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Abstract

A large part of the discharge measurements conducted in open-channels are performed using the velocity-
area method, which consists of sampling flow velocity and depth throughout the cross-section for discrete
integration of discharge. To address the limitations of the method proposed by the ISO 748 standard, a
generalized approach is introduced for computing the uncertainty associated with velocity-area discharge
measurements. Direct computation methods are suggested for estimating the uncertainty components re-
lated to the vertical integration of velocity and to the transversal integration of velocity and depth. Dis-
charge extrapolations to the edges and in the top/bottom layers are explicitly taken into account, as well as
the distribution of the verticals throughout the cross-section. The new uncertainty analysis method was ap-
plied to varied stream discharge measurements, and the results are discussed and compared with the results
obtained following the ISO 748 standard method. Similar results were obtained for standard measurements
conducted in natural sections, while more variable and more relevant uncertainty levels were computed for
less standard cases, especially in man-made canals with regular shapes and low width-to-depth ratios. The
new method appears to be more versatile than the ISO 748 method, while as simple and robust. It can be
easily implemented in usual discharge computation software. Some perspectives are drawn for improving
the assessment of instrumental and environmental error sources, including errors due to variable discharge.
Further validation tests still need to be conducted, but the method already provides interesting results, es-
pecially in terms of the contribution of the different error sources. It constitutes a useful practical tool to
conduct sensitivity analysis and to plan and improve the measurement strategy.

Key words: hydrometry, discharge measurement, uncertainty analysis, velocity-area method,
stream-gauging

1. Introduction

1.1. Stream discharge measurements following the velocity-area method

The water discharge of natural and artificial streams is a key parameter for hydrologic studies and
policy decisions regarding water resources, biological habitat and natural hazards. Like any other type
of measurement, stream discharge measurements are not complete if the associated uncertainty, typically
a confidence interval half-width at 95% level, is not provided along with the central value. Without an
estimation of the discharge uncertainty, the data user is not able to assess the errors potentially induced in
his/her conclusions, such as the costs related with flood damages, the report of an infringement to water
use regulations, or the evaluation of the accuracy of a hydrological model.

Instantaneous or quasi-instantaneous stream discharges may be measured using a variety of techniques
(e.g.18, 9, 5), most of which require a costly amount of field work. The most popular technique is the
velocity-area method, which consists of a discrete integration of flow velocity over the channel cross-
section. Velocities and water depths are sampled at given positions on verticals distributed throughout
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the section (Fig.1). At a given verticalj (1 ≤ j ≤ m), the following parameters are measured: distance
from the start edgey j, water depthd j, and point velocities perpendicular to the cross-sectionv j,k measured
at depthsd j,k. While distances are measured using conventional calibrated devices, point velocities are
measured with either mechanical (propellers), electro-magnetic (Hall effect based), or acoustic (Doppler
effect based) current-meters, which are typically mounted on a wading-rod, or deployed from a cableway
or from a bridge.
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Figure 1: Principle of the velocity-area method: discrete sampling of velocity and depth throughout a cross-section, and the corre-
sponding profile of depth-averaged velocity.
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Figure 2: Principle of the conventional discharge integrationtechniques: the mid-section (a) and the mean-section (b) methods.

The total discharge,Q, is the sum of partial dischargesQi over theN subsectionsi of the cross-section:

Q =
N

∑

i=1

Qi =

N
∑

i=1

BiDiVi (1)

with Bi, Di, andVi, the width, mean depth, and mean normal velocity of each subsectioni, respectively.
The most commonly used integration techniques are the mid-section and the mean-section methods (see

Fig.2), which produce equal area results and similar discharge results (within 1% typically). Following the
mid-section method, a subsection is a rectangle centred in a vertical and extending to half-distance from
neighbouring verticals (Fig.2a). The subsection depth and mean velocity are the depth and depth-averaged
velocity measured at the vertical of interest. Following the mean-section method, a subsection is a trapeze
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based on two successive verticals, and the subsection mean velocity is the average of the depth-averaged
velocities measured at each vertical (Fig.2b).

In both methods, at each verticalj the depth-averaged velocityv j is computed either as a weighted sum
of point velocities measured at standard positions above the bed (reduced point methods, 4) or directly by
linear interpolation (velocity distribution method, 4). In addition there is the more seldomly usedintegra-
tion method [4], in which the velocity is physically integrated by continuously lowering and raising the
current-meter over most of the flow depth. In thevelocity distribution method and theintegration method,
velocities need to be extrapolated down to the bed (bottom layer) and up to the free-surface (top layer),
assuming either a power, a linear or a constant function. Like velocities in the top and bottom layers, the
mean velocity in the subsection delineated by the first/last vertical and the bank (i = 1 or i = N) also has to
be extrapolated, usually using a coefficient derived from a power function, according to the law of the wall.

1.2. Uncertainty analysis of velocity-area discharge measurements

The identification and the estimation of errors in velocity-area discharge measurements were addressed
by several authors (e.g.,6, 18, 17, 19). Based on a broad literature review (more than 140 publications),
Pelletier [17] classified uncertainties according to the following error sources: sampling the cross-sectional
area, sampling the mean velocity in time, sampling the mean velocity in space (both vertically and transver-
sally), current-meter errors (including a variety of effects), and differences in the discharge computation
procedure. Uncertainties related to top, bottom, or edge velocity extrapolations were not considered inde-
pendently.

However, such reviews and estimations of errors do not provide a framework for performing uncertainty
analysis according to metrological standards. The ISO/TS 25377 [2], or Hydrometric Uncertainty Gidance
(HUG), provides a general hydrometric uncertainty framework following the GUM [1] approach. However,
themost common framework followed for assessing uncertainty in velocity-area discharge measurements
remains the method presented in the ISO 748 [4] standard. Typically, the HUG does not provide practical
guidelines for assessing the uncertainty in velocity-area methods, and it refers to the ISO 748 standard as
regards the values for integration uncertainty components. Herschy [10] showed that the ISO 748 method
conceptually complies with the GUM [1] uncertainty analysis framework, referred to as the Guide to the
expression of uncertainty in measurement (GUM). Following a first-order approximation, the equation for
the combined uncertainty in measured dischargeu(Q) proposed by the ISO 748 standard is1:

u2(Q) = u2
s + u2

m +

∑

Q2
i

[

u2(Bi) + u2(Di) + u2
p(Vi) +

1
ni

[

u2
c(Vi) + u2

e(Vi)
]

]

(
∑

Qi)
2

(2)

with the following uncertainty components:

• us accounting for systematic errors remaining after the best calibration of velocity, width and depth
measuring devices

• um accounting for errors due the limited numberm of verticals (transversal integration of depth and
velocity)

• u(Bi) andu(Di), accounting for random errors in width and depth measurements, respectively

• up(Vi) accounting for errors due to the limited numberni of point velocity measurements over vertical
i (vertical integration of velocity)

• uc(Vi) andue(Vi), accounting for random errors in point velocity measurements due to the limited
current-meter accuracy and due to time-averaging of turbulent fluctuations over the time of exposure,
respectively

1Note that all uncertainty components writtenu(X) in this document are relative standard uncertainties (in % of measurandX). As
is usually done and is recommended by the the ISO/TS 25377 [2], the final uncertaintyU = ku is expressed using a coverage factor
k = 2 (95% level of confidence).
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For a sufficient number of verticals (m ≥ 10) and a constant numbern of velocity measurements per
vertical, if partial dischargesQi are roughly equal, and assuming that uncertainty components are also
roughly equal over the verticals, then the equation may be simplified as follows [4]:

u2(Q) = u2
s + u2

m +
1
m

[

u2(B) + u2(D) + u2
p +

1
n

[

u2
c + u2

e

]

]

(3)

Assuming a proper calibration of instruments, typical values are suggested by Herschy [10] and ISO 748
[4]: us = 1%,u(B) = u(D) = 0.5%. In its Appendix E, the ISO 748 standard also provides informative val-
ues forum according to the number of verticalsm, up according to the vertical velocity integration method
and to the number of velocity points,uc according to the measured velocity and type of current-meter rating
(Individual versus Group or standard rating), ue according to the measured velocity, exposure time, and po-
sition in the vertical. For ease of use, in this study, the ISO 748 standard informative values for uncertainty
componentsum, up, uc, andue were interpolated using power function fits, such asum = 32m−0.88.

1.3. The necessity of a generalized method for computing uncertainty

Though the uncertainty analysis framework proposed by the ISO 748 [4] standard is a solid reference
method, its application to the diversity of velocity-area discharge measurements made by hydrometry ser-
vices is problematic. The uncertainty analysis method is well suited to ’standard’ discharge measurements
which comply with all the requirements of ISO 748 standard. In such cases, the computed uncertainty
usually lies between 5% and 7%. However, for a number of non-standard measurements, the uncertainty
values obtained with this method appear to be irrelevant.

More precisely, the following drawbacks of the ISO 748 uncertainty analysis method may be identified:

1. Because informative values given in Appendix E for uncertainty components are derived from em-
pirical studies, they are specific to an instrument type and to some measurement conditions.

2. Top, bottom, and edge velocity extrapolations are not taken into account in the uncertainty analysis,
though their contribution may not be negligible.

3. When vertical integration of velocity is performed directly (velocity distribution method), a negligi-
ble default value (0.5%) is attributed toup. For non-standard measurements with not enough velocity
points and often significant top/bottom extrapolations, the value ofup should be taken higher than
0.5%.

4. Most of the computed uncertainty usually stems from the termum, which is an empirical function of
the number of verticalsm, with no consideration of the spatial distribution of verticals, compared to
the transversal variation in bed geometry and flow distribution.

5. Time-integration error in the case of varying discharge during the measurement is not estimated, as
well as the discharge deviation to the steady conditions due to transient flow effects (hysteresis).

For all these reasons, it appears necessary to propose a more versatile approach for computing the
uncertainty associated with velocity-area discharge measurements. This paper presents proposals for ad-
dressing the above mentioned limitations of the ISO 748 standard methodology. Simple new protocols
for computing the uncertainty related to vertical velocity integration and to transversal velocity and depth
integration are detailed. The new uncertainty analysis method is then applied to varied examples of open-
channel discharge measurements, and the results are discussed and compared with the ISO 748 standard
results. Finally, a discussion on error sources, including errors due to variable discharge, provides guide-
lines for improving the measurement strategy and draws perspectives for the extension of the method to
other discharge measurement techniques.

2. Quantifying uncertainty due to spatial integration

2.1. Vertical integration of velocity

Since the uncertainty values provided by the ISO 748 standard forreduced point methods for 1, 2, 3, 5
and 6 points are based on comprehensive experimental studies, no change in the estimation of these values
is proposed.
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Due to the limitations of the ISO 748 standard mentioned above, anew approach is proposed for es-
timating the uncertainty related to thevelocity distribution method which is based on linear interpolation
in the measured layer, along with extrapolation options in the top/bottom layers. The uncertaintyup(v j) in
the depth-averaged velocityv j at a verticalj due to the vertical integration procedure is more easily com-
puted as equal to the vertical integration uncertaintyup(q j) in the discharge per unit widthq j (m2/s). The
errors due to the computation procedure of the interpolated (or ’measured’) discharge and of the extrapo-
lated (or ’top/bottom’) discharge are considered to be independent, even if some velocity measurements are
used for both operations. Indeed, interpolation and extrapolation of discharges are different in essence, for
extrapolation requires the assumption of a vertical velocity distribution based on theoretical or empirical
considerations. Thus, the uncertainty due to the vertical integration procedure is:

u2
p(v j) = u2

p(q j) = u2
p(q j,meas) + u2

p(q j,top/bot) (4)

To assess the uncertainty due to interpolation,up(q j,meas), the maximum discharge error between adja-
cent pointsk andk+1 is estimated to be∆q j,k = |(v j,k−v j,k+1)(d j,k−d j,k+1)|/2 (see Fig.3). This estimation is
based on the assumption of a real velocity distribution which would be convex and lie somewhere between
the linear interpolation and the maximum of both velocity valuesv j,k andv j,k+1. Therefore, assuming a
rectangular probability density function for interpolation errors, the uncertainty in the measured discharge
is computed as follows [1]:

u2
p(q j,meas) =

1

12q2
j

∑
[

(v j,k − v j,k+1)(d j,k − d j,k+1)
]2

(5)

Figure 3: Principle of the computation of the maximum depth-average velocity error due to discrete sampling of velocities in the
measured layer and to velocity extrapolation options in top and bottom layers. In the top layer, the illustrated options are the constant
extrapolation (black solid line), and the power fit and the linear fit on the highest two points (red dashed lines). In the bottom layer,
the illustrated options are the power fit (black solid line), and the constant and the linear-to-zero extrapolations (red dashed lines).

Similarly, the uncertainty due to extrapolationup(q j,top/bot) is assessed based on maximum discharge
errors in top and bottom layers, assuming a rectangular probability density function for extrapolation errors
[1]:

up(q j,top/bot) =
∆q j,top + ∆q j,bot

2
√

3q j

(6)

The maximum error in top discharge,∆q j,top, is estimated considering the maximum deviation of the
usual extrapolation options to the constant extrapolation (see Fig.3). The extreme options yielding the
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potentially greatest deviations are considered: the linear fiton the highest two points and the power fit
with exponent 1/2 (roughest bottom case) and 1/10 (smoothest bottom case). The maximum error in top
discharge is taken as twice the maximum deviation of the discharge computed using any extrapolation
options,qoptions

j,top , to the constant extrapolation discharge,qcst
j,top:

∆q j,top = 2 max
options

∣

∣

∣

∣

qoptions
j,top − qcst

j,top

∣

∣

∣

∣

(7)

The reason for taking a coefficient 2 is because in the worst-case scenario the velocity profile may decrease
as well as increase up to the free-surface.

Since the worst-case scenarii are assumed to be a linear velocity profile to zero at the bed level, and a
constant velocity profile (see Fig.3), the maximum error in bottom discharge is simply computed as:

∆q j,bot =
1
2

qcst
j,bot (8)

As discussed in Section3.4, this formulation ofup(q j), or equivalentlyup(v j), yields uncertainty values
that are consistent with the values provided by the ISO 748 standard for thevelocity distribution method in
the case of standard discharge measurements.

The case of theintegration method is not treated explicitly by the ISO 748 standard. In the absence of
comprehensive uncertainty studies on this method, we propose to consider that the uncertainty due to ver-
tical integration is negligible in the measured part of the profile, thanks to physical averaging. In this case,
up(v j) only arises from uncertainty in extrapolated discharges, usually in the bottom layer only. However,
the number of independent velocity measurements,n j, is equal to the number of complete current-meter
cycles at verticalj. Sincen j is usually equal to 1 or 2, and since the exposure time range is usually 30–
100 seconds, the contribution of current-meter uncertainty (uc, ue) to the final uncertainty is as high as in
the case of 1 or 2-point measurements.

Finally, the uncertaintyup(Vi) in the subsection-averaged velocity depends on the selected discharge
computation method. In the case of the mid-section method, since the depth-averaged velocityv j at vertical
j is applied to the surrounding subsection, i.e.Vi = v j, the corresponding uncertainties are equal:

up(Vi) = up(v j) (9)

In the case of the mean-section method, since the mean ofv j andv j+1 is applied to the subsection, i.e.
Vi = (v j + v j+1)/2, the resulting uncertainty is:

up(Vi) =
1
2

√

u2
p(v j) + u2

p(v j+1) (10)

2.2. Transversal integration of depth

A new method is proposed for estimating the uncertainty due to errors in the transversal integration of
depths and depth-averaged velocities. Instead of the single termum of the ISO 748 standard, the transver-
sal integration uncertainties in each subsection-averaged depth,um(Di), and in each subsection-averaged
velocity,um(Vi), are computed. This leads to the following equation, modified from Eq.2:

u2(Q) = u2
s +

∑

Q2
i

[

u2(Bi) + u2(Di) + u2
p(Vi) + u2

m(Di) + u2
m(Vi) +

1
ni

[

u2
c(Vi) + u2

e(Vi)
]

]

(
∑

Qi)2
(11)

To assessum(Di), the maximum error in depth∆Di due to transversal integration, or equivalently the
maximum error in subsection areaS i = BiDi, is estimated using the stream discharge measurement dataset.
Assuming a rectangular probability density function for integration errors [1], the transversal integration
uncertainty inDi is:

um(Di) =
∆Di

2
√

3
(12)

Similar approaches were recently investigated by other authors, such as Kiang et al. [12] and Olivier
et al. [16], the fundamental difference laying in the way∆Di is estimated. Kiang et al. [12] and Olivier
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et al. [16] introduced methods applied to the mid-section procedure, forwhich Di = d j. The first method
estimates∆Di from the deviation ofDi from the linear interpolation ofDi−1 andDi+1. The second method
simply states∆Di = |Di−1 − Di+1|. A possible generalization of the latter method is to state∆Di = |Di−1 −
Di| + |Di − Di+1|. Kiang et al. [12] suggest computing the velocity uncertaintyum(Vi) the same way as
um(Di), whereas Olivier et al. [16] assume thatum(Di) is representative of both error sources.

Several problems may arise with these methods. In some cases where measured depths show almost
linear or constant evolution, both methods may severely underestimate the uncertainty in depth, because
∆Di estimate is small whereas the bed elevation may vary significantly between verticals. Moreover, for
the same reason larger spacing between verticals may not directly increase the computed uncertainty, and
even decrease it in some cases. Last, previously known information on the bathymetry or velocity profiles
in the measuring site cannot be directly taken into account.

To tackle these drawbacks, while keeping the computation method simple, we propose to estimate∆Di

based on the min/max realistic subsection areas,S i,min andS i,max, derived from physically or empirically
justified assumptions on the bathymetry cross-profile:

∆Di =
S i,max − S i,min

Bi
(13)

The most simple way to computeS i,min andS i,max is to fix a user-defined angleα to account for the
maximum bottom transverse slope, including irregularity of the ground such as pools or boulders for in-
stance. The angleα may be determined from physical assumptions related to the nature of the stream bed,
or using available bathymetry measurements, or the known geometry of a man-made canal, etc. The choice
of a value forα will be discussed along with the presentation of test cases. A maximum value is often
induced by bed-material stability considerations (typically∼ 40◦ for a granular bed). A minimum value
should be the maximum slope between two adjacent verticals in the measurement dataset. Exploring this
interval, sensitivity tests are useful to assess the variation in the computed uncertainty.

Bi

j−1d j+1d
jd iD =

 iS  iD Bi=

j,maxd
r

j,mind
rj,mind

l

j,maxd
l

jy j+1yj−1y

α

j−1d j+1d

 iS  iD Bi=

j,maxd
l

 iD jd

j−1,mind
r

j−1,maxd
r
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jy j+1yj−1y

α

 i,maxS

 i,minS

+

(a) (b)

Figure 4: Principle of the computation of the maximum error on subsection depth due to sampling of the bed geometry: (a) mid-
section integration method, (b) mean-section integration method.

The principle of the method is illustrated in Fig.4for both mid-section and mean-section procedures.
Themethod is symmetrical for both procedures. It applies normally to the edge subsection, since the depths
at the edges are given like at other verticals. It should be noted thatα is used to estimate the maximum
variation in wetted areas, and not to accurately simulate realistic scenarii for the bed profile. Therefore, the
apparent discontinuity in bed profiles is not a problem. However, since the bottom cannot exceed the free-
surface the highest bed line is limited to the water level at each subsection. When this local correction is
not to be applied, the following simple formulas are obtained for mid-section and mean-section procedures,
respectively:
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um(Di) =
bi

4
√

3
tanα (mid− section) (14)

um(Di) =
b2

i+1 + b2
i

8
√

3(bi+1 + bi)
tanα (mean− section) (15)

with bi = y j − y j−1 andbi+1 = y j+1 − y j.

2.3. Transversal integration of velocity and edge extrapolation

We propose a similar method for computingum(Vi) from the maximum error in velocity∆Vi due to
transversal integration. Assuming a rectangular probability density function for integration errors [1], the
transversal integration uncertainty inVi is:

um(Vi) =
∆Vi

2
√

3
(16)

To be consistent with the determination ofum(Di), worst-case velocity distributions throughout the
subsection are interpolated based on the worst-case bed profiles computed previously. We use a

√
d inter-

polation of depth-averaged velocitiesv, which may be related to the assumption of a constant or linearly
varying Froude number [7] or Chézy coefficient [5], with the hydraulic radiusRh being approximated by
the local depthd.

In practice, thev j/
√

d j ratio is computed at each verticalj, with a zero value assumed at the edges of
the cross-section. Thenv/

√
d is linearly interpolated at half-distances between verticals, where min/max

local depths were previously estimated (see Fig.4). Resulting min/maxlocal velocities can be integrated
linearly over the subsection to compute the min/max subsection velocities,Vi,min andVi,max, hence:

∆Vi = Vi,max − Vi,min (17)

As for computingum(Di), the method is symmetrical for both mid-section and mean-section procedures,
and the apparent discontinuity in the velocity profile is not a problem since the purpose is not to simulate
realistic velocity distributions, but to estimate min/max variations in the subsection-averaged velocity.

The case of the edge subsections, which are comprised between each bank and the adjacent vertical, is
specific because the subsection velocity is determined by extrapolation, not by interpolation of measured
velocities. As is usually done, at the edge subsection (i= 1 or i = N), we compute the velocity based on a
power velocity extrapolation to the wall, with exponent 1/m1/N :

V1 =
m1

m1 + 1
v1 (18)

VN =
mN

mN + 1
vm (19)

The ISO 748 standard indicates thatgenerally, m1/N lies between 5 and 7 but it may vary over a wider
range depending on the hydraulic resistance. Typical stream discharge measurements suggestm1/N values
varying from 2 (very rough, sloped bank) to 10 (very smooth, vertical bank). Therefore, at the edge
subsections the maximum mean velocity error∆V1/N is computed using these two extreme values:

∆V1/N = (
10
11
− 2

3
) v1/m ≈ 0.24v1/m (20)

3. Application of the proposed methods to test cases

3.1. Presentation of the test cases

A representative set of stream discharge measurements in varied conditions (Tab.1) was selected to
show and discuss the results of the proposed new method, in comparison with the results of the classical
ISO 748 method (Eq.3). The mid-section procedure was always followed to compute discharges. The
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Figure 5: Test cases: measured depths and point velocities (bottom) and computed sub-discharges (top).
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name section type velocity width B depthD B/D m n
[m/s] [m] [m]

Arc mountain river 1 40 0.4 100 20 3
Ardèche lowland river 3 80 10 8 17 6
Gignac irrigation canal 0.5 1.34 1.00 1.34 6 10

Laboratory compound channel 0.5 1.20 0.05 22 36 4
Doller lowland river 1.8 23 1.5 15 9 1∗

Table 1: Main characteristics of the stream discharge measurements used as test cases (∗ number of current-meter cycles in the
integration method).

following discussions and conclusions also apply for the mean-section procedure, because differences in
computed discharge components and uncertainty components are almost always negligible.

The first example, the Arc-en-Maurienne river at Saint-Avre, France (Fig.5a), is typical of low flow
conditions in a small mountain river with a large width-to-depth ratio:B/D ≈ 100. Measurements were
conducted using an electromagnetic current-meter (Ott Nautilus) mounted on a wading rod, also used to
read flow depths. The ISO 748 procedure for 3 velocity points over 20 verticals was followed, except at the
last vertical where only one velocity was measured due to shallowness. Extrapolated edge discharges are
negligible compared to total discharge. As can be seen in the subsection discharge histogram (see Fig.5a,
top), this stream discharge measurement meets the ISO 748 requirements since all subdischarges are lower
than 10% of total discharge. In that sense, this measurement will be qualified as ’standard’.

The second example, the Ardèche river at Sauze, France (Fig.5b), was chosen as representative of
flood conditions in a larger river with a much smaller width-to-depth ratio:B/D ≈ 8. Measurements were
conducted using a horizontal-axis propeller current-meter (Ott C31) mounted on a 80-kg torpedo deployed
from a cableway. The ISO 748 procedure for 6 velocity points was followed.Seventeen verticals were
distributed throughout the cross-section so as to sample more densely the areas where the discharge was
higher, near the centre of the flow. Even so, the 5 central subsections show partial discharges that slightly
exceed the 10% threshold recommended by the ISO 748 standard. Nevertheless, this measurement can be
regarded as ’standard’. Here again, extrapolated edge discharges are negligible.

The third example, a small man-made irrigation canal at Gignac, France (Fig.5c), provides typical
dense velocity sampling over a limited number of verticals throughout a narrow rectangular cross-section,
with a width-to-depth ratio close to one:B/D = 1.34. Vertical velocity profiles were comprehensively
sampled at 10 positions every 10 cm plus a near-bed position as deep as possible (1 cm above bottom)
using a micro-propeller. Due to the narrow section and to the duration of velocity measurements, only 6
verticals were used. As a consequence, most subdischarges are greater than 15% of total discharge, and
extrapolated edge discharges yield large contributions (13% and 8%) to total discharge. At both banks,
the velocity variation suggests roughness coefficientsm1/N ≈ 6, which is consistent with smooth concrete
walls. This example measurement is far from ’standard’, according to the ISO 748 standard.

The fourth example does not relate to a field site, but a laboratory compound-channel flume (Fig.5d)
where 4 velocity points (every 0.2h) were measured over a high number of verticals (36) with a micro-
propeller. Since no 4-point formula is available in ISO 748 standard, velocity can be vertically averaged
using either thevelocity distribution method or the 3-point formula (reduced point method). This example
is interesting to study because it is representative of an ideally dense velocity sampling (each subdischarge
is lower than 5% of total discharge), in a quasi-perfect compound rectangle geometry (visible irregularities
in depth profile are due to free-surface deformation), for controlled steady-flow conditions.The compound
geometry and the induced velocity distribution are typical of an overbank flood flow in a wide river (B/D ≈
22), with complex hydraulic processes at the interface. Near the very smooth walls made of PVC, inferred
roughness coefficients are high (m1/N ≈ 10). Due to technical restrictions, edge verticals are not as close to
the walls as needed ideally, and extrapolated edge discharges are significant (4% and 7% of total discharge).

The fifth example, the Doller river at Burnhaupt, France (Fig.5e), is a typical discharge measurement
conducted in a medium size stream (B/D ≈ 15) following theintegration method. Measurements were
conducted using a horizontal-axis propeller current-meter deployed from a bridge. The distribution of the
nine verticals intended to better sample the flow and depth variations in the deepest left part of the cross-
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section, rather than minimizing the subdischarges, which exceed the 10% and even the 15% thresholds in
the central part. Roughness coefficients were fixed tom1/N = 3 at the edges, andmb = 6 for extrapolation
of the bottom discharge.

3.2. Overall comparison of the results

To assess the results of the proposed uncertainty method, Eq.11 is rearranged as follows:

u2(Q) = u2
s + u2

B,D + u2
p + u2

m(V,D) + u2
ed + u2

c,e (21)

Relevant components have been gathered to form the mean uncertainty terms related to random errors
in width and depth measurements (uB,D), in velocity vertical integration (up), in transversal integration of
velocity and depth (um(V,D) andued for edge subsections), and in point velocity measurements (uc,e):

u2
B,D =

∑

Q2
i

[

u2(Bi) + u2(Di)
]

/Q2 (22)

u2
p =

∑

Q2
i u2

p(Vi)/Q2 (23)

u2
m(V,D) =

∑

1<i<N

Q2
i

[

u2
m(Vi) + u2

m(Di)
]

/Q2 (24)

u2
ed = Q2

1

[

u2
m(V1) + u2

m(D1)
]

/Q2 + Q2
N

[

u2
m(VN) + u2

m(DN)
]

/Q2 (25)

u2
c,e =

∑

Q2
i

[

1
ni

[

u2
c(Vi) + u2

e(Vi)
]

]

/Q2 (26)

Tab.2 presents the uncertainty results of both the ISO 748 method (Eq.3) and the new method (Eq.21).
Therelative contributions of the major uncertainty components to the total varianceu2(Q) are given. Typi-
cally, for the new method the termsuB,D anduc,e are not presented since they are always negligible, except
for the Doller case due to theintegration method. Because it is always the predominating contribution in
the ISO 748 method, theu2

m/u
2(Q) ratio is indicated, to be compared with the [u2

m(V,D) + u2
ed(V)]/u2(Q)

ratio in the generalized method. Final uncertaintiesU with a coverage factork = 2 (95% confidence level)
computed using both methods are also mentioned for comparison.

name B/D/m max. α U(Q) u2
m(V,D) u2

p u2
ed U(Q) u2

m

slope (new) (ratio) (ratio) (ratio) (ISO748) (ratio)
Arc 5.0 15◦ 15◦ 6.7% 95% 5% 0% 5.2% 77%

Ardèche 0.5 41◦ 40◦ 3.4% 81% 19% 0% 5.1% 82%
Gignac 0.2 0◦ 10◦ 2.7% 3% 14% 83% 13% 98%

Laboratory 0.6 3◦∗ 5◦ 2.2% 3% 64% 33% 3.5% 60%
Doller 1.7 14◦ 15◦ 5.5% 62% 4%∗∗ 2% 9.8% 90%

Table 2: Results of the uncertainty analysis of the stream discharge measurements test cases (∗, the vertical wall between main channel
and floodplain was ignored;∗∗ in this case, the contribution ofu2

c,e is 32%).

Salient results obtained for the five test cases using the generalized method and the ISO 748 method are
summarized in Tab.2. For each case, the bed variation angle,α, was fixed at a realistic value, usually close
to the maximum transverse slope seen in the bathymetry data of the discharge measurement verticals. The
sensitivity of the computed uncertainty,U(Q) (with coverage factork = 2), to the value ofα is presented
in Section3.3hereafter.

On average, the uncertaintiesU(Q) computed with the proposed method are lower than the uncertainties
U(Q) computed with the ISO 748 method. The only exception is the Arc case, with a proposed estimate
slightly higher than the ISO 748 estimate (6.7% instead of 5.2%). For ’standard’ or ’almost standard’
stream discharge measurements (Arc, Ardèche, Laboratory), uncertainty estimates appear to be consistent
using one method or the other. For measurements with a reduced number of verticals (Gignac, Doller),
the generalized method yields much lower uncertainty estimates than the ISO 748 method. In the case
of the Gignac irrigation canal, an uncertainty level of 2.7% is more consistent than 13% with the expert
knowledge from the hydrometry staff, and with verifications against concurrent discharge measurements
(deviations were typically of the order of 3%).
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Such differences in the computedU(Q) stem from a greater variability in the contribution of the differ-
ent error sources, when using the generalized method. The contributions of the major uncertainty compo-
nents are investigated in the following sections.

3.3. Uncertainty associated with the distribution of verticals

As expected, when applying the ISO 748 method, the contribution of theum term is high for every cases
(see Tab.2), even when the bottom geometry is constant (Gignac, 98%) or when the number of verticals is
extremely high (Laboratory, 60%). As it takes into account not only the number of verticals but also their
distribution and the expected maximum variation of the bed, the generalized method produces negligible
contributions of the termum(V,D) for these two cases. The uncertainty due to edge extrapolations,ued, only
elicited in the generalized method, shows consistently negligible contributions to total variance for natural
sections cases and high contributions for the canal cases (Laboratory, 33%, Gignac, 83%).
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Figure 6: Influence of the bottom variation angle,α, on the uncertaintyU(Q) (95% confidence level) computed following the gener-
alized method, for all test cases.

The sensitivity of the uncertainty computed with the generalized method to the bottom variation angle,
α, was investigated using the five test cases (Fig.6). Two contrasted behaviours can be observed. For cases
with low subsection aspect ratios (Ardèche, Gignac, Laboratory,B/D/m < 1), variations ofU(Q) with α
are negligible. For cases with higher subsection aspect ratios (Doller:B/D/m = 1.7, Arc: B/D/m = 5),
U(Q) increases roughly linearly withα, up to 15-20% forα = 40◦. Such a trend was expected based on
the construction of the method for computingum(D) andum(V). It is logical that wide and shallow sections
require more verticals than narrow and deep ones. With theα values fixed in accordance with the maximum
slopes found in the measured bathymetry (see Tab.2), the obtained values forU(Q) appear to be realistic.

However, in case of flat sections with a limited number of verticals (i.e., highB/D/m ratio), the as-
sumption of a constant angleα may lead to overestimated values ofum(D) andum(V). It should be kept in
mind that this angle is primarily used to estimate the maximum error in subsection areas: in such flat cases,
a realistic value forα should be quite lower than the local transverse slope of the bed. Other representation
options could be tested such as an asymptotic increase of the bed line instead of an infinite slope with a
fixed angle.

3.4. Uncertainty associated with the vertical integration of velocity

In most cases, the uncertainty components related to the measurement of velocity (us, uc, ue) bring a
negligible contribution compared to the uncertainty related to the vertical integration of velocity. Indeed,
the contribution ofu2

c,e is significant only for the Doller case (32%), because theintegration method was
used.

The uncertainty component associated with the vertical integration of velocity,up, often brings a sig-
nificant, though not dominant, part of the total uncertainty. It is particularly heavy in the Laboratory case,
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where the uncertainty could be decreased with a better samplingof velocity profiles, at least in the deeper
main channel.

In order to assess the results of the proposed method for computingup for the velocity distribution
method, sensitivity tests were conducted using the Gignac dataset, which offers a large number (10) of
velocity points located at normalized elevations above the bed. Tab.3 presents the average values ofup over
the six verticals, for different numbers of velocity points, using eitherreduced point methods or thevelocity
distribution method. Uncertainty values forreduced point methods are those provided by the ISO 748
[4] standard, extended with a power fit. The value indicated for 10 points (0.5%) does not correspond
to reduced point methods but is the value proposed by the ISO 748 standard for thevelocity distribution
method meeting all the requirements.

Computedup for the velocity distribution method shows values that are consistent with the ISO 748
values, except when only 1 point is used: a dramatically high value (38%, instead of 7.5%) is obtained
because discharge extrapolation is then performed over the whole flow depth. Even if the value may seem
exaggerated, it is not unlikely that using only one point for thevelocity distribution method may lead to
errors tremendously higher than using the robust 1-pointreduced point method. According to the proposed
computation method, thevelocity distribution method applied to 2, 3, or 4 velocity points leads to standard
uncertainties close to 5% (68% confidence level), higher than those related to the correspondingreduced
point methods. For 5 or 6 points, uncertainty levels are similar. This is consistent with the expert knowledge
of many hydrometry staffs. This is also because near-surface and near-bottom velocity measurements
are used, reducing the contribution of top and bottom extrapolated discharges. At last, for thevelocity
distribution method applied to 10 points, the proposed method yields a slightly higherup value than the
ISO 748 default value. This value (1.2%) remains realistic and negligible, if one recalls that the Gignac
velocity measurements do not perfectly meet the ISO 748 requirements.

p (number of points) 1 2 3 4 5 6 10
up (reduced point, ISO 748) 7.5% 3.5% 3.0% – 2.5% 2.0% 0.5%∗

up (velocity distribution) 38% 4.8% 4.6% 4.6 % 2.4% 2.3% 1.2%

Table 3: Uncertainty componentup due to the vertical integration of velocity, as computed applying the generalized method to the
Gignac dataset. For a given number of velocity measurements,p, located at normalized elevations above the bed, bothreduced
point methods andvelocity distribution method are considered (∗ value proposed in the ISO 748 standard for thevelocity distribution
method).

4. Discussion

4.1. Instrumental and environmental errors

The new generalized method confirms that integration errors in velocity-area discharge measurements
are often, though not always, dominant on instrumental and environmental errors. In some cases however,
one may wonder whether the latter error sources were not underestimated in the computation. When the
computed combined uncertaintyU(Q) is very low (say,< 3%), a better assessment of instrumental and
environmental errors should certainly be necessary to obtain more realistic results. Typically, the very low
uncertainty obtained for the Gignac and Laboratory cases (U(Q) ≈ 2%), or even for the Ardèche case
(U(Q) ≈ 3%) call for a more comprehensive estimation of the instrumental uncertainty associated with
the propellers used at these sites. Data from the current-meter calibration would help better quantify the
corresponding termsus anduc(V). In particular, the default value commonly used forus (1%) may often
be underestimated due to unproperly reported calibration data, calibration drift with time, or unappropriate
instrument maintenance.

Though they are recognized to be of primary importance in streamflow measurements, environmental
errors remain difficult to assess in an uncertainty analysis, because the mathematical model of their impacts
is usually unknown or imperfectly known. Some environmental error sources are included in the computa-
tion and could be better parameterized thanks to additional studies. For instance, the velocity uncertainty
ue(V) due to the limited sampling time of velocity fluctuations could be specifically quantified based on an
evaluation of the turbulent time scales. However, many other environmental error sources are ignored, like
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the site-specific conditions which govern the velocity distribution, including obstacles, hydraulic works,
wind, transient flow, etc. Also, the skill of the operators plays an important role: from current-meter in-
tercomparison tests, Fulford et al. [8] found that a change in the operator introduced as much discharge
uncertainty (u ≈ 2.5%) as did a change in the current-meter. Deriving practical tools for quantifying the
uncertainty related to such effects remains challenging. As a major environmental error source, simple
considerations for assessing the uncertainty components due to variable flow are discussed in the following
section.

4.2. Additional errors due to variable discharge

The discharge of a stream may significantly vary during the discharge measurement process, especially
during floods or in case of infrastructure operations for instance. For the reasons stated in Section1.3,
the uncertainty due to the time-integration error of a varying discharge should be included in the uncer-
tainty analysis of velocity-area discharge measurements. This time-integration error must be clearly distin-
guished from the hysteresis effect, which is not a discharge measurement error, but a deviation of the actual
hydraulic conditions (discharge, water stage) from the usual stage-discharge relationship, due to transient
flow effects in case of flood rise or fall. It is also useful to evaluate and correct the hysteresis effect when
one wants to calibrate a steady-state stage-discharge relationship at a gauging station. Hereafter simple
expressions for assessing both uncertainty components are proposed. Their validation as a practical tool
would require further implementation tests.

Using a prior stage-discharge relationshipQ(h) and the minimum and maximum water stages (hmin,
hmax) recorded during the discharge measurement, one can quantify the maximum discharge error due to
varying discharge, hence the standard uncertainty assuming a rectangular distribution [1]:

uvar =

(

Q(hmax) − Q(hmin)
)

2
√

3Qm

(27)

with Qm the time-averaged measured discharge.
To approximate the hysteresis effect, the classical Jones [11] formula usually yields acceptable results:

Qr = Qm

√

1+
1

S rCw

dh
dt

(28)

with Qm measured discharge,Qr discharge corrected for unsteady effect,S r energy slope in the reference
conditions,Cw celerity of the flood wave,dh/dt time evolution of the water stage.Cw may be approximated
by:

Cw =
1
B

dQ
dh

(29)

with B the bankfull width anddQ/dh the local slope of the rating curve (stage-discharge relationship).
Assymetric uncertainty would be the most accurate quantification of the hysteresis error. In a sim-

pler manner, the standard uncertainty may be quantified from the Jones correction taken as the maximum
discharge error, and assuming a rectangular distribution [1]:

uhyst =
|Qm − Qr |
2
√

3Qm

(30)

Since these two error sources are independent of the previously identified error sources, the resulting
variancesu2

var andu2
hyst may be simply added to the variance sum in Eq.11.

4.3. Strategy for reducing integration errors

Uncertainty analysis is useful to help practitioners define the best strategy for reducing integration
errors that affect their velocity-area discharge measurements. The best spatial integration strategy consists
of minimizing the numberm of verticals and the numberp of point velocity measurements while keeping
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the uncertaintyU(Q) at a satisfactory level. The new tool can be used to perform sensitivity analysis in
order to define this best strategy at a given site under given flow conditions and technical constraints.

An interesting innovative strategy consists of adding some verticals where only flow depth is measured
and where depth-averaged velocity is interpolated. The advantage arises from the following ideas: the
depth-averaged velocity cross-profile is usually smoother and less variable than the bed geometry cross-
profile; at a vertical, the time needed to measure flow depth is negligible compared to the time needed
to measure velocity, due to the number of points and the time of exposure. As already introduced in
Section2.3, several authors [7, 3, 5, 13] reported the successful interpolation of depth-averaged velocities
based on assumed linear variation of the Froude number, or equivalently the Chézy coefficient, throughout
the cross-section. Following this assumption, at a vertical where onlyd j was measured, the ratiov j/

√

d j

canbe linearly interpolated from the closest verticals where both depth and mean velocity were measured.
The uncertainty in the interpolated depth-averaged velocity,up(v j), stems from the interpolation itself

and from the uncertainty in the measured velocities used in the interpolation. Considering that these error
sources are independent, the corresponding variances can be added. Since the velocity cross-profile is
likely convex, the maximum interpolation error may be estimated by (v j+1 − v j−1)/2. Therefore, assuming
a rectangular probability density function for the interpolation error [1], the following estimation ofup(v j)
canbe suggested:

u2
p(v j) =

(

v j+1 − v j−1

2
√

3

)2

+ u2
p(v j−1) + u2

p(v j+1) (31)

As an example, such a strategy was tested on the Arc case using the generalized uncertainty com-
putation method by varying the numberm1 of verticals with depth and velocity measurements (velocity
verticals) and the numberm2 of verticals with depth measurements only (bathymetry verticals). In addi-
tion to the original dataset with 20 conventional verticals (Fig.7a), modified datasets were also processed
adding one bathymetry vertical between each pair of velocity verticals (Fig.7b), removing one velocity
vertical out of two (Fig.7c), turning one velocity vertical out of two into a bathymetry vertical (Fig.7d).

Tab. 4 shows the final uncertainty,U(Q), along with the variance contributions of the transversal in-
tegration uncertainty,um(V,D), and of the vertical integration uncertainty,up. In the Arc case, whatever
the tested strategy, other uncertainty components are negligible compared to integration uncertainty com-
ponents which bring roughly 100% of the total variance. The computed dischargeQ is roughly invariable
(within 0.5% except for 10 verticals only,−1.5%). It is interesting to see that turning half of the ver-
ticals into bathymetry verticals with velocity interpolation yields very similar discharge and uncertainty
(U(Q) ≈ 7%) as the reference case. This would be a good strategy since the measuring time would be
approximately 30 min instead of 1 hour, typically. When velocity interpolation is not performed, uncer-
tainty is much higher:U(Q) ≈ 20%. When velocity verticals are doubled with bathymetry verticals, the
uncertainty is estimated as low as∼ 3%, for an equivalent field work time as initially.

name m1 m2 Q U(Q) u2
m(V,D) u2

p

m3/s (new) (ratio) (ratio)
Arc 20 0 15.54 6.7% 95% 5%
Arc2 20 19 15.49 2.9% 70% 30%
Arc3 10 0 15.29 20% 89% 11%
Arc4 11 9 15.47 7.4% 82% 18%

Table 4: Results of the uncertainty analysis conducted on the Arc test case for different spatial sampling strategies.
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Figure 7: Test case Arc-en-Maurienne at Saint-Avre: original measurements (Arc, a); modified with one additional bathymetry
vertical between each velocity vertical pair (Arc2, b); modified with one velocity vertical out of two removed (Arc3, c); modified with
one velocity vertical out of two turned into a bathymetry vertical (Arc4, d).
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5. Conclusions

A new method for computing uncertainty in velocity-area discharge measurements was developed and
tested successfully on a range of test cases. This method was built as a generalization of the conventional
method of the ISO 748 [4] standard to cope with identified drawbacks of the latter method. In particular,
direct computation methods for spatial integration uncertainty components (up(Vi), um(Di), um(Vi)) were
proposed instead of the informative values tabulated in the ISO748 standard. Discharge extrapolations to
the edges and in the top/bottom layers are explicitly taken into account, as well as the distribution of the
verticals throughout the cross-section. Another advantage is that uncertainty due to spatial sampling of
depth and of velocity are separated. Only one additional parameter is introduced: the angleα accounting
for the maximum likely area error between two verticals. Guidelines for choosing the value ofα were
provided, as well as a sensitivity analysis.

The new method appears to be more versatile though as simple and robust as the ISO 748 method. It
can be easily implemented in usual discharge computation software. Using the proposed method, similar
results were obtained for standard measurements conducted in natural sections, while more variable and
more relevant uncertainty levels were computed for less standard cases, especially in man-made canals
with simple shape and low width-to-depth ratio (B/D < 10). Despite further validation tests still need to
be conducted, the method already provided interesting results, especially in terms of the contribution of the
different error sources. Most often, integration errors are dominant on instrumental and environmental er-
rors. Without increasing the field work time significantly, integration errors can be reduced using additional
verticals where depth is measured and velocity is interpolated. When the total uncertainty is computed to
be very low (U(Q) < 3%), instrumental and environmental errors which may have been underestimated or
ignored should be kept in mind. Especially, additional errors due to variable discharge should be evaluated.
Simple equations to compute both time-integration error and hysteresis effect due to transient flow were
proposed to complete the uncertainty analysis.

As a perspective, the generalized uncertainty method could be extended to other discharge measurement
techniques derived from the velocity-area method, namely surface velocity measurements and acoustic
Doppler current profilers (ADCP).

Surface velocity measurements appear to be particularly useful in tough flood conditions when in-
trusion of instruments within the flow may be dangerous or impossible. They can be conducted with a
variety of techniques ranging from current-meter mounted on a torpedo, natural or artificial floats, image
sequence analysis, to radar Doppler velocimetry. The assessment of the uncertainty in point surface ve-
locity measurement should be adapted to the specific instrumentation used. Additional uncertainty arises
due to the necessary conversion of surface velocity to depth-averaged velocity and due to assumption on
the bathymetry when it cannot be measured simultaneously with surface velocity. The surface velocity
conversion is usually done using a constant coefficient. Based on theoretical and empirical studies of the
variability of that velocity coefficient (e.g.,14), the corresponding standard uncertainty can be estimated
to range between 5% and 10%, which is consistent with the value ofup (7.5%) for the 1-point method
according to the ISO 748 standard.

The proposed method can also be extended almost directly to ADCP measurements when they are
conducted in a stationary way (vertical by vertical). However, ADCP are usually deployed following
the mobile boat technique which relies on a different mathematical model than the velocity-area method.
The development of a dedicated methodology for computing the uncertainty in mobile ADCP discharge
measurements is still an open scientific issue (e.g.,15).
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List of symbols

∆X [X unit] maximum error in measurandX
α [deg.] angle accounting for the maximum bottom transverse slope

B [m] bankfull section width
Bi [m] width of subsectioni
Cw [m/s] celerity of the flood wave
D [m] average section depth
Di [m] mean depth of subsectioni
N [–] number of discharge subsections
Q [m3/s] total discharge across the section
Q(h) [m3/s] stage-discharge relationship
Qi [m3/s] sub-discharge or discharge of subsectioni
Qm [m3/s] time-averaged measured discharge
Qr [m3/s] discharge corrected for unsteady effect
Rh [m3/s] hydraulic radius
S i [m2] subsection areaS i = BiDi

S r [–] energy slope in the reference conditions
U [%] final uncertainty expressed using a coverage factork = 2 (95% level of confidence)
V1/N [m/s] edge subsection velocity (i = 1 or i = N)
Vi [m/s] mean velocity of subsectioni
X [X unit] measurand
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d [m] local water depth
d j,k [m] velocity measurement depth
h [m] water stage
i [–] subsection index (1≤ i ≤ N)
j [–] vertical index (1≤ j ≤ m)
k [–] velocity point index
m [–] number of measurement verticals
m1 [–] number of verticals with depth and velocity measurements (velocity verticals)
m2 [–] number of verticals with depth measurements only (bathymetry verticals)
mb [–] bed roughness parameter (inverse of the power function exponent)
m1/N [–] edge roughness parameter (inverse of the power function exponent)
n [–] number of independent velocity measurements per vertical
q [m2/s] (m2/s) discharge per unit width
qbot [m2/s] discharge per unit width in the extrapolated top layer of the vertical velocity profile
qmeas [m2/s] discharge per unit width in the measured middle layer of the vertical velocity profile
qtop [m2/s] discharge per unit width in the measured bottom layer of the vertical velocity profile
u(X) [%] relative standard uncertainty (in % of measurandX)
u(B,D) [%] relative standard uncertainty accounting for random errors in width and depth measure-

ments
uc [%] relative standard uncertainty accounting for random errors in point velocity measure-

ments due to the limited current-meter accuracy
uc,e [%] relative standard uncertainty accounting for random errors in point velocity measure-

ments due to the limited current-meter accuracy and the limited time of exposure
ue [%] relative standard uncertainty accounting for random errors in point velocity measure-

ments due to time-averaging of turbulent fluctuations over the time of exposure
ued [%] relative standard uncertainty related to the velocity extrapolated in the edge subsection
uhyst [%] relative standard uncertainty accounting for errors due to hysteresis effects
um [%] relative standard uncertainty accounting for errors due the limited numberm of verticals
up [%] relative standard uncertainty accounting for errors due to the limited numbern of point

velocity measurements over the vertical
us [%] relative standard uncertainty accounting for systematic errors
uvar [%] relative standard uncertainty accounting for errors due to variable discharge
v [m/s] depth-averaged velocity
v j,k [m/s] point velocity perpendicular to the cross-section measured at depthd j,k at vertical j
y [m] position from the start edge
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