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SUMMARY

This paper presents an Adaptive Polytopic Observer (APO) design in order to develop an actuator fault
estimation method dedicated to polytopic Linear ParameterVarying (LPV) descriptor systems. This paper
extends a Fault Diagnosis (FD) method developed for regularLTI systems to polytopic LPV descriptor
systems. Here, time-varying actuator faults are also considered whereas in many papers actuator faults are
generally assumed to be constant. The design and convergence conditions of this APO are provided. The
design is formulated through Linear Matrix Inequalities (LMI) techniques under equality constraints. The
performances of the proposed actuator fault estimation scheme are illustrated using an electrical circuit.
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1. INTRODUCTION

During the last three decades, both theoretical and experimental researches on fault detection have
been intensively developed. For obvious economical reasons, systems in the real world have to
work perfectly at all time under all conditions. That’s why it is crucial to be able to detect and
identify the possible faults that may affect a system as early as possible in order to prevent significant
performance degradations or damages of the system [6], [34]. Fault Detection and Diagnosis (FDD)
has been well studied for physical plants which were modeledby T-S fuzzy models. Recently Such
efforts studded by Jiang B. et al. [17], have led to the development of a method for integrated robust
fault estimation and accommodation for a class of discrete-time nonlinear systems described by a
T-S fuzzy model. Also, dynamic output feedback fault-tolerant controllers have been developed by
Zhang K. et al. [31] for T-S fuzzy systems with actuator faults in which a fuzzy augmented fault
observer is proposed to yield fault estimates and, based on the information of on-line fault estimates,
observer based output feedback fault-tolerant controllers are designed. Nevertheless for nonlinear
systems it still remain a challenge [22].

By the way, some techniques have been developed to approximate nonlinear systems by Linear
Parameter Varying (LPV) models that can be used efficiently to represent nonlinear systems as
in [4], [25] for a winding machine, [26] for a twin rotor system. These methods allow to apply
powerful linear design tools to complex nonlinear models. Based on this LPV representation
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2 RODRIGUES. ET.AL

of nonlinear systems, some researchers from the FDI community have developed model-based
methods using LPV ordinary models as in [2], [5], and [11]. Similar result is found in [29] for
linear parameter-varying (LPV) systems the presented method is based on multi-objectiveH−/H∞

fault detection observer design. LPV sliding mode observers have been largely introduced by [1]
so as to reconstruct the states of the system. A particular class of LPV systems is the polytopic
LPV form which allows to describe the system as a convex combination of sub-models defined by
the vertices of a convex polytope [13], [15], [12]. These sub-models are then combined by convex
weighting functions that yield to a global model.

Generally speaking, most of control and fault diagnosis methods for physical systems, use normal
(or regular) models i.e. there is no algebraic relations between the system variables. However,
Differential-Algebraic Equations (DAE) or implicit systems or singular systems or descriptor
systems are of quite importance for the physical representation of some systems [20], [10]. Such
systems appear for example in electrical circuits, mechanical systems with holonomic or non
holonomic constraints, robotic systems with kinematical constraints and chemical systems [21].
Some practical problems must take into account physical constraints or algebraic relations and more
generally impulsive behaviors caused by an improper transfer matrix: see the following books on
singular systems [8], [9].

Various observer-based fault diagnosis methods for descriptor systems have been proposed but
generally for Linear Time Invariant models [27]. The author in [19] studies an observer coming from
a continuous nonlinear descriptor systems via a convex optimization. Recently, a fault diagnosis
method to detect and estimate actuator faults for multi-models descriptor systems represented by
using unknown input observers [15]. Therefore, in [3] the authors have presented a method of
fault estimation for a particular class of discrete-time LPV descriptor systems. The authors in
[16] and [14], have proposed a polytopic unknown inputs and proportional integral observers for
LPV descriptor systems respectively. These observers are used to detect and isolate actuator faults.
However, all these observers can only estimate constant faults which is a restrictive condition.

In order to estimate both constant and time varying faults, an Adaptive Polytopic Observer is
proposed in this paper. In many applications where the parameters are unknown and states are not
accessible, adaptive observer appears to be a valuable method in estimation of both parameters and
states of the system. In [28] the authors have presented an adaptive fault diagnosis observer approach
dedicated to regular LTI systems which can detect and estimate constant faults. In [32], the authors
have designed an adaptive observer so as to estimate time-varying faults but only for regular LTI
systems.

Thus, this paper proposes an Adaptive Polytopic Observer (APO) for a class of LPV descriptor
systems. Fault Diagnosis for descriptor LPV system still remains a challenge and as far as
authors knows there are very few papers for such systems thatconsider time-varying actuator fault
estimation under disturbances. In literature, most of fault diagnosis approaches are designed only
for regular systems and not for descriptor systems. To tackle such problem, the entire development
of this paper is a real contribution for descriptor LPV systems with significant new results in terms
of time-varying fault estimation in spite of disturbances.Both methods presented in [14] or in [3]
can only estimate constant fault for descriptor LPV Systems; the real novelty in the paper consists
in the ability of the approach to estimate time-varying actuator fault despite disturbances which is
a real huge problem and a key problem to solve for some potential extensions to Fault Tolerant
Control.

In comparison with the polytopic LPV proportional integralobserver studied in [14] which can
only estimate constant actuator fault, the main goals of this paper are: to extend existing results about
fault estimation of LTI regular systems to polytopic LPV descriptor systems, and also to consider
time-varying actuator faults estimation. Sufficient convergence conditions for the APO are given by
solving a set of Linear matrix inequalities (LMI).

The outline of this paper is as follows. The structure of the LPV descriptor systems is formulated
in Section 2. The Adaptive Polytopic Observer-based actuator fault estimation is presented in
Section 3. Finally, in Section 4, a numerical example that considers a LPV descriptor systems is
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ADAPTIVE POLYTOPIC OBSERVER FOR A CLASS OF LPV DESCRIPTOR SYSTEMS 3

used to assess the validity of the proposed approach.

In this paper, the notations are standard.R denotes the set of real numbers,C is the complex
plane,A+ denotes the generalized inverse of A;Q > 0 or (Q < 0) indicates the symmetric matrix
Q is positive (or negative) definite;‖ . ‖ denotes the standard norm symbol. Also,∀ means ”for all”.
An asterisk∗ denotes the transposed element in the symmetric position.

2. PROBLEM STATEMENT

Let us consider the following LPV descriptor system in fault-free case subject to disturbance:
{

Eẋ(t) = Ã(θ(t))x(t) + B̃(θ(t))(u(t) + f(t)) + R̃(θ(t))d(t)
y(t) = Cx(t) +Hd(t)

(1)

wherex(t) ∈ R
n is the state vector,u(t) ∈ R

p is the inputs vector,d(t) ∈ R
q is a bounded unknown

input vector i.e.,‖d(t)‖ ≤ β which represents disturbances andy(t) ∈ R
m represents the measured

outputs vector.f(t) ∈ R
p represents the actuator fault vector by an additive external signal as in

[6], [14]. Sometimes in FDI, these malfunctions can also be represented by a multiplicative external
signal as in [33], [24] by the following faulty control inputuf (t) = (Ip − γ)u(t) which is equivalent
to an additive signal such that:u(t) + f(t) wheref(t) = −γu(t) with

γ , diag[γ1, γ2, . . . , γp], 0 ≤ γk ≤ 1 such that
{

γk = 1 → a total failure of thekth actuatork ∈ [1, . . . , p]
γk = 0 → thekth healthy actuator

(2)

where the termγk represents the loss of effectiveness ofkth actuator. Disturbances and faults are
supposed to be unknown. MatrixE ∈ R

n×n may be singular andrank(E) = r < n. Ã(·), B̃(·)

and R̃(·) are continuous functions which depend affinely on the time-varying parameter vector
θ(t) ∈ R

l. MatricesC andH are fixed. It is also assumed that each componentθi(t), i ∈ [1, . . . , l]
of this time-varying parameter vectorθ(t) is bounded and lies into a hypercube such that [30]:

θ(t) ∈ Υ = {θi | θi(t) ≤ θi(t) ≤ θi(t)}, ∀i ∈ [1, . . . , l], ∀t ≥ 0 (3)

The matricesÃ(θ(t)), B̃(θ(t)), R̃(θ(t)) of the LPV descriptor system (1) with the affine parameter
dependence (3) are represented such that∀θ(t) ∈ Υ:

M̃(θ(t)) = M̃0 +

l∑

i=1

θi(t)M̃i (4)

where M̃ stands for matrices̃A, B̃ and R̃. The system (1) can be transformed into a convex
interpolation of the vertices ofΥ where the verticesSi of the polytope are defined such that
[23]: Si =

[
Ai, Bi, Ri, C, H

]
, ∀i ∈ [1, . . . , h] whereh = 2l. The polytopic coordinates

are denotedρ(θ(t)) and vary into the convex setΩ:

Ω =
{
ρ(θ(t)) ∈ R

h, ρ(θ(t)) = [ρ1(θ(t)), ..., ρh(θ(t))]
T
, ρi(θ(t)) ≥ 0, ∀ i,

h∑
i=1

ρi(θ(t)) = 1

}
(5)

Then, the usual assumptions related to LPV systems are:ρ(θ(t)) is bounded, it is assumed to be
fault-free and it is available. To ease the presentation, itis assumed that the matrices̃A(·), B̃(·) and
R̃(·) are given by convex combinations∀t ≥ 0 and the polytopic LPV descriptor system with the
time-varying parameter vectorρ(θ(t)) ∈ Ω given by:





Eẋ(t) =
h∑

i=1

ρi(θ(t))(Aix(t)+Biu(t)+Fif(t)+Rid(t))

y(t) = Cx(t) +Hd(t)

(6)
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4 RODRIGUES. ET.AL

whereAi ∈ R
n×n, Bi = Fi ∈ R

n×p, Ri ∈ R
n×q, C ∈ R

m×n andH ∈ R
m×q are time invariant

matrices defined for theith model.
Before starting the design of the APO, we assume that:

A1. rank(CFi) = rank(Fi) = p ∀i = [1, . . . , h]

A2. The triple matrix(E,Ai, C) is observable, i.e. [8], [9]

rank

[
sE −Ai

C

]
= n, ∀s ∈ C, ∀i = [1, . . . , h] (7)

and

rank

[
E

C

]
= n (8)

A3. The faultf(t) satisfies‖f(t)‖ ≤ α1 and the derivative off(t) with respect to time is norm
bounded i.e.

∥∥ḟ(t)
∥∥ ≤ α2 and0 ≤ α1, α2 < ∞.

A4. p+ q ≤ m

A5. rank

[
E 0
C H

]
= n+ rank(H)

Note thatA3 is a quite general assumption in the literature [6], [18]. AssumptionA4 has to be
verified to be able to provide actuator fault estimation.
The main goal of the paper is to estimate time-varying actuator fault for polytopic LPV descriptor
systems. In [32], the authors have performed an adaptive observer so as to estimate time-varying
faults but only for regular LTI systems. The authors in [14] have developed a proportional integral
observer for actuator fault estimation but with the following constraintḟ(t) = 0. Moreover, the same
constraint has been considered in [3] for discrete-time descriptor systems where the main goal was
also to estimate faults. So, in this paper, the main contribution consists in designing an Adaptive
Polytopic Observer for LPV descriptor systems which is ableto deal with time-varying actuator
faults and by the way to tackle the previous restrictive constraints of the above mentioned papers.
The following section is dedicated to the design of the Adaptive Polytopic Observer.

3. ACTUATOR FAULT ESTIMATION FOR POLYTOPIC LPV DESCRIPTOR SYSTEM

3.1. Adaptive Polytopic Observer Design

The proposed Adaptive Polytopic Observer (APO) has the following structure:





ż(t) =
h∑

i=1

ρi(θ(t))(Niz(t) +Giu(t) + Liy(t) + Fif̂(t))

x̂(t) = z(t) + T2y(t)
ŷ(t) = Cx̂(t)
r(t) = S(y(t)− ŷ(t))

˙̂
f(t) = Γ

h∑
i=1

ρi(θ(t))Ui(ṙ(t) + σr(t))

(9)

wherez(t) ∈ R
n is the observer state vector,x̂(t) ∈ R

n is the estimated state vector,r(t) ∈ R
m

is the residual vector,̂y(t) ∈ R
n is the estimated output vector and̂f(t) ∈ R

p is the estimated
actuator fault off(t). Ni, Gi, Li, T2, Ui, S are unknown matrices of appropriate dimensions to be
determined,Γ ∈ R

p×p is a learning rate symmetric positive definite matrix andσ ∈ R is a positive
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ADAPTIVE POLYTOPIC OBSERVER FOR A CLASS OF LPV DESCRIPTOR SYSTEMS 5

scalar. The state estimation errore(t) is defined as:

e(t) = x(t) − x̂(t)

Then, it follows from (6) and (9) that:

e(t) = (In − T2C)x(t) − z(t)− T2Hd(t) (10)

Under assumption thatrank

[
E

C

]
= n, there exists nonsingular matricesT1 ∈ R

n×n andT2 ∈

R
n×m such that [10]:

T1E + T2C = In (11)

Furthermore, the fault estimation erroref (t) can be expressed as:

ef (t) = f(t)− f̂(t) (12)

From (10), the state estimation error dynamic with the relation (11) is given by:

ė(t) = T1Eẋ(t)− ż(t)− T2Hḋ(t) (13)

Using (6) and (9), the residualr(t) can be expressed as:

r(t) = SCe(t) + SHd(t) (14)

Then, if the following conditions hold true∀ i = 1, ..., h:

T1Ai − LiC −NiT1E = 0 (15)

T1Bi −Gi = 0 (16)

T1E = In − T2C (17)

T1Ri +NiT2H − LiH = 0 (18)

T2H = 0 (19)

SH = 0 (20)

By taking into account (6), (9) and (13), the estimation error dynamiċe(t) and the residualr(t) can
be written such that:

ė(t) =

h∑

i=1

ρi(θ(t))[Nie(t) +Mif(t) + Fief (t)] (21)

r(t) = SCe(t) (22)

with Mi = (T1 − In)Fi (23)

The substitution of (17) into (15) yields to:

Ni = T1Ai + (NiT2 − Li)C (24)

Ni = T1Ai +KiC (25)

where Ki = NiT2 − Li (26)

To find simultaneously matricesT1 and T2 from equations (17) and (19), one can define the
following augmented matrix:

[
T1 T2

] [ E 0
C H

]
=

[
In 0

]
(27)

Int. J. Robust. Nonlinear Control(2014)
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6 RODRIGUES. ET.AL

Under assumptionA5 , [19], the solution of (27) can be expressed such that:

[
T1 T2

]
=

[
In 0

] [ E 0
C H

]+
(28)

Matrix S can be determined by solving equation (20) by considering assumptionA4 i.e. the number
of disturbances and faults can not be larger than the number of measurements, a general solution
for (20) is given by (See Chapter 4 of [6]):

S = Π1[Im −H(HTH)−1HT ] (29)

whereΠ1 ∈ R
m×m is an arbitrary design matrix.

3.2. Convergence analysis

Let us consider the following Lemma:

Lemma 1
Given a scalarµ > 0 and a symmetric positive definite matrixP1, the following inequality holds
[32]:

2xT y ≤
1

µ
xTP1x+ µyTP−1

1 y x, y ∈ R
n (30)

�

In contrast to the proportional integral observer [14], here time-varying faults are considered. Then,
it follows that ḟ(t) 6= 0 and by consequence, the dynamic of fault estimation error isexpressed as
follows:

ėf (t) = ḟ(t)−
˙̂
f(t) (31)

By using (25), the dynamic of the state estimation error (21) becomes:

ė(t) =

h∑

i=1

ρi(θ(t))[(T1Ai +KiC)︸ ︷︷ ︸
Ni

e(t) +Mif(t) + Fief (t)] (32)

The convergence of the state estimation error (32) can be verified by the following Theorem.

Theorem 1
Under AssumptionsA1 to A5, given scalarsσ, µ > 0, if there exists symmetric positive definite
matricesQ, P1, P2, P3 and matricesWi = QKi andUi such that,∀ i ∈ [1, . . . , h]:

[
Ψi ∗

− 1
σ
FT
i (QT1Ai +WiC) − 2

σ
FT
i QFi +

1
σµ

P2 +
1
σµ

P3

]
< 0 (33)

s.t.

WiH +QT1Ri = 0 (34)

FT
i Q− UiSC = 0 (35)

where
Ψi = (T1Ai)

TQ+Q(T1Ai) +
1

µ
P1 + CTWT

i +WiC

Then, the following adaptive fault estimation algorithm

˙̂
f(t) = Γ

h∑

i=1

ρi(θ(t))Ui(ṙ(t) + σr(t)) (36)

can realizee(t) and ef (t) uniformly bounded, whereΓ ∈ R
p×p is a symmetric positive definite

learning rate matrix. �
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Proof 1
Consider the Lyapunov function with the following quadratic form:

V (e(t), ef (t)) = eT (t)Qe(t) +
1

σ
eTf (t)Γ

−1ef(t) (37)

Convergence condition for the estimation error yields thatthe time derivative of the Lyapunov
function (37) should be negative definite. The derivative ofV (e(t), ef (t)) with respect to time
evaluated on trajectories of the estimation error equation(21) is:

V̇ (e(t), ef (t)) =
h∑

i=1

ρi(θ(t))
{
eT (t)[NT

i Q+QNi]e(t) + 2eT (t)QMif(t)

+2eT (t)QFief (t) +
1
σ
ėTf (t)Γ

−1ef (t) +
1
σ
eTf (t)Γ

−1ėf(t)
} (38)

From (22) and (9), the equation (36) can be expressed as:

˙̂
f(t) = Γ

h∑

i=1

ρi(θ(t))UiS
(
ẏ(t)− ˙̂y(t) + σ(y(t)− ŷ(t))

)
(39)

and undere(t) = x(t) − x̂(t), (39) is equivalent to:

˙̂
f(t) = Γ

h∑

i=1

ρi(θ(t))UiSC
(
ė(t) + σe(t)

)
(40)

By using (31) and substituting (40) into equation (38), one can obtain:

V̇ (e(t), ef (t)) =
h∑

i=1

ρi(θ(t))
{
eT (t)[NT

i Q+QNi]e(t) + 2eT (t)QMif(t) + 2eT (t)QFief (t)

+ 1
σ
ėTf (t)Γ

−1ef(t) +
1
σ
eTf (t)Γ

−1[ḟ(t)− ΓUiSC(ė(t) + σe(t))]
}

(41)
Substituting (21) into (41) and using (35), it follows that:

V̇ (e(t), ef (t)) =
h∑

i=1

ρi(θ(t))
{
eT (t)[NT

i Q+QNi]e(t)−
2
σ
eTf (t)F

T
i QNie(t)−

2
σ
eTf (t)F

T
i QFief (t)

− 2
σ
eTf (t)F

T
i QMif(t) + 2eT (t)QMif(t) +

2
σ
eTf Γ

−1ḟ(t)
}

(42)
By taking into account assumptionA3, for a positive scalarµ and symmetric matricesP1 > 0,
P2 > 0 andP3 > 0 and by using Lemma1, we can obtain:

2eT (t)QMif(t) ≤
1
µ
eT (t)P1e(t) + µfT (t)MT

i QP−1
1 QMif(t)

≤ 1
µ
eT (t)P1e(t) + µα2

1λmax(M
T
i QTP−1

1 QMi)

2
σ
eTf (t)Γ

−1ḟ(t) ≤ 1
µσ

eTf (t)P2ef (t) +
µ
σ
ḟT (t)Γ−TP−1

2 Γ−1ḟ(t)

≤ 1
µσ

eTf (t)P2ef(t) +
µ
σ
α2
2λmax(Γ

−1P−1
2 Γ−1)

−2
σ
eTf (t)F

T
i QMif(t) ≤

1
µσ

eTf (t)P3ef(t) +
µ
σ
fT (t)MT

i QFiP
−1
3 FT

i QMif(t)

≤ 1
µσ

eTf (t)P3ef (t) + +µ
σ
α2
1λmax(M

T
i QTFiP

−1
3 FT

i QMi)

(43)

Using (43), the time derivative of (42) can be bounded as follows:

V̇ (e(t), ef (t)) ≤
h∑

i=1

ρi(θ(t))
{
eT (t)[NT

i Q+QNi]e(t) +
1
µ
eT (t)P1e(t)−

2
σ
eTf (t)F

T
i QNie(t)

− 2
σ
eTf (t)F

T
i QFief (t) +

1
σµ

eTf (t)P2ef (t) +
1
σµ

eTf (t)P3ef (t) + δ
}

(44)

Int. J. Robust. Nonlinear Control(2014)
Prepared usingrncauth.cls DOI: 10.1002/rnc



8 RODRIGUES. ET.AL

where
δ = max

i

[
µα2

1λmax(M
T
i QTP−1

1 QMi)+
µ
σ
α2
2λmax(Γ

−1P−1
2 Γ−1)+µ

σ
α2
1λmax(M

T
i QTFiP

−1
3 FT

i QMi)
]

Using (25) and forWi = QKi, the inequality (44) can be written as:

V̇ (e(t), ef (t)) ≤
h∑

i=1

ρi(θ(t)){
[
eT (t) eTf (t)

]
Ξi

[
e(t)
ef (t)

]
+ δ} (45)

with

Ξi =

[
Ψi ∗

− 1
σ
FT
i (QT1Ai +WiC) − 2

σ
FT
i QFi +

1
σµ

P2 +
1
σµ

P3

]

and
Ψi = (T1Ai)

TQ+Q(T1Ai) +
1

µ
P1 + CTWT

i +WiC

Considering that
h∑

i=1

ρi(θ(t)) = 1 andρi(θ(t)) ≥ 0 and becauseFi is of full column rank∀ i ∈

[1, ..., h] (see assumptionA1), whenΞi < 0 one can obtain that:

V̇ (e(t), ef (t)) ≤ −ε

∥∥∥∥
[

e(t)
ef (t)

]∥∥∥∥
2

+ δ (46)

whereε = min
i
(λmin(−Ξi)). Then,V̇ (e(t), ef (t)) < 0 for ε

∥∥∥∥
[

e(t)
ef (t)

]∥∥∥∥
2

> δ, ∀t ≥ 0 which means

thate(t), ef (t) converges to a small set according to Lyapunov stability theory. Now, the obtained
gains matricesKi must satisfied also the constraint (18) ∀ i ∈ [1, . . . , h]. Then, the equation (18) can
be written as follows:

(NiT2 − Li)H + T1Ri = 0 (47)

and under equation (25), it can be expressed as:

KiH + T1Ri = 0 (48)

ForKi = Q−1Wi ∀ i ∈ [1, . . . , h], equation (48) becomes:

WiH +QT1Ri = 0 (49)

Then, gains matricesKi will be obtained by solving LMIs (33) under constraints (34) and (35). ✷

Therefore, Theorem (1) implies that error(e(t), ef (t)) are uniformly bounded. Now, its easy to show
that the estimated fault can be deduced from the expression (36) as follows :

f̂(t) = Γ

h∑

i=1

ρi(θ(t))Ui


r(t) + σ

t∫

tf

r(τ)dτ


 (50)

wheretf is the time of fault occurring. The estimated fault expression (50) combines a proportional
term with an integral one. The proportional term have an influence on the rapidity of fault estimation
[32]. The proposed APO makes possible to reconstruct the state of the system whatever the presence
of the unknown inputs and actuator faults and generate a residual signal which can indicates that a
fault occurs.

Remark 1:It is easy to solve inequality (33) of Theorem 1, but the solving difficulty is added due
to the presence of equality constraints (34) and (35). However, it is possible to transform (34) and
(35) in Theorem 1 into the following optimization problem [7]:

Int. J. Robust. Nonlinear Control(2014)
Prepared usingrncauth.cls DOI: 10.1002/rnc



ADAPTIVE POLYTOPIC OBSERVER FOR A CLASS OF LPV DESCRIPTOR SYSTEMS 9

min η

subject to(33)
(51)

[
ηI WiH +QT1Ri

∗ ηI

]
< 0 (52)

[
ηI FT

i Q− UiSC

∗ ηI

]
< 0 (53)

Remark 2:Note that, after solving the LMI problem under equalities constraints given in Theorem
1, the input-to-state convergence condition given in (46) is satisfied. Thus, in the case of time-
varying faults with a bounded first time derivative, the state estimation errore(t) and the fault
estimation erroref (t) converge to a ball, centered at the origin, defined by the terms δ andε. The
radius of the ball in whiche(t) converges can be minimized by a choice of the parameterΓ that
minimizesδ without changingε (that does not depend onΓ). It thus improves the accuracy of the
estimation.

Moreover, the APO studied in this paper can be considered as an improvement of the classical PI
observer, in the sense that the convergence of the state estimation error and fault estimation error is
proved (in a ball centered at the origin) even in a nonconstant fault case, whereas the assumption
of a constant fault is needed to prove the convergence of the state estimation error when using a PI
observer [14], [3].

4. ILLUSTRATIVE EXAMPLE

The proposed example, considers an electrical network as shown in Figure (1) whereRj , j =
1, . . . , 8 andL1 andL2 stand for the resistors and inductors, respectively.e1(t) ande2(t) are the
voltage sources which are taken as the control inputs. We denote byi1(t), i2(t), i3(t) andi4(t) the
amperage of the currents.

L 1

L 2

R1 R2

R4R5
R3 e (t)2

e (t)1

R8

R7 R6

i (t)1 i (t)3

i (t)4 i (t)2

Figure 1. An electrical circuit
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According to the basic circuit theory and the Kirchoff’s laws, we get the following Differential-
Algebraic Equations (DAE) which describe the system:

L1
di1(t)
dt

= −(R1 +R3 +R5)i1(t) +R3i3(t) +R5i4(t)

L2
di2(t)
dt

= −(R4 +R6 +R7)i2(t) +R4i3(t) +R7i4(t)
0 = −(R2 +R3 +R4)i3(t) +R4i2(t) +R3i1(t) + e1(t)
0 = −(R5 +R7 +R8)i4(t) +R7i2(t) +R5i1(t) + e2(t)

y1(t) = i1(t) + i4(t)
y2(t) = i2(t) + i3(t)
y3(t) = i4(t)

Let denote [ x1(t) x2(t) x3(t) x4(t) ]
T
= [ i1(t) i2(t) i3(t) i4(t) ]

T the state vector,
u(t) = [e1(t) e2(t)]T the control inputs,y1(t), y2(t) and y3(t) the outputs signals,R1 andR6

two variable resistors. The previous set of DAE can be represented as a LPV descriptor systems as
follows: {

Eẋ(t) = Ã(θ(t))x(t) + B̃(θ(t))u(t) + R̃(θ(t))d(t) + F̃ (θ(t))f(t)
y(t) = Cx(t) +Hd(t)

(54)

The resulting matrices of the LPV descriptor system are given by:

E=




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


, B̃(θ(t))=B =




0 0
0 0
1 0
0 1


, F̃ (θ(t))= F=B,C =




1 0 0 1
0 1 1 0
0 0 0 1


 , H =




2
1
1




Ã(θ(t)) =




−R11+θ1(t)
L1

0 R13

L1

R14

L1

0 −R22+θ2(t)
L2

R23

L2

R24

L2

R31 R32 −R33 0
R41 R42 0 −R44


 and R̃(θ(t)) =




0
0

0.7 + θ1(t)
0.2 + θ2(t)




where
R11 = R1 +R3 +R5 = 15Ω, R22 = R4 +R6 +R7 = 40Ω,
R33 = R2 +R3 +R4 = 25Ω, R44 = R5 +R7 +R8 = 20Ω,
R13 = R31 = R3 = 3Ω, R14 = R41 = R5 = 2Ω,
R23 = R32 = R4 = 5Ω, R24 = R42 = R7 = 8Ω
and L1 = 0.3H, L2 = 0.65H.

R̃ is a disturbance distribution matrix that affects the system whered(t) is a random vector uniformly
distributed in[−1, 1] which acts like additive noise.H is also a disturbance distribution matrix
that affects the outputs.θ1(t) andθ2(t) are two time-varying parameters which vary according to
θ1(t) ∈

[
−0.5, 0.5

]
andθ2(t) ∈

[
−1, 1

]
. The inputs control are described by

{
u1(t) = 12 sin(2.5t)
u2(t) = 5

It is assumed that the LPV descriptor system (54) is affected by two actuator faults which followed
the assumptionA3 and that are defined by:

{
f1(t) = 0.35u1(t) occurs in u1(t) when 8 ≤ t ≤ 15s
f2(t) = 0.25u2(t) occurs in u2(t) when 20 ≤ t ≤ 30s

Note that different actuator fault can appear in voltage source: an offset for bias or temporal
variation for transient fault. Such fault can appear on realsource voltage with various temporal
duration and different shapes.

The parameters of the polytopic LPV descriptor system evolve in a hyper-rectangle.
Consequently, the matricesAi andRi of this system are given by:
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A1=




−51.66 0 10 6.66
0 −63.07 7.69 12.3
3 5 −25 0
2 8 0 −20


, A2=




−51.66 0 10 6.66
0 −60 7.69 12.3
3 5 −25 0
2 8 0 −20




A3=




−48.33 0 10 6.66
0 −63.07 7.69 12.3
3 5 −25 0
2 8 0 −20


, A4=




−48.33 0 10 6.66
0 −60 7.69 12.3
3 5 −25 0
2 8 0 −20




R1=




0
0
0.2
−0.8


, R2=




0
0
0.2
1.2


, R3=




0
0
1.2
−0.8


andR4=




0
0
1.2
1.2




The weighting functionsρi(θ(t)) are defined as combinations ofθj and are given by [14]:

ρ1(θ(t)) =
θ1(t)− θ1

θ1 − θ1

θ2(t)− θ2

θ2 − θ2
=

(θ1(t) + 0.5)(θ2(t) + 1)

2

ρ2(θ(t)) =
θ1(t)− θ1

θ1 − θ1

θ2 − θ2(t)

θ2 − θ2
=

(θ1(t) + 0.5)(1− θ2(t))

2

ρ3(θ(t)) =
θ1 − θ1(t)

θ1 − θ1

θ2(t)− θ2

θ2 − θ2
=

(0.5− θ1(t))(θ2(t) + 1)

2

ρ4(θ(t)) =
θ1 − θ1(t)

θ1 − θ1

θ2 − θ2(t)

θ2 − θ2
=

(0.5− θ1(t))(1 − θ2(t))

2

4.1. APO design and residual generation

To design the presented APO according to the proposed methodology, let’s verify a necessary
assumptionA4 to be able to provide actuator fault estimation with equation (50). After that, a
matrixS (solution of andSH = 0) can be given by (29). Then, let’s check the necessary assumption
A5. Then, matricesT1 andT2 can be computed from equation (28). After by checkingA1 and
A2, the gains matrices can be obtained by solving the LMIs (33) under constraints (34) and (35)
via numerical approach within the LMI Toolbox. By choosing the scalarsσ = 2, µ = 0.5, these
inequalities are fulfilled with:

K1 =




21.1564 −17.1376 −25.1753
−16.1420 −0.9267 33.2106
38.9566 −18.4702 −59.4431
23.4193 −16.5291 −30.3096


 , K2 =




1.7542 1.8862 −5.3945
−3.7885 13.0178 −5.4409
5.4732 −11.0272 0.0808
1.7234 1.8499 −5.2967




K3 =




1.4095 2.0748 −4.8937
−2.9091 12.5797 −6.7615
4.2535 −10.4436 1.9365
1.2742 2.0773 −4.6257


 , K4 =




1.2491 2.5999 −5.0981
−2.7452 13.0423 −7.5518
3.9211 −10.3360 2.4938
1.1244 2.5655 −4.8143




The simulation results for time varying actuator faults detection are shown in Figures (2) and (3).
From figures (2) and (3), one can see that the residuals are almost zero throughout the time

simulation in fault-free case. The residual signals increase in magnitude considerably when
actuators faults occur fort ∈ [8, 15]s and t ∈ [20, 30]s. These two faults can be estimated by
using the adaptive fault estimation algorithm as in (50).
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Figure 2. Residualr1(t) signal when a fault occurs inu1(t)
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Figure 3. Residual signalr2(t) when a fault occurs inu2(t)

4.2. Actuator fault estimation

Let recall thatBi = Fi = B. Under assumptionA4 and by solving the LMIs (33) to (35), getting

matricesUi = U =

[
0.8580 0.4280 0.4263
−8.1460 −4.0720 −4.0729

]
and choosing the learning rate matrixΓ =

diag(1, 2), the simulation results for time-varying actuator faults estimation using the adaptive
algorithm given by (50) are mentioned in the following Figures.
Figures (4) and (5) show that estimated actuator faults by APO can converge to their real values
which is more powerful than Proportional Integral Polytopic Observer (PIPO) presented in [14].
Then, it is shown that the PIPO makes possible to decouple thedisturbances while it can only
detect and estimate constant actuator faults as in Figure (5). Indeed, its actuator fault estimation
does not match correctly the real one for the time-varying case in Figure (4). In contrast, the APO
shows very good results for both time-varying and constant actuator faults estimations despite the
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Figure 4. Actuator faultf1(t) and its estimated̂f1(t)
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Figure 5. Actuator faultf2(t) and its estimated̂f2(t)

presence of disturbance: it is a good improvement for such LPV descriptor systems.

5. CONCLUSION

In this paper, an actuator fault estimation scheme based on anAdaptive Polytopic Observer for LPV
descriptor systems has been proposed. The developed strategy allows to consider not only constant
faults but also time-varying actuator faults. The convergence conditions of this observer has been
formulated and solved within a set of LMI under equalities constraints. The developed scheme
has been applied in an electrical circuit so as to estimate both time-varying and constant actuator

Int. J. Robust. Nonlinear Control(2014)
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faults for polytopic LPV descriptor systems. A comparison with previous works like PI observers,
underlines the theoretical and practical improvements fortime-varying actuator faut estimation for
such LPV descriptor systems.
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