient_5)
shared by Lorraine, Arctic, ThreeCheeses and FourCheeses pizzas. Now, if
we consider people, Juliet, Nancy and Alice prefer at least one pizza of this
group, and they can be grouped into the concept of people that prefer at least
one pizza that contains a dairy ingredient. Furthermore, to illustrate the uni-
versal scaling operator, let us have a look at Concept_Ingredient_1, grouping
the fruits and vegetables. Forest and Occitane pizzas have all their ingredients
in the extent of this concept. This is introduced as a new relational attribute
∀∃HasIngredient(Concept_Ingredient_1) which can be assigned to Forest

and Occitane pizzas (highlighting the concept of vege pizzas). The pizzas that
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Concept_Ingredient_0

Concept_Ingredient_1
FruitVegetable
TomatoSauce

Onion
SoyCream
EggPlant
Mushroom

Concept_Ingredient_2

Concept_Ingredient_3
Meat
Bacon

Concept_Ingredient_4
Fish

Salmon

Concept_Ingredient_5
Dairy
Cream
Mozza

GoatCheese
Emmental

FourmeAmbert

Concept_People_0

Concept_People_1
OrganicFarmer

Arthur
John
Juliet

Concept_People_2

Concept_People_3
ConventionalFarmer

Alice
Nancy

Concept_Pizza_0

Concept_Pizza_1
Thick
Forest
Arctic

Concept_Pizza_2

Concept_Pizza_3
Thin

ThreeCheeses
FourCheeses
Lorraine

Concept_Pizza_4
Calzone
Occitane

Fig. 1. Lattices for object-attribute relations Ingredient (L0

Ingredient), People (L0

People)
and Pizza (L0

Pizza) (step 0 of RCA)

are preferred by Arthur and John are all in the group of vege pizzas, an indication
to group these two people.

For defining the scaling operators, a generic function κ is introduced and
instantiated with (1) the existential and (2) the strict universal quantifiers:

κ : Q ×R ×
⋃

i=1,...,n 2
Gi →

⋃
i=1,...,n 2

Gi

(1) ∃ r Extent(C) → {o|r(o) ∩ Extent(C) 6= ∅}
(2) ∀∃ r Extent(C) → {o|r(o) ⊆ Extent(C) and r(o) 6= ∅}

A scaling operator can now be defined as follows.

Definition 2 (Scaling operator). Let K = (G,M, I) be a context, and r a re-
lation, where G is the domain of r; let Gir be the range of r, Kir = (Gir ,Mir , Iir )
another context, and Lir a lattice built on Kir ; q denotes a scaling quantifier.
The scaling operator S(r,q),Lir

over K yields the derived context (G+,M+, I+) =
S(r,q),Lir

(K), where:

– G+ = G,
– M+ = {′q r(c)

′ | c ∈ Lir},
– I+ =

⋃
c∈Lir

κ(q, r, Extent(c))× {′q r(c)
′}.

The rHasIngredient transformed by the existential scaling, considering the
lattice previously built for ingredients (see Fig. 1), is S(rHasIngredient,∃),L0

Ingredients

(KPizza). It is shown in Table 2 after the vertical triple bar. The original context
KPizza can thus be extended with relational attributes representing the relation
rHasIngredient between pizzas and ingredients.
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Table 2. KPizza apposed to existential scaling of rHasIngredient. CI stands for ’Con-
cept_Ingredient’
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Forest × × ×

Occitane × × ×

ThreeCheeses × × × ×

FourCheeses × × × ×

Lorraine × × × × ×

Arctic × × × × ×

Then, for each K context of K, the apposition of K (denoted by symbol ’|’)
with the respective results of the scaling upon each rj of R with G as domain
(1 ≤ j ≤ k), is used to build a new set of concepts (notations are taken from
Def. 2). This apposition is the relational extension of the K context considering
a scaling operator mapping ρ and a set of lattices L which is a union of concept
lattices including Lirj

, 1 ≤ j ≤ k:

Eρ,L(K) = K | S(r1,ρ(r1)),Lir1
(K) | . . . | S(rk,ρ(rk)),Lirk

(K)

Table 2 shows this result for KPizza, when considering ρ(rHasIngredient) = ∃
and the lattices of Fig. 1. If an additional relation connecting pizzas to another
kind of objects, for example, IsAppreciatedBy, connecting pizzas to people had
been present in the dataset, then the relational extension of KPizza would include
the scaling upon IsAppreciatedBy too.

By extension, E∗
ρ,L(K) denotes the relational extension of K, which is com-

posed of all the relational extensions of all Ki in K (and L is a union of concept
lattices associated with all ranges of all relations).

E
∗
ρ,L(K) = {Eρ,L(K1), . . . ,Eρ,L(Kn)}

In our example, if we consider only the existential scaling and the lattices of
Fig. 1, the relational extension of K would be composed of the relational exten-
sions of KPeople, KPizza and KIngredient. The relational extension of KIngredient

is simply KIngredient, because there is no outgoing relation. The relational exten-
sion of KPizzas has been shown in Table 2. The relational extension of KPeople

is KPeople apposed to S(rPrefers,∃),L0

Pizza
(KPeople).

Now a whole construction process consists in building a finite sequence of
contexts and concept lattices associated with (K,R) and ρ. The last sequence
is obtained when the fix point is reached. The first set of contexts (step 0) is
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K0 = K. The contexts of step p are used to build the associated concept lattices.
The Lp set composed of the lattices at step p is used to calculate the relational
extension. The set of contexts at step p+1 is defined using the relational exten-
sion: Kp+1 = E

∗
ρ,Lp

(Kp).

Concept_People_0
∃ Prefers(Concept_Pizza_0)

Concept_People_1
OrganicFarmer

Concept_People_2
∃ Prefers(Concept_Pizza_2)

Concept_People_4

Nancy

Concept_People_7
∃ Prefers(Concept_Pizza_5)

Alice

Concept_People_8

Juliet

Concept_People_10
∃ Prefers(Concept_Pizza_4)

John

Concept_People_3
ConventionalFarmer

Concept_People_12
∃ Prefers(Concept_Pizza_7)

Concept_People_11
∃ Prefers(Concept_Pizza_6)

Concept_People_5

Arthur

Concept_People_6
∃ Prefers(Concept_Pizza_1)

Concept_People_9
∃ Prefers(Concept_Pizza_3)

Fig. 2. Lattice of people (L3

People) (step 3 of RCA)

For our example, the fix point is obtained after three steps. The lattice for
ingredients is the same during all the process (see Fig. 1). The lattices for people
and pizzas are shown in Fig. 2 and 3. In L3

Pizza lattice, Concept_Pizza_7
represents the group of pizzas which contain at least one ingredient which is
a dairy. In L3

People lattice, Concept_People_12 represents the group of people
which prefer at least one pizza which contains at least one dairy ingredient.
Figure 4 presents the three concepts involved in these groups of people, pizzas
and ingredients respectively.

4 Propositionalisation: the HiFi method

Propositionalisation has emerged within the field of Inductive Logic Program-
ming (ILP) [6]. Initially ILP was concerned with learning logic programs, and
ILP techniques have then been applied in relational data mining. In ILP, learning
is performed directly in the first-order logic setting, so that the space to search
is intractable when data are numerous. Propositionalisation [1] was proposed as
a mean to reduce this complexity. The idea is to shift from a representation in
first-order logic to an attribute-value one. This is usually done in two steps: (1)
computation of new attributes, called features, for the attribute-value represen-
tation (2) computation of the extensions (the values in the resulting propositional
table). For some techniques, the two steps are performed at the same time. It
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Concept_Pizza_0
∃ HasIngredient(Concept_Ingredient_0)
∃ HasIngredient(Concept_Ingredient_1)

Concept_Pizza_1
Thick
Forest

Concept_Pizza_2
∃ HasIngredient(Concept_Ingredient_2)

Concept_Pizza_4
Calzone
Occitane

Concept_Pizza_5
∃ HasIngredient(Concept_Ingredient_3)

Lorraine

Concept_Pizza_6
∃ HasIngredient(Concept_Ingredient_4)

Arctic

Concept_Pizza_3
Thin

ThreeCheeses
FourCheeses

Concept_Pizza_7
∃ HasIngredient(Concept_Ingredient_5)

Fig. 3. Lattice of pizzas (L3

Pizza) (step 3 of RCA)

Concept_People_12

▾ Juliet
▾ Nancy
▾ Alice

▾ Artic
▾ ThreeCheeses
▾ FourCheeses

▾ Lorraine
▾ Occitane

Concept_Ingredient_5
Dairy
Cream
Mozza

GoatCheese
Emmental

FourmeAmbert

∃ Prefers(Concept_Pizza_7)

Concept_Pizza_7
∃ HasIngredient(Concept_Ingredient_5)

Fig. 4. Chained concepts for people (from L
3

People), pizzas (from L
3

Pizza) and ingredi-
ents (from L

3

Ingredient) at step 3 of RCA (Objects in the extent that do not belong to
the simplified extent are signaled by H)

is then possible to apply one of the many efficient propositional systems on the
propositional table. The logic-oriented approach HiFi [2] produces such a propo-
sitional table that can be then processed by FCA. Other logic-based approaches
exist but we have chosen HiFi for its similarities with RCA.

A database can be seen as a couple DB = (R, C), where R is a set of relations
ri(ai1 , ..., ain) and C is a set of reference constraints on some attributes of these
relations (ci : ajk → alm) (foreign keys). The database representation is directly
transformed into first-order logic, each relation becoming a predicate.

In propositionalisation, a main relation, let say r1, is chosen that corresponds
to the description of the object of interest. The other relations are then called
secondary. The aim of propositionalisation is to generate features that capture
the relevant information from the secondary relations to enrich the description
of objects from the relation r1. For example, if People is chosen as main table,
People is the object of interest, that is the one on which we focus our study.
Pizza, Ingredient, HasIngredient and Prefers are the secondary tables. Fea-
tures will capture information on objects in those four tables that are linked to
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People. The two last relations will allow to work on relations between the differ-
ent objects represented in the database. C gives the links between the relations.

HiFi produces features which are function-free first-order conjunctions. Those
features are based on a template given by the user and belong to a specific class
of features called hierarchical features. A template defines the literals that may
appear in a feature, as well as some constraints on the arguments of a literal.
Let T be a template on the pizzas example:

T = People(−Name), P refers(+Name,−PizzaName), P izza(+PizzaName,

#Shape), P izza(+PizzaName, !Shape), HasIngredient(+PizzaName,−Ing

Name), Ingredient(+IngName,#Category).

In this template, Name, PizzaName, Shape, IngName and Category act
as types and indicate which arguments may share a variable. We can also notice
modes: + (intput), - (output), # (constant) and ! (ignored). The input mode
means that the argument will be a variable and it will be instantiated. The
output mode indicates an argument which is a variable that receives an already
instantiated value. At a position with a # mode, the argument should be a
constant. A feature contains literals of the template, moreover any variable that
appears as an input/output must appear in the feature as an output/input,
except if the variable occurs with a ! mode.

Templates in HiFi are hierarchical. This is obtained by ensuring that: (1)
every literal has at most one input argument, (2) there is a partial irreflexive
order on types implying that type t≺ type t′ whenever t appears as an input
and t′ as an output in some literal. The above template T is hierarchical: we can
check that any literal has at most one input argument and there is no pair of
types (t, t′) such that there exists a literal where t appears as an input argument
and t′ as an output argument, and another literal where it is the contrary.

A hierarchical feature is based on a hierarchical template and has exactly
one root (a literal with only output variables). It can be represented as a tree
where each literal li is a node ni, and an edge between ni and nj indicates that
a variable has an output occurrence in li and an input occurrence in lj .

HiFi avoids generating redundant features. Indeed, we can define equivalence
classes among the set of possible features, which correspond to features having
the same extension (they have the same values for all objects). HiFi generates a
set of features containing one representative feature for each equivalence class,
the one chosen being the smallest in the equivalence class. With template T ,
HiFi outputs the following set of features on the pizzas dataset (the _ notation
comes from the ! mode):

F1 : People(A),Prefers(A,B),HasIngredient(B,C), Ingredient(C,Dairy)
F2 : People(A),Prefers(A,B),HasIngredient(B,C), Ingredient(C,F ish)
F3 : People(A),Prefers(A,B),HasIngredient(B,C), Ingredient(C,Meat)
F4 : People(A),Prefers(A,B),Pizza(B,Calzone)
F5 : People(A),Prefers(A,B),Pizza(B, Thick)
F6 : People(A),Prefers(A,B),Pizza(B, Thick),Prefers(A,C),Pizza(C, Thin)
F7 : People(A),Prefers(A,B),Pizza(B, Thin)
F8 : People(A),Prefers(A,B),Pizza(B,_)

9



The corresponding propositional table is shown in Table 3. In this table,
ProdMethod is a proper attribute of the object of interest People and Fi are
boolean features generated by HiFi to bring relational information from the
secondary tables, and thus enrich the description of People. For example, F1

is true for people who prefers at least one pizza with ingredients of the dairy
category, it is false otherwise.

Table 3. Propositional table

ProdMethod F1 F2 F3 F4 F5 F6 F7 F8

Arthur OrganicFarmer - - - - + - - +

John OrganicFarmer - - - + - - - +

Alice ConventionalFarmer + - + - - - + +

Juliet OrganicFarmer + + - - + + + +

Nancy ConventionalFarmer + + - - + - - +

5 Methods comparison

5.1 Discussion on the example

On the one hand, the scope of the propositionalisation approach extends to the
building of features into a propositional table. On the other hand, the RCA
approach goes one step further by building concept lattices from a relational
extension. Figure 5 describes both approaches in parallel and highlights the
comparison points. The left part of the figure stands for the data transformation
part of the processes where relational tables are transformed into single propo-
sitional tables. The right part of the figure stands for a propositional algorithm,
here FCA. To compare both approaches, we find relevant to consider:

– the people relational extension (together with the concept lattices) with the
propositional table;

– the people concept lattice (together with the other concept lattices) with the
concept lattice built from the propositional table.

The propositional table describes a binary relation in the same way as a
formal context. Objects are the same in the context and in the propositional table
and the attributes are the features found by the propositionalisation algorithm
and the initial attributes (here ProdMethod). A pair (o, a) is in the incidence
relation if a is an initial attribute and o owns that initial attribute or if a is a
feature and o is described by it. Thus, it is straightforward to build a concept
lattice from a propositional table. The lattice from Fig. 6 has been built from
Table 3.

This lattice structure is isomorphic to the one presented in Fig. 2 as they
have the same set of concept extents. Thus it appears relevant to study the
correspondences between concept intents as done below.
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Relational

Database

Scaling
Binary

Database
object-attribute

tables
FCA

Concept

Lattices

Rel.

Scaling

object-attribute
tables

+
rel. attributes

FCA
Concept

Lattices

object-object
tables

Feature Set

Propositional

table

FCA
Concept

Lattices

RCA

PROPOSITIONALISATION

Transformation
Propositional

algorithms

Fig. 5. RCA and propositionalisation processes described in parallel.

Concept_prop_0
People(A), Prefers(A, B), Pizza(B, _)

Concept_prop_10
OrganicFarmer

Concept_prop_1
People(A), Prefers(A, B), HasIngredient(B, C), Ingredient(C, Dairy)

Concept_prop_2
People(A), Prefers(A, B), HasIngredient(B, C), Ingredient(C, Fish)

Concept_prop_6
People(A), Prefers(A, B), Pizza(B, Thick)

Concept_prop_3

Concept_prop_4
People(A), Prefers(A, B), HasIngredient(B, C), Ingredient(C, Meat)

Alice

Concept_prop_5
People(A), Prefers(A, B), Pizza(B, Calzone)

John

Concept_prop_7
People(A), Prefers(A, B), Pizza(B, Thick), Prefers(A, C), Pizza(C, Thin)

Juliet

Concept_prop_11

Nancy

Concept_prop_8
People(A), Prefers(A, B), Pizza(B, Thin)

Concept_prop_12
ConventionalFarmer

Concept_prop_9

Arthur

Fig. 6. The concept lattice Lprop of people described by features and proper attributes

By considering concept extents, Concept_prop_0 from lattice Lprop can be
mapped to Concept_People_0 from lattice L3

people . Concept_prop_0 has for
sole feature People(A), P refers(A,B), P izza(B,_) (“people preferring at least
one pizza of any shape”). Concept_People_0 has for sole relational attribute
∃Prefers(Concept_Pizza_0). Concept_Pizza_0 has 2 relational attributes:
∃HasIngredient(Concept_Ingredient_0) (“pizza having at least one ingredi-
ent”) and ∃HasIngredient(Concept_Ingredient_1) (pizza having at least one
ingredient of the category fruit or vegetable). Hence, Concept_People_0 is the
concept of people preferring at least one pizza with at least one fruit or vegetable
(i.e. any pizza in the current dataset). HiFi’s goal is to keep the shortest feature
describing all the objects and that can be written with the chosen template. It is
sufficient to say that “people prefer at least one pizza of any shape” to describe
all the people in the dataset and nothing shorter can be written with the current
template.

Concept_prop_8 from lattice Lprop can be mapped to Concept_People_9.
Concept_prop_8 groups Alice and Juliet that own the following features:
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1. People(A), P refers(A,B), P izza(B,Thin) which is in the proper intent
2. People(A), P refers(A,B), HasIngredient(B,C), Ingredient(C,Dairy)
3. People(A), P refers(A,B), P izza(B,_)

Concept_People_9 also groups Alice and Juliet and owns the following relational
attributes:

1. ∃Prefers(Concept_Pizza_3) where Concept_Pizza_3 groups “thin piz-
zas”. This attribute is in the proper intent of Concept_People_9

2. ∃Prefers(Concept_Pizza_7) where Concept_Pizza_7 groups “pizzas which
contain at least one dairy ingredient”

3. ∃Prefers(Concept_Pizza_0) where Concept_Pizza_0 groups “all pizzas
that contain at least one ingredient and at least one fruit or vegetable ingre-
dient”

The mapping between Concept_prop_8 and Concept_people_9 relies on the
mapping between the feature which is the proper intent of Concept_prop_8 and
the relational attribute that generates the construction of Concept_people_9.

Concept_prop_7 describes Juliet and adds to the features inherited from
Concept_prop_8 the attribute OrganicFarmer and the following features:

1. People(A), P refers(A,B), P izza(B, Thick), P refers(A,C), P izza(C,Thin)
2. People(A), P refers(A,B), HasIngredient(B,C), Ingredient(C,Fish)
3. People(A), P refers(A,B), P izza(B,Thick)

Concept_people_8 owns the attribute OrganicFarmer and the following rela-
tional attributes:

1. ∃Prefers(Concept_Pizza_3)
2. ∃Prefers(Concept_Pizza_7)
3. ∃Prefers(Concept_Pizza_0)
4. ∃Prefers(Concept_Pizza_6)
5. ∃Prefers(Concept_Pizza_1)

The proper intent of Concept_people_8 is empty. The minimal generators
(i.e. the smallest by inclusion subsets of the intent which have the intent as image
by the closure function) [7] of Concept_people_8 are:

– {∃Prefers(Concept_Pizza_6), OrganicFarmer}
– {∃Prefers(Concept_Pizza_7), OrganicFarmer}
– {∃Prefers(Concept_Pizza_3), OrganicFarmer}
– {∃Prefers(Concept_Pizza_3), ∃Prefers(Concept_Pizza_6)}
– {∃Prefers(Concept_Pizza_3), ∃Prefers(Concept_Pizza_1)}

If we discard the first three generators as they contain OrganicFarmer which
is initially present in the main table for HiFi, we find 2 minimal generators. By
replacing the references to other concepts by a generator of these concepts we
obtain respectively {∃Prefers(Thin), ∃Prefers(∃HasIngredient(Fish))} and
{∃Prefers(Thin), ∃Prefers(Thick)}. In Concept_prop_7, the feature of the
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proper intent is related to the second expression as it is the shortest one. Both
Concept_pizza_3 and Concept_pizza_1 have a unique generator, respectively
the attributes thick and thin.

The link between a concept cRCA from L3
people and a concept cprop with same

extents appears to reside in the link between a concept generator of cRCA and
the feature from the proper intent of cprop. The goal of both approaches can
be seen as opposite. While HiFi will tend to provide the shortest description
that can discriminate a concept from any other one, RCA will provide the most
complete description of a concept.

5.2 Evaluation on a real dataset

We rely on a part of the Fresqueau database, representing data from Alsatian
streams and water areas (North-East of France) [8]. The data are either is-
sued from samples (e.g. biological data collected on stream sites), synthetic data
(e.g. stream typology, land cover) or general information issued from the liter-
ature (e.g. information about the aquatic species living in the streams). More
precisely in this paper we work with three many-valued tables. The first one
describes 20 stream sites. The second table gives the level of population for
65 macro-invertebrates collected on these 20 sites. The third one describes the
macro-invertebrates with 3 different life traits, i.e. their characteristics and func-
tioning (maximal size, aquatic state and reproduction mode), each life trait being
represented by several modalities (e.g. for the life trait maximal size there are 7
possible modalities going from less than 0.25cm to more than 8cm) and affinity
values. The total number of the modalities for all life traits is 19.

This dataset has been processed by HiFi and RCA (with the ∃ scaling quan-
tifier). HiFi template and RCA relational schema define the analysis framework.
The following template is used for HiFi: [Station(-s), presence(#abundance,+s,
-macroInv), presence(#abundance, +s, !macroInv), affinity(#level,+macroInv,
#modality), affinity(#level,+macroInv,!modality)]. Accordingly, the relational
schema for RCA has 3 formal contexts: Station, MacroInv, and Modality and 6
object-object relations: abundance-1, abundance-2, and abundance-3 from Sta-
tion to MacroInv and affinity-1, affinity-2, and affinity-3 from MacroInv to
Modality.

We found respectively 13460 features and 13461 concepts in the Station lat-
tice. The extent of each feature is the extent of a concept. The additional concept
is the bottom concept of the lattice, with an empty extent. So we verified that
for each feature can be associated a concept and that the lattice obtained from
the propositional table and the Station lattice are isomorphic.

6 Related work

Data transformation is a main issue for all classification or automatic learning
methods, when dealing with complex or numerous data. Scaling operators are
used in FCA for transforming many-valued contexts into binary ones [3]. Such
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an approach was also used to analyze complex data about life traits of aquatic
plants [9]. Statistical metrics can also be used for helping the transformation, e.g.
the χ2 distance was used for selecting the best scaling operator upon a numerical
context [10]. This last idea can be related to the metrics used to design decision
trees. A comparison between decision trees and dichotomic lattices (i.e. lattices
based on complemented contexts) has been presented in [11]. It was proven that
the lattice contained all the trees built on the same context.

In [12], many-valued contexts are transformed into a family of formal contexts
(under the guidance of a user objective) which is called the power context family
(this notion has been introduced in [13]). It represents all the k-ary relations on
the object set. From the concept lattices built on the formal contexts of the power
context family, concept graphs are extracted which, in turn, are organized into
a lattice. In [14], another approach for obtaining concept graphs is presented,
that relies on temporal concept analysis, where the conceptual scales are used
instead of the concept lattices of the k-ary relations. In these references, there
is no use of different scaling operators and a single-step construction is done
(comparatively to the iterative approach of RCA). In [12], graphs connecting
objects are classified, while in RCA, objects are classified depending on their
relations to other objects.

Relational data have been transformed into logical formulae within the frame-
work of logical concept analysis [15]. Object contexts are combined with rela-
tional contexts and equipped with a combined logic. Relational attributes are
defined as follows: (∃r.f)(x) =def ∃x′.(r(x, x′) ∧ f(x)). The concepts’ intents of
the resulting lattice contain either classical attributes (f) or relational attributes
(∃r.f). Meta-relations are also built for navigating from a concept to another.
Contrarily to RCA, no iteration is performed. In [16], authors propose a method
for computing a basis of general concept inclusions in Description Logics ELgfp

where cyclic concept definition has close connections with RCA.

In [17], authors aim at redesigning a database schema. To this end, the
database schema is encoded in a formal context and a kind of relational scaling
is done in order to represent foreign keys. Here we do not work at the schema
level, but at the object level, and the links between objects, rather than the
relations between the tables are the focus of the transformation.

Boolean Factor Analysis is applied to multi-relational data in [18]. Their
relational factors are tuples of boolean factors extracted independently from
the various data tables. In this approach, several schemas of connection can
be applied that are similar to the scaling operators of RCA (like existential or
universal). Compared to RCA, the boolean factors (that are included in rela-
tional factors) are only a part of the formal concepts that could be built from
the object-attribute tables, while in RCA all such formal concepts are initially
considered. Besides, the process does not iterate.

The authors of [19] address the navigation of SPARQL query answers in
concept lattices. They propose a transformation of an RDF graph to a formal
context where relations are encoded as attributes. The concept lattice helps
analyzing the query answers through their classification.
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Reference [20] also considers objects connected by relations. It introduces
a Galois connection (and the derived concept lattice) which associates a table
(variables and the corresponding tuples) to a description that takes the form of
a windowed s-structure. Such a windowed s-structure (designed to be a form of
a query) is roughly a graph with edges labelled by the relations and with some
nodes labelled by variables. There are some similarities between the windowed
s-structures, the features and the relational attributes (when they are unfolded).
In RCA, concepts correspond to tables with only one variable and finding the
equivalent of the tables with more than one variable would rely on navigating on
(potentially) several lattices and considering queries like in [21]. Besides, in [20]
only existential queries are expressed and there is no iteration, thus no possibility
to progressively find the concepts.

7 Conclusion

Several approaches exist in the literature to extract knowledge from relational
data, using different data transformation methods. In this paper, we focus on
two approaches, namely Relational Concept Analysis and Propositionalisation,
which we compare on a small example and on a real dataset. We identify simi-
larities in their objectives and between the features of the Propositionalisation
approach and the generators in FCA approach. As future work we would like to
evaluate the two approaches on other datasets to confirm the practical feasibility
and the similar results, using different tunings including step number (for RCA),
frequency or feature literal maximum number (for propositionalisation). We also
plan to continue exploring the links between features and generators and in gen-
eral the theoretical and practical advantages and limits of both approaches. In
particular, we will study how other scaling operators used in the RCA frame-
work (universal or involving cardinality restrictions) and cyclic schemas can be
considered with the propositionalisation approach point of view. From this re-
search, we expect to define a combined methodology that would improve the
efficiency of knowledge extraction in relational data, for example by injecting
HiFi results in RCA, or using relational attributes obtained at a given RCA step
as information for HiFi.
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