Corruption risk analysis using semi-supervised naïve Bayes classifiers

Abstract : In this paper, we consider the application of a naïve Bayes model for the evaluation of corruption risk associated with government agencies. This model applies probabilistic classifiers to support a generic risk assessment model, allowing for more efficient and effective use of resources for the detection of corruption in government transactions, and assisting audit agencies in becoming more proactive regarding corruption detection and prevention.
Type de document :
Article dans une revue
International Journal of Reasoning-based Intelligent Systems, 2013, 5 (4), pp.237-245. 〈10.1504/IJRIS.2013.058768〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01058580
Contributeur : Pierre Bessière <>
Soumis le : mercredi 27 août 2014 - 11:55:33
Dernière modification le : jeudi 11 octobre 2018 - 08:48:02

Identifiants

Collections

Citation

Remis Balaniuk, Pierre Bessière, Emmanuel Mazer, Paulo Cobbe. Corruption risk analysis using semi-supervised naïve Bayes classifiers. International Journal of Reasoning-based Intelligent Systems, 2013, 5 (4), pp.237-245. 〈10.1504/IJRIS.2013.058768〉. 〈hal-01058580〉

Partager

Métriques

Consultations de la notice

397