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Abstract

This paper focuses on the estimation of the instantaneous amplitude, phase and unbalance parameters

in three-phase power systems. Due to the particular structure of three-phase systems, we demonstrate

that the Maximum Likelihood Estimates (MLEs) of the unknown parameters have simple closed form

expressions and can be easily implemented without matrix algebra libraries. We also derive and analyse

the Cramér-Rao Bounds (CRBs) for the considered estimation problem. The performance of the proposed

approach is evaluated using synthetic signals compliant with the IEEE Standard C37.118. Simulation

results show that the proposed estimators outperform other techniques and reach the CRB under certain

conditions.
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Maximum Likelihood Estimation, Cramér-Rao Bounds, Power Systems.

I. INTRODUCTION

The analysis of three-phase systems is of major concern in many applications such as power system

monitoring, protection and fault detection. In Smart-Grid, voltage and current signals are analysed

at substations by Phasor Measurement Units (PMUs). Technically, PMUs estimate the instantaneous

amplitude and the instantaneous phase of the voltage or current signal [1]. These measurements are then

processed by a Supervisory Control And Data Acquisition (SCADA) system to detect supply-demand

mismatches or abnormal events [1]–[3]. On the generation and user sides, current signal analysis (CSA)

is also used as a low-cost and non-invasive technique for fault detection in electrical machines [4].

Especially, the instantaneous amplitude and phase are commonly used for the detection of broken rotor

bars, eccentricity fault and bearing defects [5]–[8].

The aforementioned applications highlight the importance of Instantaneous Amplitude (IA) and Phase

(IP) in modern power systems. In practice, these quantities are unknown and should be estimated from

the voltage or current signals. To be compliant with IEEE standards such as the IEEE C37.118 [9], IA

and IP estimators must meet certain requirements in terms of accuracy (M class) and ability to track fast

variations (P class). Within the signal processing community, the most commonly used techniques for the

estimation of the IA and IP are based on the analytic signal. The analytic signal is usually computed from

the Hilbert Transform or the Fast Fourier Transform [10], [11]. However, these techniques have several

limitations as far as power system applications are concerned. Specifically, these techniques require the

fulfilment of the Bedrosian condition [12], which can be violated under fast time-varying conditions, and

are suboptimal since they do not take into account the particular structure of the electrical signal.

In power systems, the electrical signal is described by three phase components that are phase shifted

from each other by 2π/3 [9]. From a signal processing perspective, this particular structure provides

sufficient information to uniquely identify the IA and IP without the difficulties inherent to mono-

dimensional signals [13]. For instance, under perfectly balanced conditions, it has been proven that

the IA and IP can be simply and uniquely identified using a linear transform called the Clarke transform

(also called the αβ transform) [14]–[17]. Nevertheless, despite its low complexity, the Clarke transform

does not perform well under voltage or current unbalances. Indeed, it has been demonstrated that the

Clarke components are noncircular under unbalanced conditions, which leads to extra oscillations of

the IA and IP [17], [18]. Recently, several techniques have been proposed to cope with this difficulty.

In [18], [19], the Clarke transform is used jointly with a widely linear adaptive algorithm to estimate
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the instantaneous frequency of the three-phase signal. Although this adaptive algorithm performs well

under unbalanced and fast-varying conditions, it requires appropriate tuning and does not provide any

estimate of the IA and IP. In [17], an algorithm based on Principal Component Analysis is proposed

for IA and IP estimation but its performance highly depends on the accuracy of the covariance matrix

estimate. Finally, it should be emphasized that none of the previous techniques is able to quantify the

amount of unbalance, which is also of great interest for monitoring purposes [20].

In this paper, we investigate the problem of estimating the IA, IP and unbalance parameters from the

voltage (or current) signal under white Gaussian noise assumption. Specifically, the contribution of this

paper is threefold.

• We derive closed form solutions for the Maximum Likelihood Estimators (MLEs) of the IA, IP and

unbalance parameters.

• We describe a simple low-complexity algorithm for the implementation of these estimators.

• We provide and analyse the Cramér-Rao Bounds of the IA, IP and unbalance parameters.

The remainder of the paper is organized as follows. Section II presents the three-phase signal model

and the assumptions. Section III focuses on the MLEs and Section IV deals with the derivation of

the Cramér-Rao Bounds. Finally, Section V evaluates the performance of the proposed technique with

synthetic signals.

II. THREE-PHASE SIGNAL MODEL

Hereinafter, bold upper case letters denote matrices, e.g., X; bold lower case letters stand for column

vectors, e.g., y, and lower case letters represent scalars. Superscripts (.)T and (.)−1 denote the transpose

and the inverse of a matrix, respectively. Finally, Tr[.] is the trace of a matrix, det(.) denotes the matrix

determinant and I corresponds to the identity matrix.

This study focuses on three-phase systems with amplitude unbalance. Under amplitude unbalance, the

three-phase voltages (or currents) are assumed to be perfectly shifted by 2π/3 and can be modelled by [9]

yk[n] = dka[n] cos (φ[n]− 2kπ/3) + bk[n] (1)

where yk[n] and bk[n] correspond to the electrical signal and noise component of the kth phase (k =

0, 1, 2), respectively. The time-varying parameters a[n] > 0 and φ[n] correspond to the instantaneous

amplitude and phase. Several types of profiles for a[n] and φ[n] are normalized in the IEEE Standard

C37.118, such as step change, ramp change, and sine wave modulation [9]. The quantity dk > 0

corresponds to the unbalance parameter on phase k. The ideal case d0 = d1 = d2 = 1 corresponds
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to a perfectly balanced three-phase system, but is uncommon in practice [21]. For example, voltages

in one or two phases can temporary drop for several hundreds of milliseconds due to system faults,

heavy load-switching and large motor starting [22]. In the following, we relax the balance assumption

by introducing some unbalance between phases as defined in the IEEE standard 1459-2010 [21, 3.2.2].

Without loss of generality, we set d0 = 1 to obtain a well-posed problem since, without any constraint

on dk, the estimation problem leads to an infinite number of solutions. Using trigonometric identities and

matrix notations, (1) can be expressed as

y[n] = DHx[n] + b[n] (2)

where

• y[n] and b[n] are 3× 1 column vectors which are defined as

y[n] =




y0[n]

y1[n]

y2[n]


 b[n] =




b0[n]

b1[n]

b2[n]


 . (3)

• D is a 3× 3 diagonal matrix containing the unbalance parameters i.e.

D = diag([1 d1 d2]) =




1 0 0

0 d1 0

0 0 d2


 . (4)

• H is a 3× 2 matrix which is defined as

H =




1 0

−1
2

√
3
2

−1
2 −

√
3
2


 . (5)

• x[n] is a 2× 1 vector containing the direct and quadrature components, i.e.

x[n] = G(a[n], φ[n]) =


 a[n] cos(φ[n])

a[n] sin(φ[n])


 (6)

where G(a[n], φ[n]) is a multivariate non-linear function.

In order to estimate the unknown parameters, we make use of the following assumptions:

• AS1) The unbalance parameters are assumed to be static over the acquisition time.

• AS2) The additive noise is a zero-mean, white Gaussian noise with covariance matrix. σ2I, i.e.

b[n] ∼ N (0, σ2I).
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• AS3) The instantaneous amplitude, a[n], phase, φ[n] and the quadrature components, x[n], are treated

as deterministic unknown parameters.

Although Assumption AS1) may appear somewhat restrictive, it is worth mentioning that the extension

to the dynamic case does not present any difficulties1. This extension is not discussed here for the sake

of brevity. Assumption AS2) is motivated by the Central Limit Theorem and the fact that the Gaussian

distribution leads to the largest Cramér-Rao Bound (CRB) [23]. If the Gaussian hypothesis fails to be

true, the estimation technique proposed in this paper is still applicable, but it will no longer provide the

Maximum Likelihood estimates. Indeed, for non-Gaussian noise, the proposed technique corresponds to

the Least Square Estimator (LSE) [24], which is the most natural estimator when no a priori information

is available about the noise distribution. Finally, AS3) refers to the Conditional Model and means that

the unknown sequence x[n] is frozen in all the realizations of the data y[n] [25]. Note that AS3) is less

restrictive than the Unconditional Model since it does not require any a priori information about the

distribution of x[n].

Under the above assumptions, the goal of this paper is to estimate a[n], φ[n], d1 and d2 from Y =

[y[0], · · · , y[N − 1]].

III. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we derive the Maximum Likelihood Estimators (MLEs) of a[n], φ[n], d1 and d2. This

section is composed of two parts: first, we demonstrate that the MLEs have closed form solutions, then

we describe an efficient algorithm for the implementation of these solutions.

A. Closed form estimator

Let us define

Ω = [a[0], φ[0], .., a[N − 1], φ[N − 1], d1, d2] (7)

the row vector containing the 2N + 2 unknown parameters. The MLE of Ω is given by

Ω̂ = argmax
Ω

L(Ω) (8)

where L(Ω) = ln (p(Y; Ω)) is the log-likelihood function of Y and p(Y; Ω) is the probability density

function (pdf) of Y, which is parameterized by Ω. Using AS2) and neglecting the terms that do not depend

1For dynamic unbalance parameters, the covariance matrix R̂ in (11) is time-varying and must be replaced by R̂[n].
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on the unknown parameters, the maximization of L(Ω) with respect to Ω reduces to the minimization of

the Least Square criterion [24]

N−1∑

n=0

(y[n]− DHx[n])T (y[n]− DHx[n]) (9)

In the following, we decompose the estimation problem into two steps. First, we estimate the unbalance

parameters and quadrature components by minimizing (9) with respect to d1, d2, and x[n]. Then, we

resort to the invariance property of the Maximum Likelihood to estimate a[n] and φ[n] from the estimate

of x[n].

1) Estimation of d1 and d2: Let us denote by d = [d1, d2]
T the vector containing the unbalance

parameters. It can be shown that minimizing (9) with respect to d is equivalent to the minimization of

the following cost function [24]–[26]

J (d) , Tr[(I − M(d)) R̂] (10)

where R̂ is the sample covariance matrix i.e.

R̂ ,
1

N

N−1∑

n=0

y[n]yT [n], (11)

and

M(d) , DH(HTD2H)−1HTDT . (12)

The cost function can be simplified due to the particular structure of H. Indeed, from the definitions of

H and D, we obtain

HTD2H =
1

4


 d21 + d22 + 4 −

√
3
(
d21 − d22

)

−
√
3
(
d21 − d22

)
3
(
d21 + d22

)


 (13)

Therefore, the inverse matrix is given by

(
HTD2H

)−1
=

1

3(d21 + d22 + d21d
2
2)

×


 3

(
d21 + d22

) √
3
(
d21 − d22

)
√
3
(
d21 − d22

)
d21 + d22 + 4


 (14)

After some computations, it follows that

M(d) =
1

d21 + d22 + d21d
2
2




d21 + d22 −d1d
2
2 −d21d2

−d1d
2
2 1− d22 −d1d2

−d21d2 −d1d2 1− d21


 . (15)
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From (15), we note that

I − M(d) =
1

d21 + d22 + d21d
2
2




d21d
2
2 d1d

2
2 d21d2

d1d
2
2 d22 d1d2

d21d2 d1d2 d21


 . (16)

Then, it can be checked that

I − M(d) =
v(d)vT (d)

vT (d)v(d)
, (17)

where v(d) is a 3× 1 column vector which is defined as

v(d) ,




d2d1

d2

d1


 . (18)

Using (17) in (10) and the cyclic property of trace, the cost function can be arranged as

J (d) =
Tr
[
v(d)vT (d)R̂

]

vT (d)v(d)
(19)

=
vT (d)R̂v(d)

vT (d)v(d)
. (20)

From (20), we observe that the cost function J (d) reduces to a Rayleigh quotient. A Rayleigh quotient

is bounded by [27, Theorem 4.2.2]:

λmin ≤ vT (d)R̂v(d)

vT (d)v(d)
≤ λmax (21)

where λmin and λmax correspond, respectively, to the lowest and highest eigenvalues of R̂. The lower

bound is reached if and only if

v(d)

‖v(d)‖ = û (22)

where ‖.‖ denotes the vector norm and û is the unit-norm eigenvector satisfying R̂û = λminû. In other

words, the entire information about d1 and d2 is carried by the eigenvector û associated with the smallest

eigenvalue of the sample covariance matrix.

From (22), we can obtain closed form expressions for the MLEs of d1 and d2. Let us decompose û as

û ,




û0

û1

û2


 (23)
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and let us denote by d̂1 and d̂2, the MLEs of the unbalance parameters. Using (23) and (18) in (22), we

obtain the following equations

d̂1d̂2 = û0‖v(d̂)‖ (24a)

d̂2 = û1‖v(d̂)‖ (24b)

d̂1 = û2‖v(d̂)‖. (24c)

Therefore, the MLEs of the unbalance parameters are simply given by

d̂1 =
û0
û1

(25a)

d̂2 =
û0
û2

. (25b)

For large N , it is shown in Appendix A that d̂k (k = 1, 2) is Gaussian distributed. Accordingly, for

large N , the bias and variance of d̂k are respectively given by

bias(dk) ≈
σ2‖v(d)‖2

N
× dkCkk − C0k

w2
k

(26a)

var
(
d̂k

)
≈ σ2‖v(d)‖2

N
× C00 − 2dkC0k + d2kCkk

w2
k

(26b)

where w1 = d2, w2 = d1, Cij corresponds to the [i, j] element of the 3× 3 matrix

C =

1∑

k=0

λk

(λk − σ2)2
sksTk , (27)

and sk (k = 0, 1) are the unit norm eigenvectors associated with the two largest eigenvalues λk (k = 0, 1)

of R , E[y[n]yT [n]]. From (26), it can be observed that the bias and variance of the estimators go to

zero as σ2 → 0 or N → ∞.

2) Estimation of x[n], a[n] and φ[n]: Let us denote by D̂ = diag([1 d̂1 d̂2]) the diagonal matrix

containing the estimates of the unbalance parameters. It can be shown that the MLEs of the direct and

quadrature components, x[n], are given by [24]

x̂[n] = (HT D̂
2
H)−1HT D̂

T
y[n]. (28)

Remark 1: For balanced systems (d̂1 = d̂2 = 1), the MLEs of the direct and quadrature components

reduce to

x̂[n] =




2
3 −1

3 −1
3

0
√
3
3 −

√
3
3


 y[n]. (29)

In the power electronics community, this transform is known as the Clarke transform [14].

June 23, 2014 DRAFT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TSP.2014.2333565

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 9

To estimate a[n] and φ[n] from x̂[n], we resort to the invariance property of the MLE [28, Theorem

7.4]. Using this property, the MLEs of the IA and IP are given by

 â[n]

φ̂[n]


 = G−1(x̂[n]), (30)

where G−1(.) corresponds to the inverse of the multivariate non-linear function G(.) in (6). Decomposing

x̂[n] as x̂[n] = [x̂α[n], x̂β [n]]
T and using the definition of G(.), we obtain

â[n] =
√

x̂2α[n] + x̂2β [n] (31a)

φ̂[n] = arctan

(
x̂β [n]

x̂α[n]

)
. (31b)

B. Algorithm Implementation

The proposed estimation procedure is summarized in Figure 1. From a practical viewpoint, the more

difficult task relies on the evaluation of d̂1, d̂2 and x̂[n]. Indeed, d̂1 and d̂2 requires the computation

of the eigenvector û and x̂[n] requires a matrix inversion. These computations can be performed by

specialized mathematical libraries such as LAPACK or the GNU Scientific Library. However, these

libraries are designed mainly for large matrices and may produce a lot of computational overhead for

small matrices [29]. To reduce computational time and avoid the use of external libraries, we provide in

this subsection the analytic expressions of d̂1, d̂2 and x̂[n].

1) Expression of d̂1 and d̂2: Let us express the 3× 3 symmetric matrix R̂ as

R̂ =




r00 r01 r02

r01 r11 r12

r02 r12 r22


 . (32)

The eigenvalues of R̂ are obtained by solving the equation det(λkI−R̂) = 0. For 3×3 symmetric matrix,

the analytic solutions are given by (see [29])

λk =
2
√
p

3
cos

(
ϕ+

2kπ

3

)
− 1

3
c2, k = 0, 1, 2 (33)
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Y = [y[0], · · · , y[N − 1]] Estimation

of x[n]

Estimation of

a[n] and φ[n]

Estimation

of d1 and d2

x̂[n]

d̂1, d̂2

â[n], φ̂[n]

Fig. 1: Estimation procedure for a[n], φ[n], d1 and d2.

where

ϕ =
1

3
arctan




√
27[14c

2
1(p− c1) + c0(q +

27
4 c0)]

q




c2 = −r00 − r11 − r22

c1 = r00r11 + r00r22 + r11r22 − r201 − r202 − r212

c0 = r00r
2
12 + r11r

2
02 + r22r

2
01 − r00r11r22 − 2r02r01r12

p = c22 − 3c1

q = −27

2
c0 − c32 +

9

2
c2c1.

In particular, as ϕ ∈ [0, 2π3 [, we can easily show that the smallest eigenvalue is given by λmin = λ1. The

associated eigenvector, û, is obtained by solving the equation R̂û = λminû. After some computations,

we obtain

û0 = β ×
(
(r22 − λmin)(r11 − λmin)− r212

)
(34a)

û1 = β × (r02r12 − r01(r22 − λmin)) (34b)

û2 = β × (r01r12 − r02(r11 − λmin)) (34c)

where the normalized coefficient β is introduced to enforce the constraint ‖û‖2F = 1. Finally, inserting

(34) into (25) yields

d̂1 =
(r22 − λmin)(r11 − λmin)− r212

r02r12 − r01(r22 − λmin)
(35a)

d̂2 =
(r22 − λmin)(r11 − λmin)− r212

r01r12 − r02(r11 − λmin)
(35b)
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Algorithm 1 Implementation of the MLE

Require: X.

1: Compute the data sample covariance matrix R̂ with (11).

2: Compute λmin = λ1 with (33).

3: Compute d̂1 and d̂2 with (35).

4: Compute x̂α[n] and x̂β [n] with (36).

5: Compute â[n] and φ̂[n] with (31).

6: return d̂1, d̂2, â[n] and φ̂[n].

2) Expression of xα[n] and xβ [n]: The estimate of x[n] = [x̂0[n], x̂1[n]]
T is given by (28). This esti-

mate can be expressed in a simple form using the value of (HT D̂
2
H)−1 in (14). After some computations,

we find

x̂α[n] =
(d̂21 + d̂22)y0[n]− d̂1d̂

2
2y1[n]− d̂21d̂2y2[n]

d̂22 + d̂21 + d̂21d̂
2
2

(36a)

x̂β [n] =
(d̂21 − d̂22)y0[n] + d̂1(d̂

2
2 + 2)y1[n]− d̂2(d̂

2
1 + 2)y2[n]√

3(d̂22 + d̂21 + d̂21d̂
2
2)

(36b)

Finally, the implementation is detailed in Algorithm 1. For the computation of φ̂[n] in (31) and ϕ

in (33), care must be taken to resolve the ambiguity in the arctan function since φ[n] ∈ [0 2π[ and

ϕ ∈ [0 2π/3[. In practice, the correct quadrant can be obtained directly using the atan2 function

which is provided in the standard library of most programming languages. We should emphasize that

the proposed technique is easy to implement and does not require any external library. Therefore, our

solution makes it also a potential (if not the unique) candidate for implementation on hardware embedded

system (e.g. FPGA, microprocessors).

IV. PERFORMANCE ANALYSIS: CRAMÉR RAO BOUNDS

A natural criterion to assess the performance of an estimator, θ, is the mean square error (MSE). The

MSE can be decomposed as follows [28]

MSE[θ̂] = bias2(θ) + var(θ̂)

where bias(θ) and var(θ̂) correspond to the bias and variance of the estimator, respectively. For unbiased

estimators, the variance is lower bounded by the so-called Cramér-Rao Lower Bound (CRB). In this

context, an unbiased estimator that reaches the CRB is said to be efficient [28].
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The statistical performance of the Maximum Likelihood Estimator under the Conditional model (CML)

has been characterized in several studies. Specifically, it has been demonstrated in [30], [31] that the CML

is asymptotically unbiased as N → ∞ or SNR→ ∞, making the comparison between the variance and

CRB relevant in the asymptotic regions. Furthermore, it has also been demonstrated that the variance

of the CML reaches the CRB at high SNR [31], a property which is not systematically shared by

other estimators2. Finally, it has been shown that the CML does not reach the CRB for N → ∞ (with

SNR6= ∞). In particular, the non-efficiency of the CML for N → ∞ is due to the fact that the number

of unknowns grows without bound as N increases3 [24], [33].

This section focuses on the derivation of the Cramér-Rao Lower Bound for the Conditional Model in

(2). It should be mentioned that the CRB of the fundamental frequency has been empirically analysed

in [34] for unbalanced three-phase systems with constant IA and linear IP. In this section, we provide

explicit expressions for the CRBs of the unbalance parameters, IA and IP for the general case, and we

highlight some useful properties of these bounds.

The Cramér-Rao inequality states that the variance of any unbiased estimator is bounded by

var(â[n]) ≥ CRB [a[n]] (37a)

var(φ̂[n]) ≥ CRB [φ[n]] (37b)

var(d̂k[n]) ≥ CRB [dk] (37c)

where â[n], φ̂[n] and d̂k[n] correspond to the estimates of a[n], φ[n] and dk, respectively. To derive

explicit expressions for the CRBs, let us define

T(Ω) ,




DHG(a[0], φ[0])

DHG(a[1], φ[1])
...

DHG(a[N − 2], φ[N − 2])

DHG(a[N − 1], φ[N − 1])




the 3N × 1 column vector containing the noiseless samples.

The CRBs are derived from the inverse of the Fisher Information Matrix. As b[n] ∼ N (0, σ2I), the

2For example, the Unconditional Maximum Likelihood does not reach the CRB at finite number of samples and high signal

to noise ratio [32].

3In our context, the number of unknowns is equal to 2(N + 1).
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ijth element of the Fisher Information Matrix is given by [28]

[F(Ω)]i,j =
1

σ2

(
∂T(Ω)

∂Ωi

)T (∂T(Ω)

∂Ωj

)
(38)

where Ωj corresponds to the (j + 1)th element of Ω (see (7)). From the definition of T(Ω), it follows

that

[F(Ω)]i,j =
1

σ2

N−1∑

n=0

(
∂DHx[n]

∂Ωi

)T (∂DHx[n]

∂Ωj

)
(39)

= [F(Ω)]j,i (40)

After some computations, we find

F(Ω) =




K0 0 · · · 0 ZT
0

0 K1
. . .

... ZT
1

...
. . .

. . . 0
...

0 · · · 0 KN−1 ZT
N−1

Z0 Z1 · · · ZN−1 Γ




(41)

where

Kn =
1

σ2
Q[n]HTD2HQT [n] (42a)

Zn =
1

σ2


 d1xT [n]hT

1 h1

d2xT [n]hT
2 h2


QT [n] (42b)

Γ =
N

σ2


 h1Rxh1 0

0 h2Rxh2


 (42c)

and

Q[n] ,


 cos(φ[n]) sin(φ[n])

−a[n] sin(φ[n]) a[n] cos(φ[n])


 (43a)

h1 ,

[
−1

2

√
3

2

]
(43b)

h2 ,

[
−1

2
−

√
3

2

]
(43c)

Rx ,
1

N

N−1∑

n=0

x[n]xT [n] (43d)

Let us decompose the Fisher Information Matrix as

F(Ω) =


 K ZT

Z Γ


 (44)
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where

• K is a 2N × 2N matrix which is defined as

K ,




K0 0 0

0
. . . 0

0 0 KN−1


 (45)

• and Z is a 2× 2N matrix which is defined as

Z , [Z0, ...,ZN−1] (46)

Using the inverse formula for partitioned matrix [28], we obtain

F−1(Ω) =


(
K − ZT

Γ
−1Z

)−1 −
(
K − ZT

Γ
−1Z

)−1
ZT

Γ
−1

−
(
Γ− ZK−1ZT

)−1
ZK−1

(
Γ− ZK−1ZT

)−1




Using (42c) and (45), it can be checked that the inverses Γ
−1 and K−1 are equal to

Γ
−1 =

σ2

N




1
h1RxhT

1

0

0 1
h2RxhT

2


 (47)

K−1 =




K−1
0 0 0

0
. . . 0

0 0 K−1
N−1


 (48)

where K−1
n is equal to

K−1
n = σ2Q−T [n](HTD2H)−1Q−1[n] (49)

A. CRBs of the Unbalance Parameters

The Cramér-Rao Bounds of d1 and d2 are defined by

CRB[d1] ,
[
F−1(Ω)

]
2N,2N

(50a)

CRB[d2] ,
[
F−1(Ω)

]
2N+1,2N+1

(50b)

The computation of the Cramér-Rao Bounds requires the inversion of Γ − ZK−1ZT , which can be

expressed in a simple form.

From (49), (48), (46) and (42b), it can be verified that

ZK−1ZT =
N

σ2


 d21p11h1RxhT

1 d1d2p12h2RxhT
1

d1d2p12h2RxhT
1 d22p11h2RxhT

2


 (51)
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where puv , hu(H
TDH)−1hT

v . Specifically, using (14), we find

p11 =
d22 + 1

‖v(d)‖2 , p12 =
−1

‖v(d)‖2 , p22 =
d21 + 1

‖v(d)‖2 , (52)

where v(d) is defined in (18). Then, using (42c), (51) and (52), it follows that

Γ− ZK−1ZT =
N

σ2‖v(d)‖2


 d22h1RxhT

1 d1d2h2RxhT
1

d1d2h2RxhT
1 d21h2RxhT

2


 (53)

Finally, the CRBs are obtained by inverting Γ − ZK−1ZT . As h1RxhT
1 h2RxhT

2 − h2RxhT
1 h2RxhT

1 =

(3/4)det(Rx), we obtain

CRB[d1] =
4σ2‖v(d)‖2

3N
× h2RxhT

2

d22det(Rx)
(54a)

CRB[d2] =
4σ2‖v(d)‖2

3N
× h1RxhT

1

d21det(Rx)
. (54b)

We observe that CRB[d1] and CRB[d2] tend to 0 when N → ∞ or when σ2 → 0. Additional properties

are also provided in Remark 2 and 3.

Remark 2: The CRBs of d1 and d2 are bounded by

4σ2‖v(d)‖2
3Nlmaxd22

≤ CRB[d1] ≤
4σ2‖v(d)‖2
3Nlmind22

(55a)

4σ2‖v(d)‖2
3Nlmaxd21

≤ CRB[d2] ≤
4σ2‖v(d)‖2
3Nlmind21

. (55b)

where lmax ≥ lmin are the eigenvalues of Rx.

Proof: First, as huhT
u = 1, the scalar huRxhT

u is bounded by lmin ≤ huRxhT
u ≤ lmax. Then, as the

matrix determinant is equal to the product of the eigenvalues of Rx, det(Rx) = lminlmax. Using these

two properties in (54) yields to (55).

Remark 3: When Rx = σ2
sI, the CRBs of d1 and d2 are related by

CRB[d2]

CRB[d1]
=

(
d2
d1

)2

(56)

Proof: The proof comes from the fact that h1hT
1 = 1 and h2hT

2 = 1.

B. CRBs of the Instantaneous Amplitude and Instantaneous Phase

The Cramér-Rao Bounds of a[n] and φ[n] are defined by

CRB[a[n]] ,
[
F−1(Ω)

]
2n,2n

(57a)

CRB[φ[n]] ,
[
F−1(Ω)

]
2n+1,2n+1

(57b)
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The computation of the Cramér-Rao Bounds requires the inversion of K−ZT
Γ
−1Z, which is difficult to

obtain in closed-form. However, this inverse matrix can be approximated for the asymptotic case N → ∞.

Indeed, when Rx is finite, we obtain the following limit

ZT
Γ
−1Z =

σ2

N
ZT




1
h1RxhT

1

0

0 1
h2RxhT

2


Z → 0

Therefore, it follows that

(
K − ZT

Γ
−1Z

)−1 → K−1 (58)

For the asymptotic case, this approximation shows that the contribution of the estimation error of d1 and

d2 can be neglected. From (48), we obtain the asymptotic Cramér-Rao Bounds of a[n] and φ[n]. These

bounds are equal to

CRB∞[a[n]] = [K−1
n ]0,0 (59a)

CRB∞[φ[n]] = [K−1
n ]1,1 (59b)

In order to obtain a closed-form expression, we make use of the following equality (see the definition of

Q[n] in (43a))

Q−1[n] =


 cos(φ[n]) − 1

a[n] sin(φ[n])

sin(φ[n]) 1
a[n] cos(φ[n])




Using this equality in (49) yields to

CRB∞[a[n]] = σ2q1[n]
(
HTD2H

)−1
qT
1 [n] (60a)

CRB∞[φ[n]] =
σ2

a2[n]
q2[n]

(
HTD2H

)−1
qT
2 [n] (60b)

where

q1[n] , [cos(φ[n]) sin(φ[n])] (61a)

q2[n] , [− sin(φ[n]) cos(φ[n])] (61b)

From (60), we see that the asymptotic Cramér Rao Bounds do not depend on N and increase linearly

with the noise variance σ2. In particular, these bounds tend to 0 only if σ2 → 0. We also observe

that CRB∞[a[n]] does not depend on a[n], while CRB∞[φ[n]] decreases quadratically with a[n]. When

a[n] = 0, it is interesting to note that the estimation of φ[n] becomes impossible. Finally, we observe

that the two CRBs depend on φ[n], and their derivatives are related by

∂CRB∞(a[n])

∂φ[n]
= −a[n]2

(
∂CRB∞(φ[n])

∂φ[n]

)
(62)
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which implies that the positions of the extrema are the same but their natures (minima or maxima) are

different.

V. NUMERICAL EXAMPLES

In this section, the performances of the proposed technique are evaluated using synthetic signals as

defined in the IEEE Standard C37.118 [9]. The accuracy of the proposed estimators is assessed with the

following Mean Square Errors (MSEs)

MSE[dk] = E

[(
d̂k − dk

)2]
(63a)

MSE[a] =
1

N

N−1∑

n=0

E
[
(â[n]− a[n])2

]
(63b)

MSE[φ] =
1

N

N−1∑

n=0

E

[[
φ̂[n]− φ[n]

]2
[−π,π(

]
(63c)

where the notation [.][−π,π( in (63c) means that the phase error is reduced to the interval [−π, π(, and E[.]

corresponds to the expectation operator. In the following, the expectations are estimated through 5000

Monte Carlo trials. As the MLE is asymptotically unbiased, we compare the MSEs of the unbalance

parameters to the Cramér-Rao Bounds CRB[d1] and CRB[d2], and the MSEs of the IA and IP to the

average CRBs

CRB[a] =
1

N

N−1∑

n=0

CRB[a[n]] (64)

CRB[φ] =
1

N

N−1∑

n=0

CRB[φ[n]]. (65)

In order to show the accuracy of the CRB approximation in (60), CRB[a] and CRB[φ] are also compared

with those obtained with the asymptotic CRBs.

In the following experiments, the unbalance parameters are set to d0 = 1, d1 = 0.75, d2 = 1.1994, the

nominal frequency is fixed to fs = 60Hz, and the sampling frequency is equal to Fs = 5kHz.

4The values of dk have been chosen to respect both the normalization of the proposed technique, i.e. d0 = 1, and the one

of the PCA approach, i.e. d20 + d21 + d22 = 3.
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Experimental Approximated values

values using (26)

N CRB MSE var(d̂k) biais2(dk) MSE var(d̂k) biais2(dk)

samples ×10−4
×10−4

×10−4
×10−4

×10−4
×10−4

×10−4

120 18.0 19.3 19.3 0.0 20.1 20.0 0.0

d1 200 10.8 11.6 11.6 0.0 12.0 12.0 0.0

1000 2.1 2.2 2.2 0.0 2.4 2.4 0.0

120 44.6 46.5 46.5 0.0 48.6 48.6 0.0

d2 200 26.5 27.9 27.9 0.0 29.2 29.1 0.0

1000 5.3 5.7 5.7 0.0 5.8 5.8 0.0

TABLE I: Linear FM: CRB, variance and square of the bias of the estimators dk versus data length

(σ2 = 4.10−2).

A. Estimation with Linear Frequency Modulation (FM)

The first test investigates the case of three-phase signals with unit amplitude and linear frequency

modulation. Under these conditions, the IA and IP are respectively given by [9, 5.5.7]

a[n] = 1 (66a)

φ[n] = 2πfsn/Fs + πrf (n/Fs)
2 (66b)

where rf is the frequency ramp rate, which is set to rf = 1Hz/s [9, 5.5.7]. The corresponding signal is

displayed in Figure 2a for illustration.

Statistical performances are analysed for different data lengths, and at different signal-to-noise ratios

(SNRs). The SNR is defined

SNRdB = 10 log

(
Tr
[
DHRxHTDT

]

3σ2

)
. (67)

Tables I and II present the CRB, MSE, variance and (the square of) the bias of dk (k = 1, 2) versus

the data length and SNR, respectively. The approximated values of the variance and bias in (26) are also

provided for comparison. First, we observe that the CRB, MSE, variance and bias decrease as the data

length or SNR increases. Then, we note that the square of the bias is close or equal to zero in each

simulation, making the comparison between the CRB and MSE relevant in the asymptotic regions. By

comparing the CRB and MSE in Table I, we show that the MSEs do not achieve the CRBs at fixed

SNR since the difference between the CRB and MSEs is non-zero, even with a large number of samples.

This behaviour is not observed in Table II. These observations corroborate the fact that the CML is not

June 23, 2014 DRAFT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TSP.2014.2333565

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 19

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

N
or

m
al

iz
ed

 V
ol

ta
ge

s

 

 

Phase 0
Phase 1
Phase 2

(a) Linear frequency modulation (rf = 1Hz/s)
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(b) Sinusoidal amplitude and phase modulation (kx = ka = 0.1 and fm = 5Hz)

Fig. 2: Three-phase signals according to the IEEE Standard C37.118.1 with amplitude unbalance (d1 =

0.75, d2 = 1.199 and σ2 = 0)

efficient for large N (at fixed SNR) [24], [30], [33], and efficient for large SNR (at fixed N ) [31]. In

particular, as discussed in section IV, the non-efficiency of the Maximum Likelihood for N → ∞ is due

to the fact that the number of unknown parameters grows without bound as N increases [30]. Finally,

we note that the approximated values of the MSE, variance and bias are close to the experimental ones.

However, it should be mentioned that a small error still persists even for large N . For example, with

N = 1000 samples, the experimental MSE of d1 is equal to 2.2× 10−4 whereas the approximated MSE
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Experimental Approximated values

values using (26)

SNR CRB MSE var(d̂k) biais2(dk) MSE var(d̂k) biais2(dk)

dB ×10−4
×10−4

×10−4
×10−4

×10−4
×10−4

×10−4

10 20.2 21.9 21.9 0.0 24.2 24.2 0.0

d1 15 6.6 6.6 6.6 0.0 6.8 6.8 0.0

20 2.0 2.0 2.0 0.0 2.1 2.1 0.0

10 51.3 55.0 54.9 0.1 57.5 57.4 0.1

d2 15 16.9 16.9 16.8 0.0 16.8 16.8 0.0

20 5.2 5.2 5.2 0.0 5.2 5.2 0.0

TABLE II: Linear FM: CRB, variance and square of the bias of the estimators dk versus SNR (N = 128).

is equal to 2.4× 10−4.

Figure 3 presents the estimation errors, the CRBs and the CRB limits (see Remark 2) for the unbalance

parameters. We see that the CRBs are correctly bounded by the CRB limits. We also note that the CRBs,

the lower and upper CRB limits coincide for particular values of N (N = 42, 83, 125, · · · ). These values

correspond to the case where Rx ≈ 0.5I. Specifically, it can be shown that this equality is satisfied when

the number of samples is equal to an integer multiple of the half period (0.5×Fs/fs ≈ 41.66), or when

N → ∞. Figure 3 also shows that the estimation of d1 is more accurate than the estimation of d2.

Specifically, the CRB of d1 is about 2.53 times lower than that of d2, and the MSEs follow the same

trend for SNR≥ 10dB. This observation is consistent with Remark 3. Indeed, using the expression of

a[n] and φ[n], it can be checked that for large N the covariance matrix tends to Rx ≈ 0.5I, which implies

that CRB[d2]/CRB[d1] = (d2

d1

)2 ≈ 2.5.

Comparing the MSEs to the CRB in the asymptotic region, we note that the MLEs of d1 and d2 do

not achieve the CRBs at fixed SNR. Indeed, we observe an offset between the MSEs and the CRBs, even

with a large number of samples.

Figure 4 shows the MSE, the CRB and the asymptotic CRB for the instantaneous amplitude a[n]. For

the purpose of comparison, the MSEs obtained with the MLE are compared with those obtained with the

Clarke transform and PCA-based techniques [17]. In this figure, we observe that the CRB decreases as

the SNR increases. Furthermore, we see that the exact CRB tends to the asymptotic one when N → ∞.

Regarding the estimators, we observe that the Clarke estimator does not provide reliable results due to

the unbalance condition. Specifically, the MSE exhibits an ”error floor” that is equals to 10−2 for the
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Fig. 3: Linear FM: Estimation of d1 and d2

asymptotic case SNR→ ∞. We also note that the performances of the PCA estimator highly depend on

the data length. Indeed, this estimator is based on the assumption that R̂x = σ2
sI, which is only satisfied

when N is equal to an integer multiple of the half period, or when N → ∞. Finally, we observe that

the MLE outperforms all the other methods and achieves the CRB for SNR→ ∞.

Figure 5 presents the estimation error and the CRB for the instantaneous phase φ[n]. We can draw

similar conclusions as those from Figure 4. Specifically, the MLE outperforms the other estimators and

achieves the CRB for SNR→ ∞. Furthermore, we note that the MSE tends to a fixed value at low SNR.
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Fig. 4: Linear FM: Estimation of a[n]

Specifically, the random variable [φ̂[n]−φ[n]]2[−π,π( tends to a uniform distribution with support [−π, π(

at low SNR, which implies that MSE[φ] ≈ π2

3 .
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B. Estimation with sinusoidal amplitude and phase modulation

The performances of the proposed technique are evaluated using three-phase signals with sinusoidal

amplitude and phase modulation. Under sinusoidal modulation, IA and IP are given by [9, 5.5.6]

a[n] = 1 + kx cos(2πfmn/Fs) (68a)

φ[n] = 2πfsn/Fs + ka cos(2πfmn/Fs + π) (68b)
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where kx is the amplitude modulation factor and ka is the phase modulation factor. In the following

simulations, these parameters are chosen according to the worst scenario of the IEEE Standard C37.118 [9]

(kx = ka = 0.1). Figure 2b displays the corresponding signals with a modulation frequency of fm = 5Hz.

The evolution of the CRBs and the MSEs versus the data length or the SNR is very similar to the

one observed in subsection V-A, and therefore, are not presented here for the sake of brevity. Instead,

as recommended in the standard C37.118 [9], the following experiments examine the influence of the

modulation frequency fm on the statistical performances.

Figure 6 displays the CRBs and the MSEs of the unbalance parameters for N = 128 and σ2 = 4×10−2.

We see that the CRBs and MSEs do not seem to be affected by the modulation frequency. A closer

inspection reveals some small non-monotonic variations. For instance, the CRB of d2 is equal to 0.0034

at fm = 1Hz, and to 0.0036 at fm = 10Hz. These variations are caused by the sample covariance matrix

Rx in (60), which is slightly sensitive to fm.

Figure 7 and 8 present the MSEs, the CRBs and the asymptotic CRBs for the IA and IP. As reported

before, we observe that these quantities are not significantly affected by fm.

C. Influence of Harmonics

In this subsection, we analyse the behaviour of the proposed algorithm in the presence of a model

mismatch caused by harmonics. In power system, harmonics are produced by nonlinear loads and are a

big nuisance in transmission networks [35]. Due to waveform symmetry, electrical signals mostly contain

odd harmonics. By adding odd harmonics in (1), we get the following model

yk[n] = dka[n] cos(φ[n]− 2kπ/3)

+
∑

l=3,5,..

dkal[n] cos(lφ[n]− 2klπ/3) + bk[n] (69)

where al[n] corresponds to the level of the lth harmonic. In this subsection, we assume a constant IA,

a[n] = 1, and linear IP, φ[n] = 2πfsn/Fs. Furthermore, we set a3[n] = β, a5[n] = 0.5β and a7[n] = 0.3β.

Figures 9, 10 and 11 present the influence of the harmonic coefficient β on the MSEs. The CRBs are

not presented here due to the model mismatch.

We observe that the MSEs increase as β increases. Moreover, it is interesting to note that, while

MSE[d2] > MSE[d1] for small values of β, this trend is reversed for higher values of β. Finally, we can

note that the PCA estimator of the instantaneous phase, φ[n], seems to be slightly more robust than the

MLE estimator.
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D. Frequency Estimation with linear FM and sinusoidal AM/PM

In this experiment, the proposed technique is applied to the estimation of the instantaneous frequency.

The instantaneous frequency can be derived from the MLE of the instantaneous phase as follows

f̂ [n] =
Fs

4π

(
φ̂u[n+ 1]− φ̂u[n− 1]

)
(70)

where φ̂u[n] corresponds to the unwrapped MLE of the instantaneous phase. This frequency estimate is

compared to the one obtained with the Augmented Complex Least Mean Square (ACLMS) algorithm

in [19] using a perfect initialization, i.e. f [0] = 60Hz, and a step size of µ = 0.01 and µ = 0.1. Figure 12

displays the reference and the estimated frequencies with linear frequency modulation (see subsection

V-A), and sinusoidal amplitude and phase modulation (see subsection V-B). This figure shows that all the

considered estimators are able to track the reference frequency. Concerning the ACLMS, we observe that

a large step size µ is required to obtain a rapid and precise estimate. However, we also note that a large

step size results in an overshoot, which can be problematic in monitoring applications. Finally, we see

that the MLE gives the best frequency estimate in the two simulations. Nevertheless, this statement must

be tempered because the proposed MLE assumes static unbalance parameters (see AS1)), as opposed to

the ACLMS. When AS1) is not satisfied, the proposed MLE must be adapted to take into account the

non-stationarity of the sample covariance matrix.

VI. CONCLUSION

In this paper, we investigated the estimation of the amplitude, phase and unbalance parameters in

three-phase systems with amplitude unbalance.

First, a new approach to estimate the amplitude, the phase and the unbalance parameters was proposed.

We demonstrated that the Maximum Likelihood Estimators of these parameters have simple closed-form

expressions. More precisely, the unbalance parameters are computed from the eigenvector associated

with the smallest eigenvalue of the sample covariance matrix, and the amplitude and phase are estimated

from a linear transformation of the three-phase signal. We also provided a low complexity algorithm to

implement these estimators, which is suitable for real-time implementation in embedded systems.

Then, the Cramér-Rao Bounds (CRBs) of the amplitude, phase and unbalance parameters were derived

and analysed. We provided explicit expressions for the CRB of the unbalance parameters and asymptotic

expressions for the CRB of the amplitude and phase.

The performances of the proposed estimators were validated using synthetic signals compliant with

the IEEE Standard C37.118 and compared with other estimators such as the Clarke transform, the PCA
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estimator and the ACLMS. These simulations showed that the proposed estimators outperform the other

techniques and achieve the CRB at high SNR, whatever the number of samples and the modulation

frequency. Extension of the proposed technique to more complicated signals, including non-sinusoidal

signals with amplitude and phase unbalance, will be investigated in future works.
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APPENDIX A

ASYMPTOTIC PROPERTIES OF d̂k

Under the assumptions AS1)-AS3), the covariance matrix, R, is given by

R , E
[
y[n]yT [n]

]
= DHRxHTDT + σ2I

This matrix can be decomposed as

R = SΛST (71)

where Λ = diag(λ0, λ1, σ
2) (λ0 ≥ λ1 ≥ σ2) is a 3 × 3 diagonal matrix containing the eigenvalues and

S = [s0, s1,u] is a 3× 3 matrix containing the unit-norm associated eigenvectors.

Similarly, the sample covariance matrix, R̂, can be decomposed as

R̂ = ŜΛ̂Ŝ
T

(72)

where Ŝ = [̂s0, ŝ1, û] and Λ = diag(λ̂0, λ̂1, λ̂2).

Let us focus on the unit-norm eigenvector, û. For large N , û is approximately jointly Gaussian

distributed with mean and covariance matrix given by (see [33])

E [û] ≈ u (73a)

Σ =E[(û − u)(û − u)T ] ≈ σ2

N
C (73b)

where

C =

1∑

k=0

λk

(λk − σ2)2
sksTk .

Similarly to (23), let us decompose u as

u ,




u0

u1

u2


 . (74)

Using this decomposition and (73), the eigenvector ûk is approximately distributed as

ûk ∼ N (uk,Σuu) , (75)

where Σuv corresponds to the [u, v] element of Σ. As d̂k = û0/ûk, it follows that d̂k is a ratio of two

Gaussian distributions. In the general case, the distribution of a ratio of two Gaussian distributions is quite

complicated [36]. However, under the assumption that ûk > 0, which is motivated by (24), it has been

shown in [36] that this distribution can be well approximated by a Gaussian distribution. Furthermore,
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using Taylor expansions, the mean and variance of a ratio of two random variables can be approximated

by (see for example [37])

E

[
û0
ûk

]
≈ E[û0]

E[ûk]
− Σ0k

E2[ûk]
+

E[û0]Σkk

E3[ûk]
(76a)

var

(
û0
ûk

)
≈ Σ00

E2[ûk]
− 2

E[û0]Σ0k

E3[ûk]
+

E2[û0]Σkk

E4[ûk]
(76b)

Using (25) and (73) in (76), it follows that the bias and variance can be approximated by

bias(dk) ≈
σ2

Nu2k
(dkCkk − C0k) (77a)

var
(
d̂k

)
≈ σ2

Nu2k

(
C00 − 2dkC0k + d2kCkk

)
(77b)

Finally, as u = v(d)/‖v(d)‖, we get (26).
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Fig. 6: Sinusoidal AM-PM: Estimation of d1 and d2 (kx = ka = 0.1, N = 128 and σ2 = 4× 10−2)
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Fig. 7: Sinusoidal AM-PM: Estimation of a[n] (kx = ka = 0.1, N = 128 and σ2 = 4× 10−2)

1 2 3 4 5 6 7 8 9 10
10

−2

10
−1

fm (Hz)

M
ea

n 
S

qu
ar

e 
E

rr
or

 

 
MSE[φ] (Clarke)
MSE[φ] (PCA)
MSE[φ] (MLE)
CRB[φ] (Asymptotic)
CRB[φ] (Exact)

Fig. 8: Sinusoidal AM-PM: Estimation of φ[n] (kx = ka = 0.1, N = 128 and σ2 = 4× 10−2)
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Fig. 9: Influence of harmonics: Estimation of d1 and d2 (N = 128 and σ2 = 4× 10−4)
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Fig. 10: Influence of harmonics: Estimation of a[n] (N = 128 and σ2 = 4× 10−4)
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Fig. 11: Influence of harmonics: Estimation of φ[n] ( N = 128 and σ2 = 4× 10−4)
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(a) Linear frequency modulation (rf = 1Hz/s)
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(b) Sinusoidal amplitude and phase modulation (kx = ka = 0.1 and fm = 5Hz)

Fig. 12: Three-phase signals according to the IEEE Standard C37.118.1 with amplitude unbalance (d1 =

0.75, d2 = 1.199, σ2 = 0 and N = 1500 samples).
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