Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius) larvae exposed to sediment

D. Bertin, B. Ferrari, P. Labadie, A. Sapin, J. Garric, H. Budzinski, M. Houde, M. Babut

To cite this version:

D. Bertin, B. Ferrari, P. Labadie, A. Sapin, J. Garric, et al.. Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius) larvae exposed to sediment. Environmental Pollution, Elsevier, 2014, 189, p. 27 - p. 34. <10.1016/j.envpol.2014.02.018>. <hal-01058508>

HAL Id: hal-01058508
https://hal.archives-ouvertes.fr/hal-01058508
Submitted on 27 Aug 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius) larvae exposed to sediment

Delphine Bertin\(^1\)*, Benoît J.D. Ferrari\(^1,4\), Pierre Labadie\(^2\), Alexandre Sapin\(^1\), Jeanne Garric\(^1\), Hélène Budzinski\(^2\), Magali Houde\(^3\), Marc Babut\(^1\).

\(^1\) Present address: IRSTEA, UR MALY, 5 rue de la Doua, CS 70077, F-69626 Villeurbanne, France.

E-mail address: delphine.bertin@irstea.fr; benoit.ferrari@irstea.fr; alexandre.sapin@irstea.fr; jeanne.garric@irstea.fr; marc.babut@irstea.fr

\(^2\): Université Bordeaux 1, Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), UMR 5805 CNRS, Laboratoire de Physico- et Toxico-Chimie de l’environnement (LPTC), 351 cours de la Libération, 33405 Talence, France.

E-mail address: pierre.labadie@u-bordeaux1.fr; h.budzinski@epoc.u-bordeaux1.fr

\(^3\): Environment Canada, Aquatic Contaminant Research Division, 105 rue McGill, Montreal, QC, H2Y 2E7, Canada.

E-mail address: Magali.Houde@ec.gc.ca

\(^4\): Present address: Centre Ecotox/Oekotoxzentrum, EPFL-ENAC-IIE-GE, Station 2 (GR B0 392), 1015 Lausanne, Suisse. benoit.ferrari@centrecotoxic.ch

*Corresponding author: Delphine BERTIN, IRSTEA, UR MALY, 5 rue de la Doua, CS 70077, F-69626 Villeurbanne, France. delphine.bertin@irstea.fr, phone: +33 (0)4 72 20 10 75.
Abstract

Midge larvae (*Chironomus riparius*) were exposed to sediments from a deposition sampled at a site along the Rhône River (France) downstream of an industrial site releasing various perfluorinated chemicals. This sediment is characterized by high concentrations of perfluoroundecanoic acid (PFUnA) and perfluorotridecanoic acid (PFTrDA) and a low perfluorooctane sulfonate (PFOS) concentration. Concentrations of 23 perfluoroalkyl compounds, including C_{4-14} carboxylate acids, C_{4-10} sulfonates, and seven precursors, were analyzed in overlying and pore water, sediment, and larvae. Midge larvae accumulated carboxylate acids (C_{11-14}), PFOS, and two precursors (perfluorooctane sulfonamide: FOSA and 6:2 fluorotelomer sulfonic acid, 6:2 FTSA). These substances accumulated mainly during the fourth instar larvae exponential growth phase. Accumulation of 6:2 FTSA, PFUnA, and PFOS occurred via trophic and tegumentary routes. Other compounds mainly accumulated from food. Kinetics followed a partition model, from which uptake and elimination constants were derived.

Keywords: Perfluoroalkyl compounds, sediment, *Chironomus riparius*, bioaccumulation.

Capsule: *Chironomus riparius* mainly bioaccumulates long-chain PFASs via trophic and/or tegumentary routes during the fourth instar larvae growth phase.

1. Introduction

Polyfluoroalkyl and perfluoroalkyl substances (PFASs) have been produced since the early 1950s. The production and use of these compounds have resulted in their
global distribution in the environment (Houde et al., 2011; Houde et al., 2006; Prevedouros et al., 2006). In 2000, the 3M company voluntarily phased-out C₈-based-chemicals (i.e., sulfonamide based polymers), at the base of the formation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), and replaced them with shorter-chain chemicals (e.g., perfluorobutane sulfonate, PFBS) (Renner, 2006; Lindstrom et al., 2011). In 2009, PFOS was listed under Annex B of the Stockholm convention (United Nations Environmental Program -UNEP) on Persistent Organic Pollutants (POPs) (Lindstrom et al., 2011).

PFASs have been found in all aquatic media (Houde et al., 2011; Houde et al., 2006). On the basis of global modelling, marine sediments have been designated as the ultimate containment for PFASs (Armitage et al., 2006). Several studies have shown the presence of PFASs in sediment with concentrations ranging from 0.5 ± 0.1 to 38.3 ± 16.8 ng.g⁻¹ dw (Ahrens et al., 2009; Bao et al., 2009; Bao et al., 2010; Higgins et al., 2005; Labadie and Chevreuil, 2011; Myers et al., 2012; Zushi et al., 2010). Sediment has been suggested as a major source of contamination of aquatic organisms (Martin et al., 2004). However, the distribution of water, sediment, and biota as well as the role of the sediment compartment in biota contamination is still poorly understood. The length of the fluorocarbon chain is an important criterion for PFAS distribution in the environment (Ahrens et al., 2009; Higgins and Luthy, 2006; Myers et al., 2012). PFASs with eight or more carbon atom backbones are known to be bioaccumulative (Kannan et al., 2005; Kelly et al., 2009; Loi et al., 2011; Tomy et al., 2004).

In France, PFASs were found in fish from the Rhône River near Lyon (Miège et al., 2012). Highest levels of PFASs were found in fish from this latter river (mean total PFAS concentration: 241.5 ng.g⁻¹ dry weight (dw)), the Rhône River was therefore
chosen as the study site for this research which aimed to better understand the origin of PFAS contamination in aquatic organisms by evaluating the transfer of these compounds from sediment to invertebrates.

A benthic invertebrate, the non-biting midge *Chironomus riparius*, is found in sediment from the Rhône River and is recommended by the OECD for toxicity testing (OECD, 2004). Midges are holometabolous, that is they go through complete metamorphosis consisting of egg, larva, pupa, and adult stages. *C. riparius* mates in aerial swarms. After mating, the female deposits the eggs on the water surface. Larvae undergo four instars; the first (L1) is planktonic and the second to fourth larval stages (L2, L3, L4) are in direct contact with sediment (Fig. S1). Larvae L2 to L4 are collector-gatherers, feeding mainly on detritus and its associated bacteria and fungi. This species represents an important food source for fish, making it a useful species for documenting the bioaccumulation of perfluoroalkyl compounds (Armitage et al., 1995).

The objectives of the present study were (i) to experimentally determine the role played by sediment in the accumulation of eleven carboxylic acids (from 4 to 14 carbons), five sulfonates (ranging from 4 to 10 carbons), and seven precursors by *C. riparius* larvae and (ii) to describe the kinetics of the bioaccumulation process.

2. Materials and Methods

The study site, Beurre Island (BER), is a fluvial annex of the Rhône River (eastern central France, N45°28'17,0"E4°46'43,4", Fig. 1) and located downstream of a fluoropolymer manufacturing plant that has been found to be an important source of PFAS contamination with a typical profile (Dauchy et al., 2012).

2.1 Sediments
In 2012, 50 L of natural sediments were collected from the river bed with a Van-Veen grab, kept on ice and brought to the laboratory, where they were sieved at 2 mm, pooled in a polypropylene (PP) jar, and stored at 4°C. Six aquaria (38 × 20 × 24.5 cm in polystyrene) were prepared with 4 L of homogenized sediment and 15 L of groundwater mixed with treated water via an osmosis system in order to reach a conductivity of 300 µS.cm⁻¹. Each aquarium was allowed to settle for 1 week before introducing the chironomids. Three control aquaria were prepared in the same manner with silica sand (particle size distribution: 90% 50-200µm, 10% <50µm) (Péry et al., 2002).

The sediment was characterized for water content, nitrogen, carbonate using a Bernard calcimeter, and loss on ignition (LOI) (AFNOR, 1994, 2000, 2007; Vatan 1967) and showed a water content of 43.4%, an organic carbon content of 4.3%, a carbonate content of 27.4%, and a nitrogen content of 0.19%. The particle size distribution was determined by laser diffractometry (Cilas 1190, France) and found to be 10% clay-silt (< 5.83µm), 40% silt (5.83 - 52.24 µm), and 50% of silt-very fine sand (>52.24 mm).

2.2 *C. riparius* exposure

Chironomids were obtained from laboratory cultures made according to standard methods (AFNOR, 2010; OECD, 2004). Chironomids were exposed to the BER sediment at standard temperature (21°C). Two experiments were conducted to examine the extent to which developmental stage influences the amount of accumulated chemicals in *C. riparius* (experimental designs shown in Fig. S2). The first experiment (E1) started with L2 larvae until the end of the L4 stage and lasted for 9 days. The second experiment (E2) started directly with L4 larvae.
In experiment E1, 2400 L2 larvae (2-day-old larvae post-hatching) were added to three study aquaria, and to three control aquaria (400 in each aquarium). In experiment E2, 1200 early L4 larvae (7-day-old larvae post-hatching) were exposed in three aquaria. Overlying water (OW) was continuously renewed (four times a day) to maintain adequate water quality and oxygenated under a 16:8-h light: dark photoperiod during the experiment. Larvae were fed ad libitum each day with 1mg commercial food (Tetramin®) per organism per day. We decided to feed the chironomids during the experiment because previous experiments showed that larvae did not survive without an external supply of food in this sediment. A quantity of 1mg Tetramin® per organism per day was selected because preliminary tests (data not shown) conducted with 0.6mg Tetramin® per organism per day showed low survival and growth. E1 organisms were sacrificed after 11 post-hatching days, i.e., 9 days (Tfinal, Tf) after being introduced in the aquaria. E2 organisms were sacrificed at 2 (T1), 3 (T2), and 4 (T3) days, respectively, after introducing L4 chironomids. The water quality parameters (pH, concentration of dissolved oxygen, conductivity, NO2−, and NH4+) were monitored once a week and at the beginning and the end of the exposure period (Fig. S2).

2.3 Sample collection and chironomid measurements

Overlying water (OW), pore water (PW), and sediment were sampled at T1, T2, T3, and Tf. E1 organisms were sampled only at Tf. E2 chironomids were sampled at T0 (fourth instar larvae), T1, T2 and T3, and Tf. The overlying water was sampled directly in a 1L polyethylene (PE) bottle. For pore water, we used a Rhizon® system (SDEC, Reignac-sur-Indre, France), which consists of one porous polymer part inside a fiberglass rod. Organisms were collected by sieving the upper layer of sediment at 500µm; sub-samples from deeper sediment were deposited in PE tubes. Organisms were
split into two different batches for PFAS analysis (about 800 mg ww, representing
about 200 larvae) and δ13C and δ15N isotopic analysis (about 5 mg dw of larvae). Biota
samples were cryopreserved in liquid nitrogen and stored at -21°C and abiotic samples
frozen and kept at -21°C (Fig S2).

Chironomid survival, length, and weight were determined for all aquaria. To determine
length, four groups of ten larvae were photographed and mean sizes assessed using
digital image analysis software (Jmicrovision, freely available via
http://www.jmicrovision.com/). The same groups were then weighed (weighing scales:
Sartorius CPA225D, France) to obtain mean weights.

2.4 PFAS extraction

2.4.1 Overlying and pore water samples

Water samples were each spiked with 2 ng of IS and processed using Srata X-
AW cartridges as described by Labadie and Chevreuil (2011).

Eluates were concentrated to 400 µL under a nitrogen stream at 40°C and transferred
into PP vials (final volume: 250-300 µL). Extracts were stored at -20°C until analysis.

2.4.2 Sediment sample

Sediment samples were extracted by sonication, using a method adapted from
Sun et al. (2011). Samples (1 g dw) were spiked with ISs (1.8 ng each) and extracted
with 5 mL of MeOH for 20 min, prior to centrifugation for 3 min (20°C, 2900 g). This
procedure was repeated with 2.5 mL of MeOH and the two extracts were combined and
concentrated to 800 µL under a nitrogen stream at 40°C. Samples were purified using
ENVI-Carb cartridges previously conditioned with 4 mL of MeOH and eluted with 2× 4
mL of MeOH. Eluates were concentrated to 400 µL under a nitrogen stream at 40°C and
transferred into injection vials.
2.4.3 *C. riparius* samples and Tetramin® samples

Extraction of PFASs in 120 mg dw *C. riparius* (800 mg wet weight (ww)) and in 540 mg Tetramin® followed the same protocol used for the sediment samples. Extract clean-up was adapted from Ballesteros-Gomez et al. (2010). Extracts were diluted 20 times with ultra-pure water (5% extract in water) and then passed through a Strata X-AW cartridge previously conditioned as described above. After extract loading, cartridges were washed with 5 mL of sodium acetate buffer (pH=4.5, 25 mM). They were vacuum-dried (30-40 min) and connected via a polyethylene adaptor cap to an ENVI-Carb cartridge previously conditioned with 8 mL of MeOH. Neutral PFASs were eluted with 8 mL of MeOH (fraction A). The ENVI-Carb cartridge was then replaced and a second fraction (fraction B) containing acidic analytes was eluted with 8 mL of MeOH containing 0.2% NH₄OH. Fraction A eluates were concentrated to 300 µL and then transferred into PP injection vials. Fraction B eluates were processed almost to dryness before adding 200 µL of acetonitrile and 200 µL ultrapure water. Extracts were then passed through MeOH-rinsed centrifuge tube filters and transferred into PP injection vials.

2.5 Isotopic analysis

Isotopic analysis (¹³C and ¹⁵N) was performed by the INRA-Nancy laboratory (PTEF-isotopy pole, France) on decarbonated sediment, Tetramin®, and chironomids (i.e., chironomids that have eliminated their gut content following 48h in a beaker containing silicate, overlying water with food, and chironomids with gut content).

2.6 LC-MS/MS analysis
PFAS analyses were performed using an Agilent 1200 LC system (Agilent Technologie, Massy, France) interfaced with an Agilent 6460 triple quadrupole mass spectrometer (details in Table S2).

2.7 Quality control and performance methods

Analyte recoveries were determined using spiked samples for each matrix (surface and pore water, sediment, and chironomids). Native PFAS recoveries ranged from 50 to 110% (except for PFTeDA, MeFOSA and EtFOSA), with a relative standard deviation below 15% (Table S3).

Mean IS recoveries, estimated by external calibration, were in the range 70 - 135% for the different matrices. Replicate procedural blanks were analyzed for each series of samples. The predominant compounds in surface water blanks were PFHpA (mean level: 166 pg) and PFHxA (115 pg). For solid samples, the prevailing analytes in blanks were PFOA (63 pg) and PFPA (26 pg). PFAS concentrations were therefore blank-corrected. For compounds present in blanks, the limits of detection (LDs) were defined as three times the standard deviation, and the limits of quantification (LQs) were set at ten times the standard deviation of the blank. For analytes not detected in the blanks, LDs and LQs were determined as the concentration with a signal-to-noise ratio of 3 and 9, respectively. This calculation was performed on matrices spiked at 2-5 ng.g⁻¹ (sediment and C. riparius) and 2-3 pg.L⁻¹ (Vittel® mineral water samples) (Table S4).

2.8 Data processing

Data were analyzed using the Student’ t-test. All data were checked for normality and homogeneity of variance using the Shapiro-Wilk test and the Bartlett test, respectively. For all statistical tests, the significance level (alpha) was set at 0.05 and calculations
were performed using the software package R (version 2.11.0) (R Development Core Team, 2013). For calculating data below the LQ, 0.5*LQ was used.

When relevant, accumulation data were fit to an exponential rise model (Eq.1) with Sigma Plot 10.0 software (Systat software Inc., Point Richmond, CA, USA- www.systat.com).

\[C_{\text{org}}(t) = a.(1-e^{-bt}) \quad \text{Eq. (1)} \]

Where \(C_{\text{org}} \) is the concentrations in chironomids (ng. g\(^{-1}\) ww), \(t \) the time in (h), \(a \) and \(b \) are defined in the discussion.

This model has been adapted to existing bioaccumulation models, including the model described by Spacie and Hamelink (1985) and Landrum (Landrum, 1989).

3. Results

3.1 PFAS distribution in water, sediment, food, and \(C. \hspace{0.1em} \text{ riparius} \)

Short- (PFBA to PFHxA) and long-chain PFCAs (PFOA, PFNA, PFDA, PFUnA, and PFTrDA), short- and long-chain PFSAs (PFBS, PFHxS, and PFOS) and one precursor (6:2 FTSA) were detected in OW test aquaria. PFBA, PFPA, PFHxA, PFNA, PFDA, PFBS, PFHxS, and PFOS were also detected in OW control aquaria, at levels comparable to those observed in test aquaria. Concentrations were consistent throughout the replicates (test and control) (Table S5). The same compounds were observed in pore water, except PFDA and PFTrDA; PFHpA was also measured in this compartment. In PW samples from control aquaria, PFBA, PFPA, PFHxA, PFHpA, and PFHxS were detected at levels lower than PW from test aquaria \((n=3, \ p\text{-value}<0.001) \).

In sediment, short- (PFBA to PFHpA) and long-chain (PFOA to PFTeDA) PFCAs, PFOS, and two precursors (6:2 FTSA and FOSA) were detected > LQs and EtFOSAA were detected < LQs. Concentration of long-chain PFCAs were higher in sediment:
PFTrDA (2.54 ± 0.23 ng·g\(^{-1}\) dw), PFUnA (1.70 ± 0.22 ng·g\(^{-1}\) dw), PFDoA (1.54 ± 0.63 ng·g\(^{-1}\) dw), PFTeDA and PFDA (0.99 ± 0.58 ng·g\(^{-1}\) dw and 0.91 ± 0.43 ng·g\(^{-1}\) dw respectively), whereas PFOS was lower (0.26 ± 0.02 ng·g\(^{-1}\) dw). In sediment control samples, only PFPA and PFOA results were between LDs and LQs; the other compounds were <LDs.

The analysis of Tetramin\(^\circledast\) indicated the presence of 4 PFASs: PFNA (0.20 ± 0.05 ng·g\(^{-1}\) dw), PFUnA (0.34 ± 0.32 ng·g\(^{-1}\) dw), PFOS (1.43 ± 0.17 ng·g\(^{-1}\) dw), and FOSA (0.39 ± 0.03 ng·g\(^{-1}\) dw). The range of PFAS concentrations in chironomids at the end of E1 and E2 exposures are presented in Table 1, PFAS concentrations in chironomids control were <LDs.

3.2 Growth and accumulation kinetics

Survival throughout the experiments (E1 and E2) was greater than 80%. Chironomid weight was significantly different (\(p < 0.001\)) between growth in sediment (two at fourth instar larvae: 7.15 ± 0.60 mg) and in silica (5.84 ± 0.83 mg) at 11 days post-hatching (Fig. S3). However, no adverse effect of contaminated sediment on chironomid growth was observed. In addition, fourth instar larvae weight data (E2) fit an exponential growth curve well (\(R^2 = 0.999, p < 0.0001\)); growth rate (\(g\)) 0.0148 (± 0.0001).

The results indicated that C. riparius accumulated four long-chain PFCAs (> 10 carbons: PFUnA, PFTrDA, PFDoA, and PFTeDA), PFOS, one precursor (FOSA), and one fluorotelomer (6:2 FTSA); the other compounds were all <LDs (Fig. 2). Fourth instar chironomid larvae accumulated PFASs as early as the second day of exposure and a steady state was observed at the end of exposure for most of the accumulated compounds, except for PFTeDA (LD < PFTeDA concentration < LQ) and perhaps for
FTSA. No differences in accumulation were observed between organisms exposed only at the fourth instar and those exposed from the second to the fourth instar (Fig. 3, Table 1).

The chironomids were not depurated before PFAS analyses; therefore the gut content estimation was based on Brooke et al. (1996). According to this calculation there was no difference in PFAS concentrations between chironomids in which gut content was or was not estimated. Therefore, the data without gut content correction were kept for further interpretation.

The biota-to-sediment accumulation factor (BSAF) between organisms was calculated according to (Higgins et al., 2007):

$$\text{BSAF}_{ww} = \frac{C_{\text{org}}}{C_{\text{sed,oc}}} \quad \text{Eq. (2)}$$

where C_{org} (ng.g$^{-1}$ ww) is the PFAS concentration in the organism (at steady state) and $C_{\text{sed,oc}}$ (ng.g$^{-1}$ dw) is the PFAS concentration in sediment normalized by the organic carbon content (Table 2).

3.3 Isotopic analysis

δ^{13}C signatures of -27.57 ± 0.005‰ and -23.11‰ and δ^{15}N signatures of 4.12 ± 0.64‰ and 7.58‰ were found in sediment and chironomid food (Tetramin®) respectively. No differences were observed between depurated or non-depurated chironomids: the δ^{13}C signature was -20.37 ± 0.42‰ and the δ^{15}N signature 11.61 ± 0.80‰ (Fig. S4).

4. Discussion

4.1 PFAS distribution in water, sediment, food, and C. riparius

The sediment from the study site was characterized by high concentrations of PFNA, PFUnA, and PFTrDA, whereas PFOS concentrations remained low as compared
with the data reported in the literature (Table S6). This pattern of PFAS contamination may be characteristic of the upstream industrial discharge from a fluoropolymer and polyvinylidene fluoride facility (Dauchy et al., 2012). In most published studies from other sites, PFUnA and PFDA were usually below 1 ng.g\(^{-1}\)dw (Clara et al., 2009; Higgins et al., 2005; Higgins et al., 2007; Labadie and Chevreuil, 2011), except for the Coosa River in Alabama (3.80 ng.g\(^{-1}\)dw) and Tennessee, USA (4.66 ng.g\(^{-1}\)dw) (Lasier et al., 2011). Detection of other long-chain PFCAs was scarce: a maximum value of 1.19 ng.g\(^{-1}\)dw for PFTrDA was reported in Tokyo Bay, Japan (Zushi et al., 2010), and PFDoA and PFTeDA values were below 1 ng.g\(^{-1}\)dw in the Orge River (near Paris, France) (Labadie and Chevreuil, 2011), whereas in the Coosa River, USA, concentrations above 1 ng.g\(^{-1}\)dw (1.7 and 4.64 ng.g\(^{-1}\)dw respectively) were found (Lasier et al., 2011). For PFOS, BER sediment concentrations (0.247 - 0.294 ng.g\(^{-1}\)dw) were in the same range as reported in other studies around the world (Table S6) (Bao et al., 2009; Benskin et al., 2012; Nakata et al., 2006) and lower than PFOS levels in the Orge River (France), Coosa River (USA), Sydney Harbor (Australia), and the North and Baltic Seas (Labadie and Chevreuil, 2011; Lasier et al., 2011; Theobald et al., 2012; Thompson et al., 2011).

Comparison of the respective concentration ranges for the PFASs measured in control and test aquaria make it possible to design a conceptual diagram of PFASs transport between compartments (Fig. 4). Since PFBA, PFPA, PFHxA, PFNA, PFDA, PFBS, and PFHxS display the same concentrations on overlying waters in control and test aquaria, we inferred that sediment is not a source for these compounds to water. Conversely, PFUnA, PFTrDA, and 6:2 FTSA, which were present only in OW test aquaria and therefore were clearly released from the sediment. Similarly, PFBA, PFPA,
PFHxA, PFOA, PFNA, PFUnA, PFOS, and 6:2 FTSA associated with test sediments were in much higher concentrations in PW from test aquaria than in PW from controls. Therefore, their presence in PW cannot be related to OW. PFNA and PFOS were measured in both food (Tetramin®) and OW controls aquaria. As a consequence, it could not be exclude that PFNA and PFOS in Tetramin® were dissolved into OW. However, all the PFASs measured were <LD in control chironomids; therefore Tetramin® is not a source of PFASs. PFUnA, PFOS, and 6:2 FTSA were present in sediment, PW, and chironomids: both PW (respiration) and sediment (food) contribute to the contamination. Conversely, PFDoA, PFTrDA, PFTeDA, and FOSA present only in sediment and chironomids contributed to the contamination by the ingestion of sediment particles.

4.2 PFASs in benthic invertebrates

Chironomids bioaccumulated four PFCAs, one PFSA (PFOS), and two PFASs precursors. Among these, 6:2 FTSA was found to bioaccumulate poorly in fish and rats (DuPont, 2008). Reported concentrations were generally higher for benthic invertebrates than chironomids, especially for PFOS; ranges of PFOS in Capitellidae and Nereidae were 0.82 -12.6 ng.g⁻¹ww and 0.26 - 0.67 ng.g⁻¹ww (Loi et al., 2011). Mean PFAS concentrations reported for lugworm were 0.41 ng.g⁻¹ww (Nakata et al., 2006) and 280 ± 33 ng.g⁻¹ww for Diporeia hoyi (Martin et al., 2004). The latter study also reported that concentrations of PFUnA, PFDoA, PFTrDA, and PFTeDA were higher in Diporeia hoyi than in chironomids (Martin et al., 2004). In Nereidae and Capillidae worms, concentrations of PFUnA were lower than in chironomids (Loi et al., 2011). Compared to chironomids from the present study, lower concentrations were also reported for PFDoA in Capillidae (Loi et al., 2011), for PFOS in clams (Nakata et al.,
2006; Nania et al., 2009), for FOSA in clams and lugworms (Nakata et al., 2006), and
for PFTeDA in Nereidae worms (Loi et al., 2011). However, comparisons between
freshwater and marine organisms should be interpreted with caution because salt may
affect the chemical activity (Jeon et al., 2010a; Jeon et al., 2010b).

4.3 Accumulation kinetics

The biota-to-sediment accumulation factors (BSAFs; Eq. 2) indicated values for
FOSA > PFTrDA > PFOS > PFUnA > 6:2 FTSA > PFTeDA > PFDoA, and no trend
was observed between BSAF and PFAS chain length. In contrast, Higgins et al. (2007)
observed that BSAF values tended to decrease with increasing chain length and Lasier
et al. (2011) reported that BSAF values increased with increasing chain length. BSAF
values in the present study were lower than BSAFs reported by Higgins et al. (2007)
and Lasier et al. (2011) (e.g., PFUnA BSAF_{ww} chironomid = 0.020; BSAF_{ww} = 0.44 ±
0.11; BSAF_{ww} = 0.29, CV = 40, respectively). This might be explained by the fact to the
food added during the present experiment, in contrast to the absence of feeding in
previous studies (Higgins et al., 2007 and Lasier et al., 2011). Adding food may
decrease the exposure and dilute the contamination because without this addition the
chironomids would have fed only on sediment organic matter. Our experiment was
conducted in this manner because preliminary trials showed that survival rates were too
low when no food was added to the aquaria.

In the Higgins et al. (2007) study, Lumbriculus variegatus reached steady state
for PFOA and PFDS but not for PFNA, PFOS, PFDA, PFUnA, and PFDoA. In this
experiment C. riparius reached a steady state both for PFCAs > C_{11} (PFUnA, PFDoA,
PFTrDA) and PFOS and FOSA. However, in Lasier et al. (2011), L. variegatus
accumulated other compounds that were not accumulated by chironomids such as
PFHpA, PFOA, PFNA, and PFDA, although they were measured in sediment. This could be explained by the difference in feeding habits between the two organisms (Nogaro et al., 2009). In addition, chironomid growth during the accumulation phase is not negligible, unlike for *L. variegatus*, which lost weight (because it went unfed), as growth dilutes contamination. PFAS accumulation in chironomids was as effective when exposure started at 2nd instar as when it started at 4th instar. PFASs concentrations were the same between the end of E1 and E2 exposures (Table 1, Fig. 3). At the latter stage, growth is more rapid than at previous stages (Péry et al., 2002). These results suggest that the sole use of the 4th instar in could be included in the design of future experimental studies with this organism.

For PFTrDA, PFUnA, PFOS, and FOSA, accumulation data obtained in the present study fit an exponential rise model well (Eq. 1), with R² values ranging from 0.99 (PFOS) to 0.97 (PFUnA). Equation (1) supports either a classical two-compartment partition model (Higgins et al., 2007; Landrum, 1989) or a more sophisticated adsorption-like accumulation model (Liu et al., 2011). Model parameter *a* is related to the exposure concentration (*C*_{sed-oc}) and uptake and depuration rates (*k*_u and *k*_e respectively).

Model parameter *b* is related to the elimination rate (*k*_e). As chironomids grow during the experiment, the elimination rate (*k*_{e'}) should be corrected according to Eq. (3) (Spacie and Hamelink, 1985),

\[k_e' = k_e + g \quad \text{Eq. (3)} \]

The complete two-compartment model includes a *λ* term in order to account for the chemical concentration decline in sediment. This term is set to 1, as in eq. 1, when sediment concentrations do not vary significantly during the experiment (that is, if the
flux from sediment to organisms is much lower than the overall compound mass in
sediment). This was the case in the current experiment (Table S5). In this case, equation
(1) can be solved easily, with b being the apparent elimination rate (k_e in h$^{-1}$), and

$$a = \frac{k_u}{k_e} C_{\text{sed-oc}}$$ \text{eq. (4)}

with k_u the uptake rate (g$_{\text{oc}}$.g$_{\text{ww}}$.h$^{-1}$) and $C_{\text{sed-oc}}$ the concentration in sediment normalized
to the organic carbon content (ng.g$_{\text{oc}}^{-1}$).

Applying this approach, yields (k_u, k_e, and k_e') were obtained for PFTrDA, PFUnA,
PFOS, and FOSA (Table 3). These data are only informative because no depuration
data were available.

The adsorption-like model (Liu et al., 2011) was developed initially for an uptake
experiment from water. We assumed that it could also apply to accumulation from
sediment and food as in our study. Nevertheless, it cannot be solved without depuration
data because three variables are included in the terms a and b instead of two as in the
two-compartment model:

$$a = \frac{n k_u C_{\text{sed}}}{k_u C_{\text{sed}} + k_e}$$ \text{Eq. (5)}

$$b = k_u C_{\text{sed}} + k_e$$ \text{Eq. (6)}

where n is the number of adsorption sites.

4.4 Contamination routes

All compounds accumulated by the chironomids were detected in sediment. PFUnA,
PFOS, and 6:2 FTSA were also quantified in both pore and overlying water and
PFTrDA was detected in overlying water. In addition, some compounds, such as
PFUnA, PFOS, and FOSA, were found in food added (Tetramin®) to chironomids,
which did not affect accumulation in chironomids (i.e., the balance between
accumulation and depuration) because these compounds were not detected in control chironomids (PFAS concentrations <LDs).

These results therefore suggest that there are two contamination routes for the PFASs, which differ according to the compounds. The contamination routes for substances found in both pore water and sediment (particles) were via food and tegument. For other compounds, found only in sediment, the contamination route was only trophic.

These observations are supported by the growth data: larvae grew more in test sediments than in the control setting, although they received the same quantity of Tetramin®. These results indicate that larvae fed on organic carbon from the sediment and thus may have absorbed the PFAS associated with particles. On the other hand, the chironomid δ^{13}C values were almost identical in test and control organisms, suggesting that the proportion of C obtained by the larvae from the sediment was limited. This is consistent with the findings reported by Goedkoop et al. (2006), which showed that about 90% of the carbon intake was from added food. However, both δ^{13}C and δ^{15}N values for Tetramin® were mean values because Tetramin® is a mixture of animal (fish, crustaceans, mollusks) and plant (cereals) ingredients, each having its own isotopic composition. Chironomids may feed selectively on certain components of the added food (Goedkoop et al., 2006). Therefore, the observed chironomid δ^{13}C signature may be influenced by sediment organic carbon.

5. Conclusion

Results from this study indicate that *C. riparius* accumulated four long-chain perfluoroalkyl carboxylates (PFUnA, PFDoA, PFTrDA, and PFTeDA), a perfluoroalkyl sulfonate (PFOS), a precursor (FOSA), and a fluorotelomer (6:2 FTSA) from sediment.
No short-chain PFAS, detected mostly in water, were accumulated by chironomids. No trends were observed for BSAFs, in contrast to studies by Higgins et al. (2007) and Lasier et al. (2011). The contamination pathways appeared to be trophic (sediment particles) and tegumentary (pore water) for PFUnA, PFOS, and 6:2 FTSA and only via the trophic pathway for the other compounds. Growth data support the trophic contamination route but isotopic data are difficult to interpret because of food added during the experiments. PFUnA, PFTrDA, and PFOS data fit an exponential rise model; apparent uptake and elimination constants can thus be proposed on the basis of the classical partition model (Landrum, 1989; Spacie and Hamelink, 1985). Elimination experiments should be conducted to determine the elimination kinetics experimentally in this species.

Acknowledgments

This study was funded by the Rhone-Mediterranean and Corsica Water Agency and the Rhone-Alpes Region within the Rhone ecological restoration plan. We thank Bernard Motte (IRSTEA), Raphael Barlon, and the Centre d’Observation de l’Ile du Beurre team (Condrieu, France) for their assistance during the sampling campaigns and chemical laboratory analysis (UR MALY, IRSTEA Lyon-Villeurbanne) for monitoring the physicochemical characterization of sediment, and Linda Northrup for copyediting the text as well as two anonymous reviewers for their constructive remarks.

References

perfluoroalkyl substances (PFASs) in Lake Ontario, Canada. Environment International 44, 92-99.

Table 1: PFAS concentrations in chironomids at the end of E1 and E2 exposures (ng·g⁻¹ ww). E1 with standard deviation (n = 3) and E2 with analytical error calculation relative to spiked samples (Table S3). PFTeDA “trace” means that concentrations were between LD and LQ.

Table 2: BSAF ww (g oc·g ww⁻¹) for chironomids and for Lumbricus variegatus (Higgins et al., 2007; Lasier et al., 2011); n.d, not detected, *PFTeDA, as guidelines only (because LD < PFTeDA concentrations in chironomids < LQ).

Table 3: Model parameters with (kₑ') and without growth correction (kₐ, kₑ)

Figure 1: Study site of the Rhône River, France. BER = Beurre Island, Plant = PFAS production plant. The river runs from north to south.

Figure 2: Kinetics of PFASs accumulation in fourth instar larvae of C. riparius, in the E2 experiment. Left, PFSAs; right, PFCAs (PFTeDA concentrations were between LD and LQ). Error bars represent the analytical error estimated from the relative standard deviation of triplicate recovery rate tests performed on spiked samples (Table S3).

Figure 3: PFCA accumulation in E1 (left, LD < PFTeDA concentrations < LQ) and E2 (right) experiments. Error bars represent the analytical error estimated from the relative standard deviation of triplicate recovery rate tests performed on spiked samples (Table S3); on the right graph they represent the standard deviation between three replicates (n = 3).
Figure 4: Partitioning between different compartments: green represents PFASs in food or from a food source, and brown, in the same manner, for sediment. For chironomids, the blue frames represent both sediment (brown) and pore water (blue) sources for PFASs.
Table 1: PFAS concentrations in chironomids at the end of E1 and E2 exposures

<table>
<thead>
<tr>
<th>Compounds</th>
<th>PFASs in chironomids at the end of E1 (ng.g(^{-1}) ww)</th>
<th>PFASs in chironomids at the end of E2 (ng.g(^{-1}) ww)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFUnA</td>
<td>0.79 ± 0.10</td>
<td>0.80 ± 0.08</td>
</tr>
<tr>
<td>PFDoA</td>
<td>0.11 ± 0.01</td>
<td>0.14 ± 0.01</td>
</tr>
<tr>
<td>PFTrDA</td>
<td>1.71 ± 0.42</td>
<td>2.42 ± 0.17</td>
</tr>
<tr>
<td>PFTeDA</td>
<td>0.05 ± 0.001</td>
<td>0.08 ± 0.02</td>
</tr>
<tr>
<td>PFOS</td>
<td>0.16 ± 0.02</td>
<td>0.13 ± 0.02</td>
</tr>
<tr>
<td>FOSA</td>
<td>0.05 ± 0.01</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td>6:2 FTSA</td>
<td>0.07 ± 0.03</td>
<td>0.08 ± 0.005</td>
</tr>
</tbody>
</table>
Table 2: BSAF_{ww} (g_{oc}-g_{ww}-1)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Fluorinated carbon number</th>
<th>BSAF<sub>ww</sub> chironomid</th>
<th>BSAF<sub>ww</sub> Higgins et al., 2007</th>
<th>BSAF<sub>ww</sub> Lasier et al., 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFUnA</td>
<td>10</td>
<td>0.020</td>
<td>0.44 ± 0.11</td>
<td>0.29, CV= 40</td>
</tr>
<tr>
<td>PFDoA</td>
<td>11</td>
<td>0.004</td>
<td>0.45 ± 0.08</td>
<td>0.34, CV=40</td>
</tr>
<tr>
<td>PFTrDA</td>
<td>12</td>
<td>0.042</td>
<td>n.d</td>
<td>0.62, CV=44</td>
</tr>
<tr>
<td>PFTeDA*</td>
<td>13</td>
<td>0.004</td>
<td>n.d</td>
<td>0.63, CV=47</td>
</tr>
<tr>
<td>PFOS</td>
<td>8</td>
<td>0.023</td>
<td>0.83 ± 0.20</td>
<td>0.49, CV=50</td>
</tr>
<tr>
<td>6:2 FTSA</td>
<td>6</td>
<td>0.018</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>FOSA</td>
<td>8</td>
<td>0.098</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>Compounds</td>
<td>a</td>
<td>ku</td>
<td>ke' (b)</td>
<td>ke</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>PFUnA</td>
<td>0.83 ± 0.03</td>
<td>0.0009</td>
<td>0.04 ± 0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>PFTrDA</td>
<td>2.56 ± 0.11</td>
<td>0.0015</td>
<td>0.03 ± 0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>PFOS</td>
<td>0.14 ± 0.008</td>
<td>0.0009</td>
<td>0.04 ± 0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>FOSA</td>
<td>0.06 ± 0.01</td>
<td>0.0022</td>
<td>0.02 ± 0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Figure 1: Study site
Figure 2: Kinetics of PFAS accumulation in fourth instar larvae of *Chironomus riparius*.

![Graph showing PFAS accumulation over time](image-url)
Figure 3: PFCA accumulation in E1 (left) and E2 (right) experiments.
Figure 4: Partition between different compartments

Food
PFNA PFOS
PFUnA FOSA

Overlying water
PFNA PFOS
PFCAs (C₆-C₁₁ + C₁₃) 6:2 FTSA
PFOS

Sediment
PFCAs (C₄-C₁₄) 6:2 FTSA
PFOS EtiFOSAA
FOSA

Chironomid
PFUnA PFDoA PFTrDA PFTeDA
PFOS 6:2 FTSA FOSA

Pore water
PFBA PFOA 6:2 FTSA
PFPA PFNA
PFHxA PFUnA
PFHpA PFOS