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ABSTRACT

In this paper, one proposes adaptive observers for a class of uniformly observable MIMO nonlinear systems
with general nonlinear parameterizations. The state and the unknown parameters of the considered
systems are supposed to lie in bounded domains which size can be arbitrarily large and the exponential
convergence of the observers is shown to result under a well-defined persistent excitation condition.
Moreover, the gain of the observers involves a design function that has to satisfy a simple condition which
is given. Different expressions of such a function are proposed and it is shown that adaptive high gain like
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1. Introduction

The problem of joint estimation of missing states and constant
parameters in linear and nonlinear state-space systems with adap-
tive observers has motivated a lot of work, for adaptive control, or
recently fault detection and isolation in dynamic systems. Some
early works on adaptive observers for linear systems can be found
in Kreisselmeier (1977) and Liiders and Narendra (1973) while
more recent results are reported in Zhang (2002). Since the eight-
ies, many results on nonlinear systems have became available.
For example, adaptive observers have been proposed for a class
of nonlinear systems which can be linearized with a change of
coordinates up to output injection in Bastin and Gevers (1988),
Marino and Tomei (1992), Marino and Tomei (1995)and Santo-
suosso, Marino, and Tomei (2001). More recently, some more
general results on nonlinear systems have been reported in Be-
sanc¢on (2000), Cho and Rajamani (1997) and Rajamani and Hedrick
(1995). These methods do not require the considered nonlinear
systems to be linearizable, instead, they assume the existence of
some Lyapunov functions satisfying particular conditions. In rel-
atively recent works (Zhang, 2002; Zhang & Clavel, 2001), the
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observers and adaptive sliding mode like observers can be derived by considering particular expressions
of the design function. The theory is supported by simulation results related to the estimation of the
biomass concentration and the Contois model parameters in a bioreactor.

authors proposed an adaptive observer for a class of MIMO lin-
ear time-varying systems. A tentative to generalize the observer
design to a class of single output uniformly observable nonlinear
systems is made in Xu and Zhang (2004). However, the resulting
proposed observer was complex since it is synthesized by consid-
ering a collection of systems corresponding to several delayed ver-
sions of the original system.

All references previously cited deal with linearly parameterized
systems. Indeed, very few results are available in the literature
that address state and parameter estimation in the presence of
nonlinear parameterizations (Koji¢ & Annaswamy, 2002; Koji¢,
Annaswamy, Loh, & Lozano, 1999; Loh, Annaswamy, & Skantze,
1999; Skantze, Koji¢, Loh, & Annaswamy, 2000). Nonlinear
parameterizations are inevitable in many realistic dynamic
models, even in the case where only few state variables are
considered. Tentatives to obtain linear parameterization in models
where unknown parameters occur nonlinearly may give rise to
overparameterization and its underlying problems (Loh et al.,
1999). When considered, the nonlinear parameterization assumes,
as the linear one, that the unknown parameters appear in the
model through functions that are known, i.e. these functions do
notinvolve nonmeasured states. Furthermore, in most of the works
dealing with nonlinear parameterization, the adaptive control
problem is rather considered and the parameter convergence is
rarely addressed. In Koji¢ and Annaswamy (2002), the authors
considered a concave/convex parameterization and they showed
that the parameter convergence is guaranteed under certain
conditions of persistent excitation.



In this paper, one proposes an approach which allows the design
adaptive observers for a class of uniformly observable nonlinear
MIMO systems with general nonlinear parameterizations. Two
main features of the proposed approach are worth to be
mentioned. Firstly, the convergence of the proposed observer is
guaranteed under a well-defined persistent excitation condition.
Secondly, the structure of the proposed observer is simple and it
is able to give rise to different observers among which adaptive
high gain like observers (Bornard & Hammouri, 1991; Farza,
M’Saad, & Rossignol, 2004; Gauthier, Hammouri, & Othman,
1992) and adaptive sliding mode like observers (Drakunov, 1992;
Drakunov & Utkin, 1995; Utkin, 1992). This is achieved through
the specification of a design function in the observer gain which
is calibrated through the choice of a single design parameter.

This paper is organized as follows. The next section introduces
the class of nonlinear systems which shall be considered with
a view to adaptive observer design. For clarity purposes, linear
parameterization is firstly considered. This also allows us to easily
make the link with the nonlinear parameterization. In Section 3,
the observer design is detailed. The equations of the proposed
adaptive observer are given and a full convergence analysis
is made. Besides, different expressions of the observer design
function are specified and it is shown that they give rise to different
observers. In Section 4, the observer synthesis is extended to the
nonlinear parameterization case. A simulation example is given in
Section 5 in order to illustrate the theory.

2. Problem formulation

Consider MIMO systems which are diffeomorphic to the follow-
ing form:

X=Ax+gUu,x)+ ¥, x)p (1)
y= Cx = X1
with
k
X! x’l P1
X2 } X5 P2
x — : x — . 5 [0 — E)
X1 x'; Pm
g'(u, x") T
g wx) ¥y (u, x)
g (u,x', x%) o) (u, X)
gu,x) = : W x) = S
gq—l(u’xl’ .’xq—l) T,
g(u,x) (e
v (u, x")
W (u, x', X%)
i(u, x) = :
lqu_l(u,xl, X
¥ (u, x)
0 I,
A= [0 (qo)p] C =1l 0p, ..., 0] )

where the output y € RP; the state x € R" with XX € RP and
xX¥eRk=1,...,qandi = 1,...,p; theinputu € R%; p € R™
is a vector of unknown constant parameters, p; € R,i=1, ..., m;
g(u,x) € R*withgk(u,x) e RP, k=1, ...,q; ¥ (u,x)isann x m
matrix and each ¥;(u,x) € R",j = 1,..., m, denotes its jth col-
umn with lllj"(u, X) € R’ k = 1,...,q. The notation I, where k is
a positive number refers to the k x k identity matrix while 0, and
Ok, xky» K, k1, ko being positive integers, denote the null matrix with

dimension k x k and k; x k,, respectively. Our objective consists in
designing adaptive observers to simultaneously estimate the state
and the unknown parameters.

System (1) may seem as being very particular since it assumes
a nonprime dimension and all sub-blocks x* have the same
dimension. In fact, it has been shown in Hammouri and Farza
(2003) that system (1) is a canonical form that characterizes
the following class of uniformly observable nonlinear systems
(systems which are observable for any input):

x=f,x, y=Cx=x
. flu, x', %%
2 Fux', %, %)
withx = fu,x) =
N F w0
f(u, x)
and 6 = [Inl s On1><n27 On1><n37 cees Onlan]
where the state x € R" withx* ¢ R* k = 1,...,q and

n > np > > ng, Yi_;m = n; the input u(t) € U
the set of bounded absolutely continuous functions with bounded
derivatives from R™ into U a compact subset of R®; the output
y € R™ and f(u, x) € R" with f¥(u,x) € R™. The functions f*
are assumed to satisfy the following condition:

(OFork=1,...,q—1,themapx*t! > fku, x, ..., xk, x*t1)
is one tone from R" into R"*. Moreover, ey, ff > 0 such that for
allk € {1, .,q—l},VxeR” YueU,

afk afk
Ink+1 = W(U,X) Ik (u,x) < ,Bf Ngy1

Now, consider the following injective map:

x! z!
X z?
@ :R" — R™MY, X = >z =
x4 z4
X!
fhu x', %%
1
82(ux O, X K2, X0
=d(u,x) =
q—2 k
af
[[:75@ X)>f"‘1(u, X)
<k_l Jxk+1

wherez* € R™ k = 1, ..., q. This transformation puts the original
system under the following form (see Hammouri & Farza, 2003 for
more details):

z=Az + v, Z

{ b(v.2) 3)
y= Cz=17"

where the state z € R™9, v = [u”, 4"]", (v, z) has a triangular
structure with respect to z and the matrices A and C are: A =

0 I(q—ol)ﬂl]and C = [In;, Ony, ..., On, 1. It is clear that in the case

0
where the parameter vector p is known, system (3) is under form
(1) withny = p.

Let us now come back to system (1). Recall that our objective
consists in proposing adaptive observers which allow us to
jointly estimate the missing states as well as the unknown
parameters. Please notice that though system (1) deals with linear
parameterization, it includes most of the models considered in the
literature with view to adaptive observer design (Besangon, 2000;



Santosuosso et al., 2001). Indeed, the unknown parameters appear
in system (1) through additive functions which are unknown since
they may depend on the nonmeasured state.

The observer design requires some assumptions which will be
stated in due courses. At this step, one assumes the following:

(A1) The state x(t), the control u(t) and the unknown parameters
p are bounded, i.e. x(t) € X,u(t) e Ufort > 0and p € 2
where X C R", U C R¥and £2 € R™ are compact sets.

(A2) The matrix ¥ (u, x) is continuous on U x X.

(A3) The functions g(u, x) and ¥ (u, x) are Lipschitz with respect
to x uniformly in u where (u, x) € U x X.

Please notice that since the state is confined to the bounded set X,
one can extend the nonlinearities g (u, x) and ¥ (u, x) into g(u, x)
and ¥ (u, x) in such a way that the restrictions of g(u, x) and
¥ (u, x), respectively, coincide with g(u, x) and ¥ (u, x) on X and
that g(u, x) and ¥ (u, x) become global Lipschitz, i.e. Lipschitz on
the whole space R". Indeed, let o : R" — X, x — o (x) be any
smooth bounded saturation function that coincides with x on X,
i.e.o(x) = xforallx € X (see e.g. Conlon, 1992; Shim, 2000; Shim,
Son, & Seo, 2001). One defines the respective Lipschitz extensions,
g and 1} of g and ¥ as follows:

(1, %) = g(u, o(x))
U(u,x) =¥ (Uu,o(x)).

Now, consider the following dynamical system:
X=Ax+Zu,x) +¥ux)p (4)
y=K= x!.

It is clear that system (4) coincides with system (1) for (x, u, p) €
X x U x £2. Therefore, it does not make any difference that
we consider system (4) instead of (1) for the observer synthesis.
Indeed, system (4) shall be considered in the next section. Please
notice that for any bounded inputu € U, g(u, x) and ¥ (u, x) are, by
construction, globally Lipschitz with respect to x and are bounded
forallx € R".

3. Observer design with linear parameterization
Before giving our candidate observer, one introduces the

following notations:
(1) Let Ay be the (block) diagonal matrix defined by:

1
. WI,,] (5)

where 6 > 0isareal number. Easy computations allow us to check
the following identities:

1
Ay = diag |:Ip, 511,, ..

AgAA;' =0A and CA;'=C. (6)

(2) Let S be the unique solution of the algebraic Lyapunov
equation :
S+ATS+SA—-C'c=0 (7)
where A and C are given by (2). It has been shown in Gauthier
et al. (1992) that S is Symmetric Positive Definite (SPD) and that
the matrix (A — S™!'CTC) is Hurwitz. Moreover, the matrix S has
been given explicitly in Busawon, Farza, and Hammouri (1998) and
Cilp
Clp
in particular one has: S~CT =
Cg’p
(3)Vy € RP,let K(¥) € RP be a function satisfying the following
property:

1
K@) = E?T}? (8)

Let us now consider the following dynamical system:

X(6) = AR+ FW, %) + ¥ (u, 0)p(t)
=04, (ST + T OPOTT (1)) CK(CX)

5(t) = —6P(O) T () CTK(CX)

T() =60A—=S"1CTOT () + Ag¥ (u(t), X(t)) 9)
with Y(0) = 0

P(t) = —0P(®)YT(t)CTCT ()P (t) + OP(t)
with P(0) = PT(0) > 0

521
2

>

wherex = e R"withX* e R\, k=1, ..., q;Xx = X—x where

b

x is the unknown trajectory of system (1); p =
pm

and Ay are respectively given by (7),(2) and (5); K (Cx) is a function

satisfying condition (8); u and y are respectively the input and the

output of system (1); & > 0 is a real number and the notation

P(0) = PT(0) > 0 means that the initial condition of the Ordinary

Differential Equation (ODE) governing P is chosen SPD.

Before stating our main result, one assumes the additional
assumption:

(A4) The inputs u are such that for any trajectory X of system (9)
starting from x(0) € X, the matrix CY (t) is persistently exciting
i.e.

361,68, > 0;3T > 0; Vt >0 :

t+T
Sl < / TT(0)C'CTY (v)dt < 83lp.
t

Please notice that assumption (A4) gives a certain excitation
condition which is stated in a classical way (Narendra &
Annaswamy, 1989). However, this assumption does not state
how to generate the input u that ensures the realization of this
condition. In fact, up to our knowledge, excepting some particular
cases (such as linear systems), the problem of characterizing the set
of inputs ensuring the persistent excitation condition is still open.
One now states the following :

Theorem 3.1. Assume that system (1) satisfies assumption (A1) to
(A4). Then, system (9) is an adaptive observer for system (1) with an
exponential error convergence for relatively high values of 0.

The proof of this theorem is given in the next section. However,
before detailing this proof, one shall give some comments and facts
which will be used throughout the proof.

(1) One notices that the matrix 7°(t) is bounded. This comes
from the facts that the matrix ¥ is bounded and the matrix (A —
S~1CTC) is Hurwitz. Moreover, the corresponding upper bound
does not depend on 0 for & > 1. To prove this, let us change the
time scale by setting T = t/6 and let Y'(t) = 7 (). From Egs. (9),
one has:

?(t):(A—s—lcTC)?(r)JrlAif u( L) z(L (10)
07 0)"\o))

According to the expression of Ay given in (5), the matrix
3 A% (5).,%(%)) is bounded and the corresponding upper
bound does not depend on 6 or & > 1.Since the matrix A—S~!CTC
is Hurwitz one directly concludes to the boundedness of T°(t) (or
equivalently to that of 7°(t)) with an upper bound independent of
0.

In fact, the matrix 7 is a filtered version of ¥. The initial
condition of 7" is taken equal to zero in order to make shorter the
transient behaviour.

(2) Under Assumption (A4), the matrix P(t) governed by
the ODE described in (9) is SPD and bounded. Moreover,
itscorresponding upper and lower bounds are independent of 6.

L
0



To prove this, let us again change the time scale by setting r = t/6
and let P(t) = P (). Then, one has:

P(t) = —P(O)T" (é) c'er (é) P(t) + P(t)

with P(0) = P"(0) > 0. (11)

Under assumption (A4), it has been shown in Zhang and Clavel
(2001) that P is SPD and bounded and the corresponding bounds
(obviously) do not depend on 6. The same result is trivially valid
for P(t).

(3) Please notice that the time derivative of X given in (9) can be
written as follows:

R=AR+EW,R) + W)

—0A;'S7ICTK(CR) + A Y (D p(E). (12)
The equation of % consists in a copy of the model (4) with a
corrective term. The corrective term is composed by two terms.
The first one, — A, 'S~'CTK(CX) is rather classical and is met in
classical high gain state observers (Farza, M'Saad, & Sekher, 2005).

The second term, Ae_“f(t)f)(t) is similar to the expression used
for updating the unknown parameters, i.e. the term used in the

expression of p. The idea of using such a structure for the corrective
term has been used by Zhang (2002) for synthesizing an adaptive
observer for a class of MIMO linear time-varying systems. In this
work, the same structure is used to synthesize an adaptive observer
for the considered class of MIMO nonlinear uniformly observable
systems.

3.1. Convergence analysis

Set X(t) = X — x and p(t) = p(t) — p. From (9) and (12), one
has
X = AX—0A;'STICTK(CR) 4+ A Y (D 6(E) + §(u, %)
8, x) + (P W, R) — ¥, x)p +¥u,Rp (13)
o= —0Pt)TT(t)CTK(CR). (14)
Set x = AgX. Using the identities (6), one obtains:
X = 0A% — 0ST'CTK(CX) + Y () p(t) + Ag¥ (u, R)
+ Ag(F (U, R) — P (U, x)p + Ag (Ew, ®) —gw,x). (15)

Now, as in Zhang (2002), set: n(t) = x(t) — T (t)p(t). For writing
convenience and as long as there is no ambiguity, the time variable
t shall be omitted in the sequel. Using the fact that 7" is governed
by the ODE given in (9), one can show that:

H(t) = 0An +6S7ICTCTp — 0S7ICTK(CX) + Ao (¥ (u, X)
— VW, x))p + Ay (W, %) —F(u,x)). (16)

Set Vi(n(t)) = n"(t)Sn(t), Va(p(t)) = p'(t)P~'(t)p(t) where
P(t) is given in (9) and let V(n(t), p(t)) = Vi(n(t)) + V2(p(t))
be a Lyapunov candidate function. Using (7), one gets:

Vi(t) = —0n"Sn +60n'CTCn + 20n"CTCTp — 200" CTK (CX)
+21"S A (P (u, X) — ¥ (u,%)p

+21'SAq (81, 8) — (. %)) . (17)
It is obvious that
X1 < Il + 1T @ oI (18)

By the Mean Value Theorem, one gets:

AQ (g(u7 52) - g(u7 X))

og n
Aea—g(ll, £YR—x)
X

95 i
Aga—‘i(u,s)Ae_lx (19)

where & € R". Since g is globally Lipschitz, the matrix %(u, &)is
bounded. Moreover, according to the triangular structure of g, this
matrix is lower triangular and each entry of the following matrix
Ag%(u, §)A9_1 is polynomial in %. As aresult, for & > 1 and from
(19), one obtains

149 (E(, %) — g, ) || < Xl < calix]l (20)

where c; is a constant which does not depend on 6 for 6 > 1.
Using (20) and (18), one obtains:

149 (8(u, %) — &(u, %)) | < c1linll + 21121l (21)
where ¢; = ¢ sup{Y'(t) || t > 0}. Therefore, one has:
20" A (§(u, %) — E(u, %))

< 2[ISI14g (&, %) — &, 2)) lllin]

< clnl* + callnlllpll < csVi + o/ Viv/Va (22

where ¢z = 2¢1||SIl, ca = 26|IS|l, 5 = m and ¢g =

are positive constants which do not depend on 6 >

g -
Aea(u, £)4,"

—

C4
v min (§)Amin (P)
1, Amin(+) denoting the smallest eigenvalue of (-).

Since each column of the matrix ¥ assumes a triangular struc-
ture and since p is bounded, the arguments developed above are
still be valid for bounding 2n'S A, (¥ (u, X) — ¥ (u,x)) p and in-
deed by proceeding in a similar way as above, one obtains:

20'SAg (¥ (U, %) — ¥ (U, 0) p < Vi + s/ ViV Vs (23)
where ¢; and cg are positive constants (depending on the bounds

of p) which do not depend on 6 > 1.
Using (22) and (23), inequality (17) can be written as follows:

Vi(t) < —0Vy +6n"CTCn +20n"C'CT B

—20n"CTK(CR) + kiVi + ka/'V VY, (24)

with k;y = ¢s + ¢; and k, = ¢ + cg.
Let us now derive the time derivative of V,. One has:

Va(t) = 23"P71 ()5 — TP OPOPT ()P
= =0V, — 205" TTCTK(CA,'®) + 05" ()CTCT(t)p
= —0V, —20p" YTCK(CR) + 05" YT ()CTCTr(H)p.  (25)
Hence, using (24) and (25), one obtains
V(t) = Vi(t) + Va(b)
< —(0 = k)Vi — 0Va + ko VNV V, + 01CTCy
+20n"CTCTp — 200" CTK(CX)
—20pTYTCTCK(Cx) + 0" YT(HCTCT (H)p
—(0 — k1)Vi — OV + ko VNV
+6 (X'C'Cx — 2(Cx)" K(CX))

< —(0 = k)Vi 4+ kov/V1v/Vy — OV, (26)

The last inequality is obtained according to the inequality (8). Now,
set Vi = (6 — k))V;, Vy; = 0V, and V* = V' + V;. Please notice
that V* > (6 — kq)V.

Inequality (26) yields to

) ky
Vi) < -V 4 ——2y*
® = 200 — ky)

ka

. k .
Now, it suffices to choose 6 such that <1 — T«/ﬁ) > 0. This

ends the proof.

3.2. Some particular observers

Some particular expressions of the function K(y) that satisfy
conditions (8) are given and discussed in this section.



3.2.1. Adaptive high gain observers
Consider the following expression of K (3):

Kyc(y) = ky (28)

where k > % is areal number. One can easily check that expression
(28) satisfies conditions (8) for relatively high values of k. Notice
that when no parameter needs to be estimate, it is easy to see that
the resulting observer is of the high gain variety. More specifically,
the proposed observer with K (¥) specialized as in (28) is in fact an
adaptive version of the well-known high gain state observer (Farza
et al,, 2004; Gauthier et al., 1992; Hammouri & Farza, 2003).

3.2.2. Adaptive sliding mode like observers
Here, the function K is specified as follows:

K(y) = ksign(y) (29)

where k > 0 is a real number and ‘sign’ is the usual signum
function. It is easy to see that condition (8) is trivially satisfied
by (29). However, expression (29) is rarely used in practice due to
the chattering phenomena intrinsic to the signum function. Rather,
one uses continuous functions having similar properties as the
function signum. For example, consider the following function:

Krann () = kiTanh(koy) (30)

where Tanh denotes the hyperbolic tangent function and kq, kg >
0 are real numbers. It is easy to see that condition (8) is
satisfied for relatively high values of k;. Moreover, one has
limy,—, oo Tanh(key) = sign(y).

Similarly to the hyperbolic tangent function, one can easily
check that the inverse tangent function Ka,cq, (¥) also constitutes
valid expressions for K (¥). Besides, one can consider new valid ex-
pressions for K(y), for example by adding Krann (V) to Kyg(y) (Fil-
ipescu, Dugard, & Dion, 2003).

4. Observer design with nonlinear parameterization

In this section, the above observer design shall be extended
to the following class of nonlinear system with nonlinear
parameterization:

Xx=Ax+¢(U,x,p)
{y=Cx=x1 (31)
with
x! P1
X P 2
x=|.]. xeR, k=1,....q p=|.].
x4 Pm
piERi=1,...,m
o', x', p)
@*(u, X', %%, p)
pu,x, p) = : ;
e T, x', . X p)
@, x, p)

the matrices A and C are defined as in (2).

It is easy to see that the class of systems (31) includes
that of systems (1) with the function ¢ specialized as follows:
oUu,x,p) = W¥(u,x)p + g(u,x). Now, the observer design
necessitates some hypotheses. As for linear parameterization, one
still assumes the boundedness of the inputs, the states as well as
the unknown parameters. Thus, assumption (A1) still be assumed
while assumption (A2) and (A3) shall be reformulated in order to

account for the nonlinear parameterization. Indeed, together with
(A1), one assumes the following hypotheses:

(A2') The function ¢ (u, x, p) is Lipschitz with respect to x and
p, uniformly in u where (u, x, p) € U x X x £2.

(A3') The nonlinear parameterization ¢(u, x, -) is one to one
from R™ into R™.

Before synthesizing the observer, on has to construct a
prolongation, @, of the nonlinearities ¢ which coincides with ¢
on € U x X x £ and which is globally Lipschitz. The process
of constructing such a prolongation is similar to that considered
previously when dealing with the linear parameterization with
the difference that one has also to saturate the unknown
parameter p since it appears nonlinearly in the system. Indeed, the
prolongation ¢ can be defined in a similar manner as in the linear
parameterization case, i.e.

o, x, p) =@, o(),c”(p)) (32)

c:R"— X, x> o) ando” : R" — £2,p — o”(p) are
smooth bounded saturation functions and are such that o (x) = x
and o”(p) = pforallx € X and p € £2.

Again, as in the linear parameterization case, consider the
following dynamical system:

{k=AX+<Z)(u,x, p)

y=CK= x!. (33)

Itis clear that system (33) coincides with system (31) for (x, u, p) €
X x U x $£2. Therefore, it does not make any difference that we
consider system (33) instead of (31) for the observer synthesis.
Indeed, system (4) shall be considered in the next section. Please
notice that for any bounded input u € U, the function ¢(u, x, p)
is by construction globally Lipschitz with respect to x and p and is
bounded for all (x, p) € R" x R™.
Now, consider the following dynamical system:

x =AR+ W R ) — 04, (ST + TOPOT (1)) C'K(CR)
p(t) = —0P()Y T (t)CTK (CR)
T(t)=0(A—-5"'C"C)r(t)+ A %(u % D)
= 98,0 » X, P (34)
with 7(0) = 0

P(t) = —0P(t)YT(t)CTCY (t)P(t) + OP(t)
with P(0) = PT(0) > 0

where x = ; S, C and Ay are respectively given

by (7), (2) and (5) ; K(CX) is a function satisfying condition (8); u
and y are respectively the input and the output of system (31) and
6 > 0is areal number.

Again, due to the nonlinear parameterization, one has to
reformulate assumption (A4) which is restated as follows:

(A4') The inputs u are such that for any trajectory of system
(34) starting from (%(0), 5(0)) € X x £, the matrix CY'(¢) is
persistently exciting i.e.

361,88, > 0;3dT > 0; Vt > 0: 511,

t+T
< / YT CICT (r)dT < 8yl
t
One now states the main result.

Theorem 4.1. Under assumptions (A1), (A2"), (A3") and (A4),
system (34) is an adaptive observer for system (33) with an
exponential error convergence for relatively high values of 0.

Proof of Theorem 4.1. The proof is similar to that of Theorem 3.1.
Indeed, set x(t) = X — xand p(t) = p(t) — p. Then, one can show
that



)L( = A;( + ¢(u7 527 Ia) - (Z)(u’ X, 10)
—04;'S7ICTK(CR) + A, T (DD

Y. D 7 0 . .\ .
=Ax+ —Wx,0)p+ | —Wx p:) — —WUxp0))p
ap ap ap
00 . - *
+ a—‘;’(u, £, p)x— 0.4A7S7ICTK(CR) + A7 T (1)

where p¢ € R™and & € R" according to the Mean Value Theorem.
Set x = Agx. One obtains:

DB+ T (®)p(D)

2
Ag | —u, %,
+ e(ap(uxps) )

93 i
AL, £, p)ATR.
0x

. 9%
X = 0AX — 0S™'CTK(CX) + Ag—(u

Define n = X — 7" p. Proceeding as in the previous section, one can
show that:

i = 0An +0S7'C'CTp — 0S~ICTK(CX)

+A (i( )_a_( ))
9 ap” ) g u, X, p

ER) i B
+ Aeﬁ(”’ §&,.04;, M+7Tp).

Set Vi(n(t)) = n'(O)Sn(t), Va(p(t)) = p'(HP~'(H)p(t) and let
V(n(t), p(t)) = Vl(n(t)) + Va(p(t)) be the Lyapunov candidate
function. Again, proceeding as in the previous section, one can
show that:

Vi(t) = —0Vy +60'CTCn + 200"CTcr p(t)

NNEY: 9%
+2n'S4y —(u X, pg) — —(U X, 0)

—205"CK (CX)

+ ZﬂTSAea—(i(U, £,0) A7 (1+75). (35)
According to Assumption (A2'), %(u, -,+-) and %(u, -,-) are
bounded. Moreover, according to the triangular structure of ¢ with

respect to x, the matrix Ag%(u, &, p) is also bounded and the
corresponding upper bound does not depend on 6 for 6 > 1. Thus,
one has:

09 _ B
ZnTSAga(u, E,0)A; (N +TD) < kiVi + Kyy/Viy/Va (36)
. 00 . A\ -
X, pg) — %(u, X, p)) p < K)v/VivV, (37)

where k1, k/z, k/z/ > 0 are real numbers which do not depend on 0
foro > 1.
Combining (35)-(37), one obtains:

9
277s A, (—(p(u
ap

Vi(t) < —0Vy +6n"CCn +20n"C'CcT B
—200"CTK(CR) + kiVi + ko v/ VNV, (38)

where k, =k} + k.

The time derivative of V, can be derived in a same manner as in
the previous section and according to (25), one has:
Va(t) = =0V, — 20T YTCTK(Cx) + 00" rT(H)CTCTr(Hp.  (39)

The remaining part of the proof is identical to that of Theorem 3.1
(compare (38) and (39) with (24) and (25), respectively). O

5. Example: State and Kkinetic parameters estimation in a
bioreactor

In this section, the performances of the proposed observers are
illustrated through a typical bioreactor model which belongs to the
class of systems (31), i.e. with nonlinear parameterization. Please
notice that from practical point of view, the prolongation tech-
niques are rarely used as shown by several experimental processes
where observers, synthesized under assumptions similar to those
considered in this paper, have been successfully applied and no
prolongation has been computed (see e.g. Busawon, Yahoui, Ham-
mouri, & Grellet, 2001; Deza, Busvelle, & Gauthier, 1992; Farza,
Hammouri, Jallut, & Liéto, 1999; Viel, Busvelle, & Gauthier, 1995).
Indeed, one shall illustrate the theory described in the above sec-
tions through the following example where no prolongation is con-
sidered.

We consider a simple microbial culture which involves a single
biomass x, growing on a single substrate x;. The bioprocess is
supposed to be continuous with a dilution rate D(t) and an
input substrate concentration sj,(t). The specific growth rate is
assumed to follow the Contois model (Bailey & Ollis, 1986). The
mathematical dynamical model of the process is constituted by
the following two mass balance equations associated to x; and x>,
respectively:

. W*X1X2
x1(t) = —k————— + D(t) (sin(t) — X1(t))
Kexy + % (40)
(0 = 22 poxy(0)
* chz =+ X1 2

where x; and x, respectively denote the concentration of the
substrate and the biomass, u* and K are the Contois law
parameters and k is the known yield coefficient. The substrate
concentration is assumed to be measured and the objective is to
estimate x, (t) and the Contois law parameters.

System (40) has been considered in Gauthier et al. (1992)
where the authors exhibited a compact set X € R? which is
positively invariant under the dynamics of (40). Moreover, it was

shown that the following function @ : X — @ (X), <§;) —

Z1 = X1
—k Wx1Xg )is a diffeomorphism from X onto its image.
Kexy +x1 . . .
System (40) can be written in the new coordinates as follows:

zy =

z1 =2+ D(sin — 1)
z 2
2 =p1(1+ ,02—) Z — P2 (22 + Dsjn) — Dz, (41)
Z;
Y=z

where p; = u* and p; = kKﬂ (41)is
under form (31) and as a result the estimation of z, p; and p, can
be achieved using an observer of the form (34). Please notice that
the original Contois law parameters can be recovered from p; and
02 as follows: u* = p; and Kc = ko1 03.

In what follows, one shall give simulation results obtained
when the observer design function is specified as in Eq. (28).
In fact, many other simulations have been carried out with
other expressions such as those given in (29) and (30) and the
obtained results were quite similar to those given hereafter. In
fact, from the observer design point of view, the introduction
of the design function K allows us to clearly show that sliding
mode observers belong to the class of high gain observers
with a particular specification of this function. In practice, its
choice is not very crucial as shown by the several numerical
simulations that have been carried out (and not shown here).
However, we have recently proposed a high gain output feedback
controller which was derived by exploiting the concept of duality
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Fig. 1. Time evolution of the dilution rate with estimation results for 6 = 2.
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Fig. 2. The estimation error for different values of the observer design parameter.

Observability/Controllability (Hajji, Farza, M'Saad, & Kamoun,
2008). The underlying controller is expressed as a function that
has similar properties as the design function K. This offers the
possibility to take into account physical controller constraints by
designing auto saturated controllers through specific choices of the
design function, namely functions given by (29) or (30).

The model and observer simulations have been carried out
using a constant input substrate concentration and a dilution rate
which varies as a square wave signal as shown in Fig. 1. The
parameter values used in simulation are:

W =033  Kc=5gg
k=20g.g "

Sin =15 g.l‘l.
The resulting values of the parameters p; and p, are p; = 0.33h~!
and p, = 7.5758 h. In order to simulate practical situations, the
measurements of z; issued from the model simulation have been

corrupted by noise measurements with a zero mean value and a
variance o2 = 1073,

The tuning of the design parameter 6 is achieved using a
trial-and-error method bearing in mind the well-known property
related to its choice: as for standard high gain state observers, such
choice is a compromise between fast convergence of the observer,
obtained through relatively high values of 6, and a well behaviour
with respect to the measurement noise which is obtained when the
values of 6 are chosen relatively small.

The results presented below are obtained by fixing the value
of 6 to 2. We have reported in Fig. 1 the estimation of p;, p,
and z, obtained with this value. In Fig. 2, we have reported the
estimation error on p; and p, obtained with three values for 9,
i,e.0 = 1,60 = 2and 8 = 5. Although all these results can be
considered as quite satisfactory, those obtained with the value 2
are preferable since they constitute a good compromise between



fast convergence (obtained with the value 5) and a good behaviour
with respect to measurement noise (obtained with the value 1).

6. Conclusion

The main motivation of this paper was to design adaptive
observers for a class of MIMO uniformly observable nonlinear sys-
tems with linear and nonlinear parameterizations. Of fundamen-
tal importance, the exponential convergence of the observers was
shown to be guaranteed for both parameterizations under well-
defined persistent excitation conditions. Another feature of the
proposed observers lies in their ability to give rise to different ob-
servers having different structures. Indeed, it has been shown that
high gain adaptive observers and sliding mode like adaptive ob-
servers can be derived from the set of proposed observers. Sim-
ulation results carried out under realistic conditions have been
reported and they demonstrated the good capabilities of the ob-
server in providing good estimates of the missing states and the
unknown parameters.
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