Aeroacoustic noise prediction for SRM
Sylvain Parrang, Javier Matias Ojeda, Sofiane Khelladi, Mohamed Gabsi

To cite this version:

HAL Id: hal-01057750
https://hal.archives-ouvertes.fr/hal-01057750
Submitted on 25 Aug 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Aeroacoustic noise prediction for SRM

Sylvain Parranga, b, Javier Ojedaa, Sofiane Khelladib, Mohamed Gabsia

aSATIE, ENS Cachan, Cachan, France, sylvain.parrang@satie.ens-cachan.fr,
bDynFluid, ENSAM Paris, Paris, France

2014-01-10

Abstract High speed motors produce an important aeroacoustic noise which restrains their field of use. In this paper we focus on an adaptation of some aeroacoustic studies in the case of a single phase SRM whose rotation rate is between 25,000 and 45,000 rpm under low rotational Mach number (\(M<0.15\)). This paper aims to build an aeroacoustic noise prediction procedure dedicated to electrical motors.

Keywords SRM, aeroacoustic, noise, Acoustic measurements, Fluid dynamics

1 Introduction

A lot of research is being carried out for the improvement of the power density of electrical motors. Two main ways are investigated to achieve power density improvement: increasing torque density and/or augmenting rotation rate. Only the second solution and more precisely one of its consequences (the high level of noise emitted by high speed motors) will be considered in this paper.

The need for reliability, low cost and high torque at low speed makes the switched reluctance motor (SRM) look like a good candidate for some embedded applications [1, 2]. Moreover, due to its passive rotor, SRM accepts high rotation rates required in our application. However the high level of noise emitted prevents SRM from being widely used. Because of its inherent qualities and its high potential for noise reduction, this study focuses on the switched reluctance motor (SRM).

As noise is a major perturbation in our everyday lives and since we are surrounded by electrical motors, noise reduction for motors constitutes an active research field. It is well known that there are three mechanisms of noise generation in motors: mechanical, magnetic and aeroacoustic noise [3]. Mechanical noise is generally not problematic since it is not the strongest noise emitted and it can be reduced by improving the mechanical quality of the motor (rotor balancing, bearings accuracy, ...). As it is preponderant at usual rotation rates, magnetic noise has been deeply investigated (see [4, 5] for some examples). In the case of SRM, many strategies have been developed to reduce it: acting on the excitation waveforms ([6, 7]), modifying the motor design [8] or adding some extra devices to realize active reduction of vibration [9]. On the contrary, studies on aeroacoustic noise dedicated to electrical motors are quite rare in the literature. This paper aims to introduce a calculation method for aeroacoustic noise generated by high rotation rates SRM.

For practical reasons, this paper focuses on the single phase SRM depicted in figure 1a whose main geometrical data are given in table 1b. This motor has an open stator and contains no cooling device.

After this introduction, aeroacoustic basics and related numerical issues are briefly introduced. Then, the calculation procedure used in this paper is explained in the third section before talking about the case of the stator in section four. In section five we deal with some preliminary experimental results before presenting the numerical results in section six. This paper ends with a brief sum up and with the further works attached to this study.

2 A brief exposure of aeroacoustic basics and issues

Noise is a small disturbance of pressure and velocity around a medium state in a fluid. Sound generation and propagation is governed by the three classical equations of fluid mechanics: the conservation of mass, the conservation of momentum (Navier-Stokes equations) and the state equation of the fluid (i.e. the perfect gas law in the case of classical acoustic).

Aeroacoustic deals with aerodynamically generated sounds, that are sounds produced by a fluid flow interacting with solid bodies and with itself. Fluid flow and acoustic phenomena are governed by the same equations so that a fluid dynamic calculation would be sufficient to achieve the resolution of an aeroacoustic problem if we were not subject to the following challenges [10]:

- aeroacoustic deals with turbulent flows which are difficult to resolve and require fine meshes and unsteady calculations;
- the gap between flow pressure (\(>10^5 Pa\)) and the acoustic pressure as well as the wide range of magnitude of the last (from \(2\cdot10^{-5} Pa\) for the audibility threshold to
Aeroacoustic noise prediction for SRM

![Schematic planar view of SRM](image)

Figure 1: Studied SRM

100 Pt for the pain threshold) impose a high resolution calculation;

- achieving wave propagation obliges to use extended grids.

These make the direct resolution of aeroacoustic problems of practical interests computationally unaffordable. These issues have been circumvented by the use of some hybrid approaches. These hybrid approaches consist in separating the fluid flow determination and the acoustic calculation under the hypothesis that the acoustic disturbance does not significantly act on the flow. Among various methods that use the hybrid approach (see [11] for more details), we will focus on the acoustic analogy.

An acoustic analogy is a noise prediction method based on an equation of the type $Q(p) = Q$ [12] where:

- \mathcal{Q} is a differential operator which becomes the linear acoustic waves operator outside of the volume containing the flow and the solid bodies interacting with the flow (called V from now);
- Q represents the acoustic sources and is determined with the flow calculation results.

The first acoustic analogy was found by Lighthill in 1952 [13] to study jet noise. His equation has been improved to take account of the solid bodies in the flow, especially by Curle [14] and by John E. Ffowcs Williams and David L. Hawkings who ended in 1969 by giving the Ffowcs-Williams and Hawkings equation [15]:

$$\frac{\partial^2 \rho}{\partial t^2} - c_0^2 \Delta \rho = \frac{\partial}{\partial t} [\rho_0 U_0 \delta(S)] - \frac{\partial}{\partial x_i} [f_i \delta(S)] + \frac{\partial^2}{\partial x_i \partial x_j} [T_{ij} H(S)] \quad (1)$$

Then Goldstein generalized this equation to take account of the case of a moving medium [16].

The left hand side of the equation (1) becomes the linear acoustic waves operator on the acoustic pressure outside of the volume V because, in the case of linear acoustic, we can write $\rho = c_0^2 \rho$ where ρ is the variation of fluid density from medium state and c_0 the sound velocity in the air.

The right hand side of this equation contains the acoustic source terms. The variable S is defined as follows:

$$S \begin{cases} < 0 & \text{inside of the solid bodies,} \\ = 0 & \text{at the solid surfaces,} \\ > 0 & \text{outside of the solid bodies,} \end{cases}$$

so that $\delta(S)$ is null everywhere except on the solid surfaces and $H(S)$ equals 1 in the fluid-occupied areas. The source terms are divided in three contributions of different nature:

- the first $\frac{\partial}{\partial t} [\rho_0 U_0 \delta(S)]$ is called the monopolar source or thickness source, it is a surfacic source distribution which comes from the fluid volume displacements by solid surfaces;
- the second $-\frac{\partial}{\partial x_i} [f_i \delta(S)]$ is called the dipolar source or loading source, it is a surfacic distribution which originates with the efforts applied by fluid on the solid bodies;
- the third $\frac{\partial^2}{\partial x_i \partial x_j} [T_{ij} H(S)]$ is the quadripolar source, it is a volumic source distribution due to the fluid turbulence.

The monopolar and dipolar sources generate tonal noise (in which fundamental frequency is equal to the blade passage frequency i.e. the product of the number of rotor teeth and its rotation frequency), on the contrary to the quadripolar source which emit broadband noise.

While rotating, the SRM rotor generates an air flow in the air-gap. Because of high rotational velocity and complex
geometry of the air-gap, this flow is highly turbulent. This
turbulent flow combined with highly variable flow section
generates strong interaction between the flow and the solid
bodies containing it. Whereas we have a turbulent flow in
strong interaction with solid bodies, it will not be necessary
to consider the three noise generation mechanisms explained
above for aeroacoustic noise calculation. Since the fluid flow
is low subsonic \((M < 0.15)\), the quadrupole source is negli-
gible compared with the two others ([17], part 3). Moreover,
Lowson’s approximation for rotor source noise, which leads
to consider the rotor noise as being of dipolar nature, has ap-
appeared as being a good approximation many times (see [18]
and [19] for some examples). Consequently only the dipolar
source will be considered in this study.

3 Calculation procedure

As explained above, two steps are required to achieve aero-
aoustic calculation:

1. a CFD calculation is carried out to determine pressure
fluctuations on rotor and stator according to time;

2. pressure data on motor parts are used to lead an aeroa-
coustic post-treatment on the basis of the FWH equa-
tion.

3.1 Simulation of the fluid flow

3.1.1 Calculation hypothesis

We suppose that the coil head areas do not significantly take
part in the aerodynamic noise generation (i.e. aeroacoustic
sources are concentrated in the air gap). Therefore the flow
is supposed to be axially invariant so that CFD simulations
can be led in two dimensions.

3.1.2 Mesh

The mesh is realized with Ansys® Meshing. The smallest
air gap thickness \((0.23 \text{ mm})\) is radially divided in ten cells.
Due to its geometrical periodicity, only the half of the studied
SRM air gap is meshed. Quadrilateral elements are pre-
ferred everywhere they do not lead to bad quality mesh. An
interface in the air gap (depicted by the dotted line on figure
2) separates the two mesh zones that are the fixed mesh next
to the stator and the sliding mesh attached to the rotor.

3.1.3 Solver parameters

The commercial CFD software Ansys® Fluent is used to
realize the flow calculation. Turbulence is calculated with a
Reynolds-Averaged Navier-Stokes (RANS) equation, namely
the \(k - \omega \text{ SST} \) model, used in a transient calculation with a
time step equal to \(1/1600\) of the rotation period.

3.2 Aeroacoustic post-treatment

The reference frames and geometrical parameters used in the
aeroacoustic calculation are shown on figure 3.

The \((O, \vec{e}_1, \vec{e}_2, \vec{e}_3)\) reference frame is attached to the ro-
tor. The rotation axis \(\vec{e}_3\) is common to the rotor and stator
reference frames. \(S\) designates the source points while \(P\) is
the reception point. We define \(r_s\) and \(r_p\) such as :

\[
\overrightarrow{OP} = \overrightarrow{x} = r_p \vec{e}_p + z_p \vec{e}_z ; \quad \overrightarrow{OS} = \overrightarrow{y} = r_s \vec{e}_s + z_s \vec{e}_z
\]

We also define \(\rho_s\) and \(\rho_p\) :

\[
\rho_s = \sqrt{r_s^2 + z_s^2} \quad ; \quad \rho_p = \sqrt{r_p^2 + z_p^2}
\]

The observer is supposed to be far from the source, i.e.
\(\rho_p >> \rho_s\). Therefore we suppose that the sound propagates
freely from the air gap where it is generated to the obser-
vation point \(P\). This hypothesis allows us to use free field
Green functions to solve the Goldstein’s equation.

In ref [20], Hanson and Prazych developed a formula-
lation of the Goldstein’s equation dedicated to the study of
propellers. The aeroacoustic post-treatment proposed in this
study consists in an adaptation of the Hanson and Prazych’s
formulation to the case of electric motors. To do so, the
velocity of the incident inflow considered by Hanson and
Prazych is set to zero. Following the calculation steps de-
tailed in ref [20] leads to :

\[
P^{(n)}(\vec{x}) = \frac{-i}{4\pi \rho_p} e^{i \frac{\phi_{r_p}}{\rho_p}} \int_A e^{-i \frac{\phi_{r_p}}{\rho_p}} \left(\frac{n \Omega_p}{c_0 \rho_p} S_\phi + \frac{1}{r_s} S_\theta \right) dA
\] \hspace{1cm} (2)
where \(p^{(n)}(\vec{x}) \) is the \(n \)-th complex harmonic component of the acoustic pressure at point \(P \) and :

\[
S_r = - \sum_{k=\infty}^{k=\infty} (-i)^{n+1-k} J_{n-k}(C)e^{i(n-k)(\phi_p-\phi_s)} f_r^{(k)}
\]

\[
S_{\theta k} = \sum_{k=\infty}^{k=\infty} (n-k)^{n-k} J_{n-k}(-C)e^{i(n-k)(\phi_p-\phi_s)} f_{\theta}^{(k)}
\]

in which \(f_{r}^{(k)} \) is the \(k \)-th complex harmonic component of the radial surfacic effort (along the \(\vec{e}_1 \) axis) applied by fluid on the surface \(A \) at point \(S \) (\(f_{r}^{(k)} \) is for the effort on the \(\vec{e}_2 \) axis), \(J_n(Z) \) is the Bessel function of the first kind and

\[
C = \frac{n \Omega r_s r_p}{c_0 \rho_p}.
\]

Those formulas apply for both rotor and stator (by taking \(\omega = 0 \)). Once the acoustic pressure harmonics calculated, the sound pressure level (SPL) is obtained by :

\[
\text{SPL}_{A} = 10 \log_{10} \left(\sum_n 10^{\text{SPL}_{A}(n)} \right)
\]

where : \(\text{SPL}_{A}(n) = 20 \log_{10} \left(\frac{p^{(n)}}{p_0} \right) - \text{FA}(n) \)

\(p^{(n)} \) is the \(n \)-th real harmonic of the total acoustic pressure (rotor + stator pressure) and \(\text{FA}(n) \) is the A weighting filter coefficient for the \(n \)-th harmonic frequency.

From now, we supposed the acoustic waves propagate freely from the air-gap to the free field. However, as it surrounds the rotor, we can not ignore the stator influence and we are now going to study it.

4 Influence of the stator

4.1 Hypothesis

Stator and rotor are mainly made of steel, whose acoustic impedance is about \(10^5 \) higher than the acoustic impedance of the air. According to the acoustic reflection and absorption laws ([22], chapter 7), most of the acoustic intensity of an incident wave arriving on a steel surface will be reflected with negligible power losses for low frequency waves. As the stator is open, we suppose that the acoustic waves generated in the air gap get reflected on the rotor and stator surfaces until they leave stator from the openings.

In order to confirm this hypothesis and also to determine the critical frequency over which the stator absorption is no more negligible, an experimental validation is carried out.

4.2 Experimental verification

The experimental device consists of a shaft bearing loudspeakers that we can put in the stator of the studied SRM instead of the rotor (fig 4).

Figure 4: Experimental device for stator attenuation measurements

Acoustic intensity measurements are carried out with and without stator in a semi-anechoic room according to the ISO 3744 standards. Results are depicted on figure 5.

As the “negative attenuation” obtained for the 2 kHz point is probably an experimental error, we deduce from these measurements that we can ignore the stator attenuation on the acoustic intensity while the frequency is under 3 kHz.

Figure 5: Stator attenuation according to frequency

5 Preliminary experimental results

In order to validate the calculation hypothesis, some acoustic measurements are carried out in a semi-anechoic room.

5.1 Spectrum

The acoustic spectrum emitted by the rotating SRM at 40,000 rpm, measured with a capacitive microphone radially placed in the axial median plane of the motor, is given in figure 6.

Two cases are considered depending on the state of the power supply. As expected the motor noise has a tonal nature and we notice that the BPF harmonic (i.e. 2.67 kHz for this speed) dominates all the other harmonics. The minimum step between the BPF level and the others harmonics is equal to 7 dB, so that the sound pressure level emitted by the motor.
5.2 Sound power level

The sound power level according to the rotation velocity is depicted in figure 7. As it does not depend on the observer-source distance, the sound power level (SWL) is common to compare noise levels. The SWL measurements are realized according to the ISO 3744 standard with a source to measurement points distance taken equal to 1 meter so that the far field conditions are achieved.

Between 22,000 and 40,000 rpm we have: $SPL \approx 50 \log(N) + C$, so the acoustic pressure varies in $N^{2.5}$. Ffowcs Williams and Hall [23] show that, in the case of non-compact rotating dipole, the sound power varies in N^5, that means the acoustic pressure varies in $N^{2.5}$. We can then conclude that for those speeds the studied SRM noise has a dipolar nature.

6 Numerical results

CFD simulations are led to get the temporal evolution of efforts applied by the air contained in the air-gap on the rotor and stator surfaces. Temporal convergence is checked by watching torque applied by fluid on rotor, a good periodicity on the torque is obtained after one rotor’s rotation period.

The calculated sound power levels between 22,000 and 40,000 rpm are depicted by the crosses on figure 7. It appears that the calculated SWL overestimates the real noise level, which is commonly the case with 2D simulation because the border effects are neglected.

7 Conclusion

In this paper, a method to predict aeroacoustic noise of rotating electric motors under low Mach number has been proposed. This method is based on an adaptation of the Goldstein’s formulation of the Ffowcs-Williams and Hawking’s equation for the case of electric motors. Only the dipolar noise is considered, that is the noise generated by efforts applied by the air on stator and rotor surfaces. Those efforts are obtained by a two dimensions CFD simulation realized with Ansys Fluent. An experimental validation has been realized in order to confirm the calculation hypothesis and to compare simulations and experiments. It appeared that the acoustic attenuation of the stator can be neglected for low frequency waves.

Whether this calculation tool is not precise enough for absolute noise calculation, it is expected as being sufficient for noise levels comparison. This calculation procedure will be used to search new rotor geometries improving the acoustic behaviour of the studied SRM for high rotation speeds and it should be completed with a magnetic noise calculation in order to achieve a global noise prediction over a wide range of speed.

References

