Turing degree spectra of minimal subshifts

Abstract : Subshifts are shift invariant closed subsets of $\Sigma^{\mathbb{Z}^d}$ , minimal subshifts are subshifts in which all points contain the same patterns. It has been proved by Jeandel and Vanier that the Turing degree spectra of non-periodic minimal subshifts always contain the cone of Turing degrees above any of its degree. It was however not known whether each minimal subshift's spectrum was formed of exactly one cone or not. We construct inductively a minimal subshift whose spectrum consists of an uncountable number of cones with disjoint base.
Type de document :
Communication dans un congrès
Computer Science - Theory and Applications - 12th International Computer Science Symposium in Russia, Jun 2017, Kazan, Russia. 2017, 〈10.1007/978-3-319-58747-9_15〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01058198
Contributeur : Pascal Vanier <>
Soumis le : mercredi 17 septembre 2014 - 09:14:33
Dernière modification le : mercredi 20 juin 2018 - 10:36:01
Document(s) archivé(s) le : jeudi 18 décembre 2014 - 10:16:32

Fichiers

minimalturdeg-arxiv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Michael Hochman, Pascal Vanier. Turing degree spectra of minimal subshifts. Computer Science - Theory and Applications - 12th International Computer Science Symposium in Russia, Jun 2017, Kazan, Russia. 2017, 〈10.1007/978-3-319-58747-9_15〉. 〈hal-01058198v4〉

Partager

Métriques

Consultations de la notice

309

Téléchargements de fichiers

80