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1 Sliced Inverse Regression (SIR)

1.1 Multivariate regression
Let Y € R and X € RP. The goal is to estimate G : R? — R such that
Y = G(X) + ¢ where ¢ is independent of X.
e Unrealistic when p is large (curse of dimensionality).

e Dimension reduction : Replace X by its projection on a subspace of
lower dimension without loss of information on the distribution of Y given
X.

e Central subspace : smallest subspace S such that, conditionally on the

projection of X on S, Y and X are independent.

1.2 Dimension reduction

o Assume (for the sake of simplicity) that dim(S) =1 i.e. S =span(b), with
b € R?P — Single index model:

Y =g(b'X)+¢

where £ is independent of X.

e The estimation of the p-variate function G is replaced by the estimation
of the univariate function g and of the direction b.

e Goal of SIR : Estimate a basis of the central subspace. (i.e.
b in this particular case.)



1.3 Reminder
Let X;,...X,, be n points in R? divided into h classes Cj, j =1,...,h.

e Empirical covariance matrix

n

. 1 B . B 1 n
3= 5;()@- - X)(X; — X)!, where X = E;Xi.

e Within-class covariance matrix “mean of covariances”

h
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where 3; is the empirical covariance matrix of class j and n; =card(C}).

e Between-class covariance matrix “covariance of means”

n
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B=>Y" (X = X)(X; = X)', where X, = o > X
i=1 X;eCy

e 3=208 + W
e Let ' X the projection of the random vector on the axis b. Then, var(b'X) =

btcov(X)b.

1.4 SIR
Idea:

e Find the direction b such that b'X best explains Y.

e Conversely, when Y is fixed, b!X should not vary.

e Find the direction b minimizing the variations of b*X given Y.
In practice:

e The support of Y is divided into h slices S;.

e Minimization of the within-slice variance of b*X under the constraint
var(b'X) = 1.

e Equivalent to maximizing the between-slice variance under the same con-
straint.



1.5 Illustration
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1.6 Estimation procedure
Given a sample {(X1,Y1),...,(X,,Y,)}, the direction b is estimated by

b = argmax b'T'b such that b'Sb = 1. (1)
b

where ¥ is the empirical covariance matrix and I is the between-slice covariance
matrix defined by

h
r=>% - X)(X; - X)t, X; = ZX“

j=1 YES

= \S

where n; is the number of observations in the slice .S;.

The optimization problem (1) has a closed-form solution: b is the eigenvector
of X7!T associated to the largest eigenvalue.

1.7 Illustration

Simulated data.

e Sample {(X17 Y1),...,(Xn,Yn)} of size n = 100 with X; € R? and Y; € R,
1 =1,.

o X, ~ Np(O, ¥)) where ¥ = QAQ! with
— A =diag(p?,...,2%,19),

— 6 controls the decreasing rate of the eigenvalue screeplot,



— (@ is an orientation matrix drawn from the uniform distribution on

the set of orthogonal matrices.
o V; =g(b'X;) + & where

— g is the link function g¢(t) = sin(nt/2),
— b is the true direction b = 5-/2Q(1,1,1,1,1,0,...,0)%,
— £~ Ni(0,9.107%)

1.8 Results with § = 2, dimension p = 10
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Blue: Y; versus the projections Athlv on the true direction b,
Red: Y; versus the projections b' X; on the estimated direction b,
bt X; versus b*X;.

1.9 Results with § = 2, dimension p = 50
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Blue: Y; versus the projections Athlv on the true direction b,
Red: Y; versus the projections b' X; on the estimated direction b,
bt X; versus b*X;.

1.10 Explanation

-150,

Problem : 3 may be singular or at least ill-conditioned in several situations.

e Since rank(i) < min(n — 1,p), if n < p then 3 is singular.

150



Even if n and p are of the same order, S is ill-conditioned, and its inversion
yields numerical problems in the estimation of the central subspace.

The same phenomenon occurs if the coordinates of X are strongly corre-
lated.

In the previous example, the condition number of ¥ was p?.

2 Regularization of SIR

2.1

Regularized SIR

We propose to compute b as the eigenvector associated to the largest
eigenvalue of (0¥ + I,,) QI

Q describes which directions in R? are more likely to contain b.

— The inversion of ¥ is replaced by the inversion of O + I,.
— For a well-chosen a priori matrix (2, numerical problems disappear.

2.2

2.3

Links with existing methods

Ridge : Q= 7711,. No privileged direction for b in R.
7 > 0 is a regularization parameter.
PCA+SIR

>‘H

~ ot
_]q_77

[« 9)

d
0=y
j=1

where d € {1,...,p} is fixed, 5y > -+ >4, are the d largest eigenvalues
of ¥ and ¢y, ..., 4q are the associated eigenvectors.

J

Three new methods
PCA+ridge:

1A
0=- E 75G5.
T 4 q_] q_]
j=1
In the eigenspace of dimension d, all the directions are a priori equivalent.

Tikhonov: Q = 7!, The directions with large variance are the most
likely to contain b.

PCA+Tikhonov:
d
1 S ot
Q = ; Zl 5‘]‘(]]‘(]]».
=

In the eigenspace of dimension d, the directions with large variance are
the most likely to contain b.



2.4 Recall of SIR results
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Projections b X; on the true direction b versus Y,

Red: Projections b*X; on the estimated direction b versus Y;,
bt X; versus b' X;.

2.5 Regularized SIR results (PCA+Ridge)
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Blue: Projections Athi on the true direction b versus Y,
Red: Projections bt)A(Z- on the estimated direction b versus Y;,
bt X; versus b*X;.

2.6 Validation on simulations
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Proximity criterion between the true direction b and the estimated ones b(")

on N = 100 replications:

b, b))

E COS

e 0 < PCL,

e a value close to 0 implies a low proximity: The b(r)
to b,

are nearly orthogonal

e a value close to 1 implies a high proximity: The b(") are approximately

collinear with b.
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2.7 Influence of the regularization parameter

log 7 versus PC. The “cut-off” dimension and the condition number are fixed
(d =20 and 0 = 2).
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e Ridge and Tikhonov: significant improvement if 7 is large,
e PCA ~SIR: reasonable results compared to SIR,

o PCA+ridge and PCA+Tikhonov: small sensitivity to 7.

2.8 Sensitivity with respect to the condition number of
the covariance matrix

0 versus PC. The “cut-off” dimension is fixed to d = 20. The optimal regular-
ization parameter is used for each value of 6.

e Only SIR is very sensitive to the ill-conditioning,
e ridge and Tikhonov: similar results,

e PCA{ridge and PCA+Tikhonov: similar results.

2.9 Sensitivity with respect to the “cut-off” dimension

d versus PC. The condition number is fixed (6 = 2) The optimal regularization
parameter is used for each value of d.



e PCA | SIR: very sensitive to d.

e PCA+ridge and PCA+Tikhonov: stable as d increases.

3 Application to real data

3.1 Estimation of Mars surface physical properties from
hyperspectral images

Context:

e Observation of the south pole of Mars at the end of summer, collected
during orbit 61 by the French imaging spectrometer OMEGA on board
Mars Express Mission.

e 3D image: On each pixel, a spectra containing p = 184 wavelengths is
recorded.

e This portion of Mars mainly contains water ice, CO5 and dust.
Goal: For each spectra X € RP, estimate the corresponding physical parameter
Y € R (grain size of CO3).
3.2 An inverse problem
Forward problem.
e Physical modeling of individual spectra with a surface reflectance model.
e Starting from a physical parameter Y, simulate X = F(Y).

e Generation of n = 12,000 synthetic spectra with the corresponding pa-
rameters. = Learning database.

Inverse problem.



e Estimate the functional relationship ¥V = G(X).
e Dimension reduction assumption G(X) = g(b'X).

e b is estimated by (regularized) SIR, g is estimated by a nonparametric
one-dimensional regression.

3.3 Estimated function g

4
x10

Grain size of CO2

e A'X - -2 -1.5 =1 -0.5 0
e Projection on the first PCA axis

Estimated function g between the projected spectra b'X on the first axis of
regularized SIR (PCA+ridge) and Y, the grain size of COs.

3.4 Estimated CO, maps
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Grain size of COq estimated with SIR (left) and regularized SIR (right) on a
hyperspectral image of Mars.

3.5 Extensions

e Kernel SIR. The usual dot product b*X is replaced by a kernel.
Wu, H. M. (2008). Kernel Sliced Inverse Regression with Applications to

Classification, Journal of Computational and Graphical Statistics, 17(3),
590-610.

http://www.hmwu.idv.tw/KSIR/
e Sparse SIR. Introduction of a L; penalty on b to obtain sparse axes.

Li, L. and Nachtsheim, C. (2006). Sparse Sliced Inverse Regression, Tech-
nometrics, 48(4), 503-510.
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