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GENERALIZED STOCHASTIC FLOWS AND APPLICATIONS TO

INCOMPRESSIBLE VISCOUS FLUIDS

ALEXANDRA ANTONIOUK, MARC ARNAUDON, AND ANA BELA CRUZEIRO

Abstract. We introduce a notion of generalized stochastic flows on mani-
folds, that extends to the viscous case the one defined by Brenier for perfect
fluids. Their kinetic energy extends the classical kinetic energy to Brownian
flows, defined as the L

2 norm of their drift. We prove that there exists a
generalized flow which realizes the infimum of the kinetic energy among all
generalized flows with prescribed initial and final configuration. We also con-
struct generalized flows with prescribed drift and kinetic energy smaller than
the L

2 norm of the drift.
The results are actually presented for general Lq norms, thus including not

only the Navier-Stokes equations but also other equations such as the porous
media.
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1. Introduction

Consider the Euler equations describing the velocity of incompressible non vis-
cous (perfect) fluids,

(1.1)
∂

∂t
u = −(u.∇)u−∇p, div u = 0.

V. Arnold showed that the corresponding Lagrangian flows g(t), namely the
integral curves for u, solutions of d

dtg(t)(x) = u(t, g(t)(x)), g(0)(x) = x, can be
characterized as geodesics on the infinite dimensional ”manifold” of measure pre-
serving diffeomorphisms of the underlying configuration space (c.f. [4], [5]). In
particular such solutions g(t) minimize the following energy functional, defined in
the time interval [0, T ],

(1.2) S[g] =
1

2

∫ T

0

∫ ∣∣∣∣
d

dt
g(t)(x)

∣∣∣∣
2

dx

1
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and the corresponding Euler-Lagrange equations are precisely equations (1.1).
Ebin and Marsden ([12]) proved that, given a final condition g(T ) with some

suitable Sobolev regularity (and, in particular, smooth) lying in a small neighbor-
hood of the identity, existence and uniqueness of a local minimal geodesic can be
obtained. However, in general, there may be situations where such a geodesic is
not defined (c.f.[21]). The main difficulty lies in that the topology induced by the
energy is not strong enough to deal with the regularity of the maps.

To overcome such difficulties Y. Brenier introduced in [6] the notion of gen-
eralized solutions for the minimal action principle, in the spirit of the Monge-
Kantarovich problem. These solutions are probability measures defined on the set
of Lagrangian trajectories. This weaker variational approach allows to consider
measure-preserving maps g(t) with possible splitting and crossing during the evo-
lution. He proved, in particular, that classical solutions can be regarded as gener-
alized solutions and that there exist generalized solutions which do not correspond
to classical flows.

In the viscous case, where the velocity obeys the Navier-Stokes system

(1.3)
∂

∂t
u = −(u.∇)u+ ν∆u −∇p, div u = 0

with a viscosity coefficient ν > 0, it is not so clear how to define a corresponding
variational principle. Following the initial ideas in [19] and [23] we have consid-
ered a stochastic variational principle defined on stochastic Lagrangian flows. The
kinetic energy is defined for these flows and we have characterized the stochastic
processes which are critical for the energy as processes whose drift satisfies Navier-
Stokes equation (c.f. [7] for flows living on the flat torus and [2] for flows in a
general compact Riemannian manifold). Formally, when the viscosity coefficient
vanishes, the Lagrangian flows become deterministic and we are back to the Arnold
characterization of Euler Lagrangian paths.

We mention that another approach to Lagrangian trajectories for the Navier-
Stokes equation as geodesics in a different geometric framework was considered in
[22] and [16]. There the approach is deterministic: what is deformed to pass from
Euler to Navier-Stokes is the geometry. Other related approaches are considered in
[8] and [13].

Actually these ideas are more general: replacing power 2 by some q ≥ 2 in the
energy functional, the stochastic processes on the flat torus which are critical for
the energy have a drift satisfying the weighted porous media type equation

(1.4)
∂

∂t
u = (−u.∇+ ν∆) (‖u‖q−2u)−∇p, div u = 0

(see [10] and [11] for these equations). This was recently proved in [1].
So, in the spirit of Brenier’s work, we introduce and study here a concept of gen-

eralized Lagrangian flows for the Navier-Stokes problem. We present our results for
general Lq norms, thus including other applications (Navier-Stokes corresponding
to the case where q = 2).

The abovementionned difficulties encountered in the Euler case to prove existence
of critical paths remain in this setting.
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2. Generalized stochastic flows

Let us consider any compact oriented Riemannian manifold M of dimension
N ≥ 2 and without boundary. We shall use notation dx for integration with
respect to the normalized volume measure on M . Let H be a Hilbert space.

Definition 2.1. An Itô stochastic flow gt(x)(ω) on M , x ∈M , t ∈ [0, T ], T > 0 is
a stochastic process which satisfies

1. g0(x)(ω)=x;
2. gt(x)(ω) is a semimartingale which satisfies the Itô stochastic equation:

(2.1) dgt(x)(ω) = σ(gt(x)(ω))dWt + ut(gt(x)(ω), ω) dt,

where σ ∈ Γ(Hom(H, TM)) is a C2-map satisfying for all x ∈M (σσ∗)(x) =
idTxM ; Wt is a cylindric Brownian motion in the Hilbert space H, and
(t, x, ω) → ut(x, ω) ∈ TxM is a time dependent adapted drift with locally
bounded variation in x.

Frequently we shall drop the probability space parameter in the notations.
Recall that if P (g(x))t : TxM → Tg(t)(x)M is the parallel transport along gt(x),

then

dgt(x) = P (g(x))td

(∫ ·

0

P (g(x))−1
s ◦ dgs(x)

)

t

.

Let us mention that at this stage we do not ask for any further regularity of ut(x, ω).
The solution to equation (2.1) is not unique in general, but for any given x ∈ M
the process ut(gt(x), ω) is entirely determined by the process gt(x)(ω): in a local
chart, after removing the term coming from Christoffel symbols, ut(gt(x), ·) is the
time derivative of the drift of gt(x).

Definition 2.2. An incompressible stochastic flow gt(x)(ω) is a stochastic flow
such that a.s. ω for all t ≥ 0, the map x 7→ gt(x)(ω) is a volume preserving
diffeomorphism of M .

Proposition 2.3. Assume that the following properties are satisfied:

(i) ut(x, ω) is jointly continuous in t and x and C2 in x with derivatives uni-
formly bounded in ω;

(ii) almost surely for all t ∈ [0, T ]: div ut(·, ω) = 0;
(iii) tr ∇σ(·)σ(·) = 0;
(iv) for all v ∈ H: divσ(v)(·) = 0.

Then the Itô stochastic flow gt is incompressible, namely ω a.s., for all t ∈ [0, T ],
for all f ∈ C(M)

(2.2)

∫

M

f
(
gt(x)(ω)

)
dx =

∫

M

f(x) dx.

Concerning assumptions i) and (ii) on the regularity of u, we refer to [17] for
possible more general conditions (but in this reference u does not depend on ω).

Proof. Under the condition of the proposition almost surely for all t the map x 7→
gt(x)(ω) is a diffeomorphism of M . So for f ∈ C(M)

(2.3)

∫

M

f
(
gt(x)(ω)

)
dx =

∫

M

f(y)| detTyg
−1
t (·)(ω)| dy
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where Tyg
−1
t (·)(ω) is the tangent map of y 7→ g−1

t (y)(ω). On the other hand
condition (iii) implies that equation (2.1) is equivalent to the Stratonovich equation

(2.4) dgt(x)(ω) = σ(gt(x)(ω)) ◦ dWt + ut(gt(x)(ω), ω) dt.

Differentiating this equation with respect to the starting point yields

(2.5) d
(
P (g(x))−1

t Txgt
)
= P (g(x))−1

t (∇Txgtσ ◦ dWt +∇Txgtut dt)

where again P (g(x))t denotes parallel transport along gt(x). Then using the fact
that

Tgt(x)g
−1
t P (g(x))tP (g(x))

−1
t Txgt ≡ idTxM

we get

d
(
Tgt(x)g

−1
t P (g(x))t

)

= Tgt(x)g
−1
t P (g(x))tP (g(x))

−1
t

(
−∇P (g(x))tσ ◦ dWt −∇P (g(x))tut dt

)(2.6)

and this yields

d
(
detTgt(x)g

−1
t P (g(x))t

)

= detTgt(x)g
−1
t P (g(x))t tr

{
P (g(x))−1

t

(
−∇P (g(x))tσ ◦ dWt −∇P (g(x))tut dt

)}

= detTgt(x)g
−1
t P (g(x))t (− divσ(gt(x)) ◦ dWt − div ut(gt(x)) dt)

= 0.

(2.7)

With the initial condition det Txg
−1
0 P (g(x))0 = 1 and the property detP (g(x))t ≡ 1

we conclude that

(2.8) detTgt(x)g
−1
t (·)(ω) ≡ 1

almost surely for all t and x ∈ M . But almost surely the map x 7→ gt(x)(ω) is a
diffeomorphism of M , so almost surely for all t and y ∈M

(2.9) detTyg
−1
t (·)(ω) ≡ 1

As a conclusion, ∫

M

f
(
gt(x)(ω)

)
dx =

∫

M

f(y) dy.

�

Remark 2.4. In the following, when looking for incompressible flows, conditions
(iii) and (iv) of Proposition 2.3 will be unavoidable.

Our main example concerns M = T = R/2πZ × R/2πZ the two dimensional
torus, H the Hilbert space of real-valued sequences indexed by Z

2 ⊕Z
2, σ the map

defined by

(2.10) σ((k1, k2) + (0, 0))(θ) =: A(k1,k2)(θ) = (k2,−k1) cos k · θ

and

(2.11) σ((0, 0) + (k1, k2))(θ) =: B(k1,k2)(θ) = (k2,−k1) sin k · θ.

Another example is given by any compact semi-simple Lie group G endowed with
the metric given by the opposite of the Killing form. Then one can take H = TeG
where e is the identity of G and for x ∈ G, σ(x) = TLx with Lx the left translation.

In the same spirit many examples can be constructed by projection on symmetric
spaces of compact type.
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Definition 2.5. For an Itô stochastic flow gt satisfying

dgt = σt(gt)dWt + ut(gt, ω)dt,

we define the drift as

Dgt(ω) := ut(gt, ω).

Let us define for q > 1 the q-energy functional by

(2.12) Eq(g) :=
1

q
E

[∫ T

0

∫

M

‖Dgt(x)(ω)‖
q
dx dt

]
.

When q = 2 the 2-energy corresponds to the kinetic energy in hydrodynamics.
As we remarked before, the drift and the energy are uniquely determined by the

stochastic flow gt.
Now we would like to give some explanation and motivation for further defini-

tions. For the Itô incompressible stochastic flow gt(x), consider the bilinear map
Θgt , which to two elements ϕ, ψ ∈ L2(M) associates the process:

(2.13) Θgt (ϕ, ψ) =

∫

M

ϕ(x)ψ
(
gt(x)

)
dx.

Definition 2.6. We call the bilinear map Θgt a g-flow associated to the Itô stochastic
flow gt.

It is easy to see that for fixed ϕ, ψ ∈ C∞(M) the flow Θgt is a real valued
semi-martingale process which satisfies

Θgt (ϕ, ψ) = (ϕ, ψ)L2(M) +

∞∑

i=1

t∫

0

Θgs
(
ϕ, 〈∇ψ, σi〉

)
dW i

s +(2.14)

+

t∫

0

Θgs
(
ϕ, 〈∇ψ, us(·, ω)〉

)
ds+

1

2

t∫

0

Θgs
(
ϕ,∆ψ

)
ds,

where for fixed orthonormal basis ei, i ≥ 1 in H we denote W i
s = 〈Ws, ei〉 and

σi = σ(ei).
When gt is a flow of diffeomorphisms, then

(2.15) Θgt (ϕ, ψ) = (θϕ(t, ·), ψ)L2(M)

where x 7→ θϕ(t, x)(ω) is the function M → R defined by

(2.16) θϕ(t, x) = ϕ
(
(g(t)(·)(ω))−1(x)

)
.

Notice that for A a Borelian set in M and ϕ = 1A we have θϕ(t, x) = 1g(t)(A)(x).
It is not clear how to obtain the existence of critical points for our variational

principles within a space of laws of g-flows, which are measures supported on real
semimartingales with, in particular, g(0)(x) = x. We therefore introduce the so-
called generalized flows which include as particular cases the g-flows Θgt .

Definition 2.7. We call a bilinear map Θt(·, ·) a generalized flow if to each ϕ, ψ ∈
C∞(M) it associates a continuous semi-martingale t 7→ Θt(ϕ, ψ) defined in a com-
mon filtered probability space for all ϕ, ψ, and which for all ϕ, ψ, ϕ1, ψ1 ∈ C∞(M)
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satisfies the following list of properties:

(1) Θt(ϕ, 1) ≡

∫

M

ϕ(x) dx,

(2) Θt(1, ψ) ≡

∫

M

ψ(x) dx, a.s. for all t ∈ [0, T ],

(3) Θ0(ϕ, ψ) = (ϕ, ψ)L2(M);

(4) for ϕ, ψ ≥ 0 it is true that Θt(ϕ, ψ) ≥ 0 a.s.;

(5) |Θt(ϕ, ψ)| ≤ ‖ϕ‖L2(M)‖ψ‖L2(M), a.s. for all t ∈ [0, T ];

(6) d [Θ(ϕ, ψ),Θ(ϕ1, ψ1)]t =
∑

i≥1

Θt
(
ϕ, 〈∇ψ, σi〉

)
·Θt

(
ϕ1, 〈∇ψ1, σi〉

)
dt.

Let us notice that (5) and (6) imply

(2.17) d [Θ(ϕ, ψ),Θ(ϕ, ψ)]t ≤ ‖ϕ‖2L2(M) · ‖∇ψ‖
2
L2(M) dt.

Definition 2.8. For ϕ, ψ ∈ C2(M), we introduce

(2.18) Θ̃t(ϕ, ψ) = Θt(ϕ, ψ)−
1

2

t∫

0

Θs(ϕ,∆ψ) ds.

If Θ̃t has absolutely continuous finite variation part, we denote by DΘ̃(ϕ, ψ) its
drift in the sense of Definition 2.5, i.e. the time derivative of its finite variation
part.

Definition 2.9. Let q > 1. We say that the generalized flow Θt(·, ·) has q-finite
energy iff

(i) the semi-martingale Θ̃t(ϕ, ψ) has absolutely continuous finite variation
part;

(ii) the following functional is finite:

(2.19) E ′
q(Θ) =

1

q
sup

ϕ,ψ,ℓ,m

{
E

∫ T

0

m∑

j=1

[
ℓ∑

k=1

(
DΘ̃t(ϕj , ψk)

)2

Θt(ϕj , 1)α

]q/2
dt

}
,

where α =
2(q − 1)

q
, sup is taken on all vectors ϕ = (ϕ1, ..., ϕm), ψ =

(ψ1, ..., ψℓ) for any m, ℓ ≥ 1, such that ϕj , ψk ∈ C∞(M), ϕj ≥ 0,
m∑
j=1

ϕj = 1

and ψk are such that for all v ∈ TM :
ℓ∑

k=1

〈∇ψk, v〉
2 ≤ ||v||2.

We call the functional E ′
q(Θ) the q-energy functional of the generalized flow Θt(·, ·).

Let η be a probability measure on M × M with marginals equal to dx. In
particular it disintegrates as η(dx, dx) = dx ηx(dy).

Definition 2.10. The generalized flow Θt is said to satisfy the endpoints configu-
ration η if

(2.20) E [ΘT (ϕ, ψ)] =

∫

M×M

ϕ(x)ψ(y) η(dx, dy).
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Proposition 2.11. Let gt(x) be an incompressible Itô stochastic flow on M , sat-
isfying the requirements of Proposition 2.3, such that for all x ∈M , gT (x) has law
ηx. Then the g-flow Θgt associated to the Itô stochastic flow gt by formula (2.13) is
a generalized flow with endpoints configuration η.

Proof. We need to check the requirements of the Definitions 2.7 and 2.10. The
requirements (1) – (5) of Definition 2.7 are trivially fulfilled. For example, to prove
(2) it is sufficient to note that

Θgt (1, ψ) =

∫

M

ψ(gt(x)) dx =

∫

M

ψ(x) dx.

Property (6) may be easily calculated from (2.14). Finally (2.20) follows from the
fact that gT (x) has law ηx. �

Lemma 2.12. For a generalized flow Θt, the following estimate holds true:

E

∫ T

0

∣∣∣DΘ̃t(ϕ, ψ)
∣∣∣
q

dt ≤ 2qq E ′
q(Θ)‖ϕ‖qL∞(M) ‖∇ψ‖

q
L∞(M) .

Proof. We can assume that ‖ϕ‖∞ > 0 otherwise the left hand side is 0. First
assume that ϕ ≥ 0. Then

∫
M
ϕ > 0. So

E

∫ T

0

|DΘ̃t(ϕ, ψ)|
qdt

= ‖ϕ‖q∞ · ‖∇ψ‖q∞ ·

(∫

M

ϕ(x)

‖ϕ‖∞
dx

)αq/2
· E

T∫

0

∣∣∣DΘ̃
(

ϕ
‖ϕ‖∞

, ψ
‖∇ψ‖∞

)∣∣∣
q

(∫
M

ϕ
‖ϕ‖∞

)αq/2 dt

≤ ‖ϕ‖q∞ · ‖∇ψ‖q∞ · q E ′
q(Θ).

by definition of E ′
q(Θ).

For general ϕ we make the splitting into positive and negative parts: ϕ = ϕ+ −
ϕ−. Then we write

|DΘ̃t(ϕ, ψ)|
q = |DΘ̃t(ϕ+, ψ)−DΘ̃t(ϕ−, ψ)|

q

≤ 2q−1
(
|DΘ̃t(ϕ+, ψ)|

q + |DΘ̃t(ϕ−, ψ)|
q
)

then we are left to apply the first part of the proof, using the fact that ‖ϕ+‖∞ ≤
‖ϕ‖∞ and ‖ϕ−‖∞ ≤ ‖ϕ‖∞. �

Theorem 2.13. Let q > 1 and gt be an Itô stochastic flow. For the energy
functionals E ′

q(Θ
g) and Eq(g) the following inequality is true

(2.21) E ′
q(Θ

g) ≤ Eq(g).

Proof. If Eq(g) = ∞ then there is nothing to prove. So we assume that Eq(g) <∞.
If we take the generalized flow Θgt , corresponding to the ordinary flow g in sense of
(2.13), then

DΘ̃gt (ϕj , ψk) =

∫

M

ϕj(x)
〈
ut
(
gt(x)

)
,∇ψk

(
gt(x)

)〉
TxM

dx =:

∫

M

ϕjbkdx

where

(2.22) bk = bk(t, x) =
〈
ut
(
gt(x)

)
,∇ψk

(
gt(x)

)〉
TxM

.
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In this notations we rewrite the kinetic energy functional E ′
q(Θ

g) in the form:

E ′
q(Θ

g) =
1

q
sup

ϕ,ψ,ℓ,m

{
E

∫ T

0

m∑

j=1

[ ℓ∑

k=1

( ∫
M

ϕj(x)bk(x)dx
)2

( ∫
M

ϕj(x)dx
)α

]q/2
}

and denote by E′
q(Θ

g) the expression under the supremum. Then

E′
q(Θ

g) ≤ E

∫ T

0

m∑

j=1

[ ℓ∑

k=1

(∫

M

ϕj(x)dx
)(1−α) ∫

M

ϕj(x)b
2
k(x)dx

]q/2
dt.

Above we used inequality

(2.23)
(∫

M

ϕjbkdx
)r

≤
( ∫

M

ϕj dx
)r−1

∫

M

ϕjb
r
kdx

with r = 2. Due to the fact that ψk are such that for all u ∈ TM :
ℓ∑

k=1

〈∇ψk, u〉
2 =

:
ℓ∑

k=1

b2k ≤ ||u||2 we have:

E′
q(Θ

g) ≤ E

∫ T

0

m∑

j=1

[(∫

M

ϕjdx
)(1−α) ∫

M

ϕj ||u||
2dx
]q/2

dt ≤

≤ E

∫ T

0

m∑

j=1

[(∫

M

ϕjdx
)(1−α)q/2( ∫

M

ϕjdx
)q/2−1

∫

M

ϕj ||u||
qdx
]q/2

dt.

Above we have also applied the inequality (2.23) with r = q/2 to the last multiple

in brackets:
∫
M

ϕj ||u||
2dx. Since for α = 2(q−1)

q we have (1−α)q
2 + q

2 − 1 = 0 we

obtain the required estimate (2.21). �

Corollary 2.14. With the assumptions of Proposition 2.11, if we furthermore as-
sume that the Itô stochastic flow gt has finite q-energy Eq(g) then the associated
g-flow Θgt also has finite q-energy E ′

q(Θ
g).

Theorem 2.15. Let q > 1 an gt be an Itô stochastic flow. Then

E ′
q(Θ

g) = Eq(g).

Proof. Because of previous theorem it is sufficient to prove

E ′
q(Θ

g) ≥ Eq(g).

First note that for any fixed ε > 0 we may choose functions ϕε1, ..., ϕ
ε
mε

which

satisfy
m∑
j=1

ϕj(x) = 1 on M such that supp (ϕεj) ⊂ B(xj , ε) and for some fixed δ

independent on ε and j:

(2.24)

∫

M

ϕεj(x)dx ≥ δεd.
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Using notation (2.22) and b = (b1, . . . , bℓ) ∈ R
ℓ together with ‖b‖ = ‖b‖Rℓ the

Euclidean norm, we may write

0 ≤ Eq(g)− E ′
q(Θ

g) ≤
1

q
E

T∫

0

{∫

M

∣∣∣∣b(y)
∣∣∣∣qdy −

m∑

j=1

∣∣∣∣ ∫
M

ϕj(x)b(x)dx
∣∣∣∣q

( ∫
M

ϕj(x)dx
)q−1

}
dt =

=
1

q
E

T∫

0

∫

M

m∑

j=1

ϕj(y)

{
∣∣∣∣b(y)

∣∣∣∣q −

∣∣∣∣ ∫
M

ϕj(x)b(x)dx
∣∣∣∣q

( ∫
M

ϕj(x)dx
)q

}
dy dt ≤

= E

T∫

0

∫

M

m∑

j=1

ϕj(y)
∣∣∣∣b(y)

∣∣∣∣q−2〈
b(y), b(y)−

∫
M

ϕj(x)b(x)dx

∫
M

ϕj(x)dx

〉
dy dt.(2.25)

Above we have used the convexity of the function f(x) = xq and applied the
inequality

f(x)− f(x0) ≤ 〈f ′(x), x − x0〉.

Conducting the change of variables we continue

(2.25) = E

T∫

0

m∑

j=1

1∫
M

ϕjdx

∫

M

ϕj(y)
∣∣∣∣b(y)

∣∣∣∣q−2〈
b(y),

∫

M

b(y)ϕj(x)dx−

∫

M

ϕj(x)b(x)dx
〉
dy dt =

= E

T∫

0

m∑

j=1

1∫
M

ϕjdx

∫

M×M

ϕj(y)
∣∣∣∣b(y)

∣∣∣∣q−2〈
b(y), b(y)ϕj(x)−ϕj(x)b(x)

〉
dx dy dt =

= E

T∫

0

m∑

j=1

1∫
M

ϕjdx

∫

B(0,ε)

∫

M

ϕj(y)
∣∣∣∣b(y)

∣∣∣∣q−2〈
b(y), ϕj(y+r)

(
b(y)−b(y+r)

)〉
dy dr dt ≤

≤
1

δεd

∫

B(0,ε)

m∑

j=1

E

T∫

0

∫

M

ϕj(y)
∣∣∣∣b(y)

∣∣∣∣q−1∣∣∣∣b(y)− b(y + r)
∣∣∣∣dy dt dr ≤

≤
1

δεd

∫

B(0,ε)

(
E

T∫

0

∫

M

∣∣∣∣b(y)
∣∣∣∣qdy dt

) q−1

q

·

(
E

T∫

0

∫

M

∣∣∣∣b(y)− b(y + r)
∣∣∣∣qdy dt

)1/q

dr ≤

≤
Vol (B(0, ε))

δεd
q

q−1

q E(g)
q−1

q sup
r∈B(0,ε)

∣∣∣∣τrb− b
∣∣∣∣
q
,

where
∣∣∣∣ ·
∣∣∣∣ is a standard Lq-norm of vector functions on M and τab(y) = b(y − a).

Above we also used the property (2.24) of functions ϕj . Due to the continuity in
Lq(M

ℓ) of the map a 7→ τab for b ∈ Lq(M
ℓ), the above expression tends to zero as

ε→ 0, that finishes the proof.
�

3. Existence of generalized flow minimizing the energy

In this section we investigate the conditions under which there exists a general-
ized flow Θt, which minimizes the energy functional E ′

q(Θ) defined in (2.19).
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Definition 3.1. For q > 1, let Hq(η) = Hq(σ, η, T ) the set of laws of incom-
pressible Itô stochastic flows gt solutions to (2.1), satisfying the requirements of
Proposition 2.3, with finite q-energy Eq(g) and endpoints configuration η.

We let

(3.1) Eq(η) = Eq(σ, η, T ) := inf {Eq(g), Law(g) ∈ Hq(η)}

where by convention Eq(η) = ∞ if Hq(η) is empty.

Definition 3.2. For q > 1, let H′
q(η) = H′

q(σ, η, T ) the set of laws of generalized
flows Θt of Definition 2.7, with finite q-energy (2.19) and endpoints configuration η.

We let

(3.2) E ′
q(η) = E ′

q(σ, η, T ) := inf
{
E ′
q(Θ), Law(Θ) ∈ H′

q(η)
}

with by convention E ′(η) = ∞ if there is no generalized flow with endpoints con-
figuration η.

Remark 3.3. From Proposition 2.11 and Theorem 2.15 we have

(3.3) E ′
q(η) ≤ Eq(η).

Theorem 3.4. If E ′
q(η) < ∞ then there exists a generalized flow Θ with law in

H′
q(η), such that E ′

q(Θ) = E ′
q(η). In other words, the infimum of the q-energy

functional for given endpoints configuration η is achieved on an element of the set
H′
q(η).

Proof. Assume E ′
q(η) < ∞. Let {Θn}n≥1 be a sequence of generalized flows with

laws in H′
q(η) with energies converging to the infimum value for given endpoints

configuration η:

(3.4) lim
n→∞

E ′
q(Θ

n) = E ′
q(η).

Consider two sequences Φ = {Φj}j≥1, Ψ = {Ψk}k≥1 of elements of C∞(M), where
Φ is dense in the topology of uniform convergence, and Ψ is dense in the topology
of uniform convergence of functions and their first and second order derivatives.

We prove that there exists a subsequence {Θnℓ}ℓ≥1 of generalized flows such that
the family of semimartingales

{
Θnℓ

t (Φj ,Ψk)
}
j,k≥1

converges as ℓ goes to infinity to

some family of semimartingales
{
Θt(Φ

j ,Ψk)
}
j,k≥1

, and all Θt(Φ
j ,Ψk), j, k ≥ 1 are

defined in the same probability space.
For this it is sufficient to prove that for fixed j, k ≥ 1 and Φj ∈ Φ, Ψk ∈ Ψ

the family of semimartingales
{
Θnt (Φ

j ,Ψk)
}
n≥1

is tight. A diagonal extraction of

subsequence then gives the result.
Proving that the family

{
Θnt (Φ

j ,Ψk)
}
n≥1

is tight can be done as in [3] by check-

ing the conditions of Theorem 3 in [24]. For any fixed n ∈ N, define {Y ni }i∈N
as

the family of all Θ̃n(Φj ,Ψk) and
1

2

∫ ·

0

Θns (Φ
j ,∆Ψk) ds, for j, k ≥ 1 and all their

covariations enumerated in proper order. They can be renamed this way because
there is a countable number of them. Like in [3] and due to Lemma 2.12 we have:

E

∫ T

0

∣∣∣DΘ̃nt (Φ
j ,Ψk)

∣∣∣
q

dt ≤ q2q
∥∥Φj

∥∥q
L∞(M)

∥∥∇Ψk
∥∥q
L∞(M)

E ′
q(Θ

n)

≤ q2q
∥∥Φj

∥∥q
L∞(M)

∥∥∇Ψk
∥∥q
L∞(M)

(E ′
q(η) + 1)

(3.5)
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for n sufficiently large. Due to (5) in Definition 2.7 we also have

(3.6) E

[∫ T

0

∣∣Θns (Φj ,∆Ψk)
∣∣2 ds

]
≤ T ‖Φj‖2L2(M)

∥∥∆Ψk
∥∥2
L2(M)

.

On the other hand due to (2.17) the covariation of Θ̃nt (Φ
j ,Ψk) satisfies

(3.7) d
[
Θ̃n(Φj ,Ψk), Θ̃n(Φj ,Ψk)

]

t
≤ ‖Φj‖2L2(M)

∥∥∇Ψk
∥∥2
L2(M)

dt.

Therefore the derivative of this covariation is uniformly bounded.
From (3.5), (3.6) and (3.7), by Theorem 3 in [24], for any fixed d ∈ N, there exists

a subsequence n 7→ γd(n) such that the sequence of vectors
{
(Y

γd(n)
i )1≤i≤d

}

n∈N

converges in law to some vector (Y di )1≤i≤d. By a diagonal extraction together with
Kolmogorov extension theorem, we can find a subsequence n 7→ γ(n) and a family
of random variables (Yi)i∈N such that for all d ∈ N, the sequence of finite vectors{
(Y

γ(n)
i )1≤i≤d

}

n∈N

converges to the vector (Yi)1≤i≤d. For simplicity we rename

Y
γ(n)
i by Y ni . Denote by

(3.8) Θ̃t(Φ
j ,Ψk) = L lim

n→∞
Θ̃nt (Φ

j ,Ψk)

and

(3.9) At(Φ
j ,Ψk) = L lim

n→∞

1

2

∫ t

0

Θns (Φ
j ,∆Ψk) ds,

where L lim denotes limit in law. Then the required limiting process is

(3.10) Θt(Φ
j ,Ψk) := Θ̃t(Φ

j ,Ψk) +At(Φ
j ,Ψk).

Now we are going to prove that the process Θt may be extended to generalized
flow in the sense of Definition 2.7, which satisfies the endpoints condition η and
minimizes the q-energy functional E ′

q(Θ).

From the procedure above for the construction of the sequence Y ni := Y
γ(n)
i we

have that for any fixed d all linear combinations of Y ni , 1 ≤ i ≤ d converge to the
same linear combination of Yi, 1 ≤ i ≤ d, since linear combinations are continuous
functions of finite families.

As for the starting point we have

(3.11) Θ̃0(Φ
j ,Ψk) = (Φj ,Ψk)L2(M).

By Theorem 10 in [18] (which is stated for q = 2 but extends to any q > 1 using
Hölder inequality), we have

(3.12) E

[∫ T

0

dt
(
DΘ̃t(Φ

j ,Ψk)
)q
]
≤ lim sup

n→∞
E

[∫ T

0

dt
(
DΘ̃nt (Φ

j ,Ψk)
)q
]
.

This by Lemma 2.12 implies

(3.13) E

[∫ T

0

dt
(
DΘ̃t(Φ

j ,Ψk)
)q
]
≤ q2q

∥∥Φj
∥∥q
L∞(M)

∥∥∇Ψk
∥∥q
L∞(M)

(E ′
q(η) + 1).

We have that all covariations of Y ni and Y nj converge to covariation of Yi, Yj , this is

due to Theorem 3 in [24]. So inequality (3.7) also extends to the limiting process:

(3.14) d
[
Θ̃(Φj ,Ψk), Θ̃(Φj ,Ψk)

]

t
≤ ‖Φj‖2L2(M)

∥∥∇Ψk
∥∥2
L2(M)

dt.
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Furthermore, by bilinearity of all the Θ̃nt , statements (3.11), (3.13) and (3.14)
are still true with functions ϕ and ψ which are linear combinations of Φj and Ψk.
Moreover the limit Θ̃t is also bilinear for theses combinations.

Thus by (3.10) we have defined Θt(Φ
j ,Ψk) for {Φj}j≥1 and {Ψk}k≥1 dense in

C∞(M) in corresponding topology. Our next task is to define it for any ϕ, ψ ∈
C∞(M). Let us emphasize the fact that for all j, k the Θt(Φ

j ,Ψk) are defined on
the same filtered probability space which will also serve to define the Θt(ϕ, ψ).

For ϕ, ψ ∈ C∞(M) there exist subsequences {Φjℓ}ℓ≥1 and {Ψkℓ}ℓ≥1 which con-
verge uniformly to ϕ and ψ (for the second sequence uniform convergence holds for
functions and their first order derivatives). From (3.11), (3.13), and (3.14) and the

bilinearity of Θ̃t we deduce that Θ̃t(Φ
jℓ ,Ψkℓ) converges to a semimartingale Θ̃(ϕ, ψ)

which does not depend on the choice of subsequences {Φjℓ}ℓ≥1 and {Ψkℓ}ℓ≥1. Here
the convergence is taken in the topology of Lq convergence of the drift and the
convergence of the quadratic variation (the so-called Hq topology). It is also easy

to check that (ϕ, ψ) 7→ Θ̃t(ϕ, ψ) is bilinear map and that for all ϕ, ψ ∈ C∞(M),

Θ̃t(ϕ, ψ) is the limit in law of {Θ̃nt (ϕ, ψ)}n≥1 (the last point is due to the fact that
the bounds in the right of (3.5) and (3.7) can be taken indepent of n, and this allows

to identify the limit of a subsequence of {Θ̃nt (ϕ, ψ)}n≥1 with Θ̃t(ϕ, ψ)). Similarly,

for ϕ1, ψ1, ϕ2, ψ2 ∈ C∞(M), the process [Θ̃(ϕ1, ψ1), Θ̃(ϕ2, ψ2)]t is the limit in law

of {[Θ̃n(ϕ1, ψ1), Θ̃
n(ϕ2, ψ2)]t}n≥1.

From (3.9), by bilinearity of Θnt and (3.6) we have, by the same subsequence
procedure, that for all ϕ, ψ ∈ C∞(M)

(3.15) At(ϕ, ψ) = L lim
n→∞

1

2

∫ t

0

Θns (ϕ,∆ψ).

This together with (3.8) yields

(3.16) Θt(ϕ, ψ) = L lim
n→∞

Θnt (ϕ, ψ)

and in particular

(3.17) Θt(ϕ,∆ψ) = L lim
n→∞

Θnt (ϕ,∆ψ).

So by integration we get

(3.18)

∫ t

0

Θs(ϕ,∆ψ) = L lim
n→∞

∫ t

0

Θns (ϕ,∆ψ).

Finaly by identifying the limits in (3.15) and (3.18) we have

(3.19) At(ϕ, ψ) =
1

2

∫ t

0

Θs(ϕ,∆ψ) ds.

So for ϕ, ψ ∈ C∞(M)

(3.20) Θt(ϕ, ψ) = Θ̃t(ϕ, ψ) +
1

2

∫ t

0

Θ(ϕ,∆ψ) ds.

It remains to prove that LawΘt is an element of H′(η) and that

(3.21) E ′
q(Θ) ≤ E ′

q(η).

By passing to the limit in (1)-(6), of Definition 2.7 for Θnt we get them for Θt .
We are left to prove (3.21). For this we need to improve (3.13).
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For ℓ ≥ 1, ϕ, ψ1, . . . , ψℓ ∈ C∞(M), ψ = (ψ1, . . . , ψℓ), let

|DΘ̃nt (ϕ, ψ)| :=

(
ℓ∑

k=1

DΘ̃nt (ϕ, ψk)
2

)1/2

.

Theorem 10 in [18] (extended to any q > 1 says that for any ϕ, ψ ∈ C∞(M) and
any K > 0, if for all n ≥ 1

E

[∫ T

0

∣∣∣DΘ̃nt (ϕ, ψ)
∣∣∣
q

dt

]
≤ K

then

E

[∫ T

0

∣∣∣DΘ̃t(ϕ, ψ)
∣∣∣
q

dt

]
≤ K.

Let

K = lim inf
n→∞

E

[∫ T

0

∣∣∣DΘ̃nt (ϕ, ψ)
∣∣∣
q

dt

]
.

Consider a subsequence Θnℓ such that

lim
ℓ→∞

E

[∫ T

0

∣∣∣DΘ̃nℓ

t (ϕ, ψ)
∣∣∣
q

dt

]
= K.

Then fixing ε > 0 and applying the above result to the sequence Θ̃nℓ for sufficiently
large ℓ we obtain

E

[∫ T

0

∣∣∣DΘ̃t(ϕ, ψ)
∣∣∣
q

dt

]
≤ K + ε.

Letting ε→ 0 we obtain

(3.22) E

[∫ T

0

∣∣∣DΘ̃t(ϕ, ψ)
∣∣∣
q

dt

]
≤ lim inf

n→∞
E

[∫ T

0

∣∣∣DΘ̃nt (ϕ, ψ)
∣∣∣
q

dt

]
.

Letting ϕj , ψk as in (2.19) with ψ = (ψ1, ..., ψℓ), we have

m∑

j=1

E




∫ T

0

∣∣∣DΘ̃t(ϕ
j , ψ)

∣∣∣
q

Θt(ϕj , 1)α
dt



 ≤

m∑

j=1

lim inf
n→∞

E




∫ T

0

∣∣∣DΘ̃nt (ϕ
j , ψ)

∣∣∣
q

Θnt (ϕ
j , 1)α

dt





≤ lim inf
n→∞

m∑

j=1

E




∫ T

0

∣∣∣DΘ̃nt (ϕ
j , ψ)

∣∣∣
q

Θnt (ϕ
j , 1)α

dt





≤ E ′
q(η).

Finally taking the supremum in the left as in (2.19) yields

(3.23) E ′
q(Θ) ≤ E ′

q(η)

and this achieves the proof. �
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4. Constructing generalized flows with prescribed drift

We have shown in section 2 that semimartingale flows can be regarded as gen-
eralized ones. In particular (considering q = 2) a smooth solution of Navier-Stokes
equation will thus give rise to a generalized solution of the corresponding variational
problem.We shall now show that these are not the only possible generalized flows:
indeed, we can define weaker solutions (which, in particular, will not necessarily
correspond to semimartingale flows) of the Navier-Stokes variational problem built
upon weak solutions of some transport equations.

Consider a deterministic drift b(t, x) such that b ∈ L1([0, T ], Lq(TM)) for some
q > 1, and div b ≡ 0 in the weak sense. The following result states existence of
generalized flows with drift b (see [14], [15] and [17] for related results).

Theorem 4.1. There exists a generalized flow Θt with drift b(t, x) i.e. such that
for all ϕ, ψ ∈ C∞(M), (t, ω) ∈ [0, T ]× Ω almost everywhere

(4.1) DΘ̃t(ϕ, ψ) = Θt(ϕ, div(ψb)),

and with kinetic energy smaller than or equal to
1

q

∫ T

0

(∫

M

‖b(t, x)‖q dx

)
dt.

Proof. For ε > 0, as in [17] Section 4.4 we regularize b by using the de Rham-Hodge
semi-group on differential forms eε� with � = −(dδ+ δd), δ the codifferential form
of d. For a differential 1-form α on M we denote by α♯ the vector field on M
associated to α by the metric, and for a vector field A on M we denote by A♭ the
differential 1-form associated to A by the metric: we have

〈α,A〉 = 〈α♯, A〉 = 〈α,A♭〉

where the first bracket is for duality, the second one is the scalar product in TM ,
the third one the scalar product in T ∗M . By letting

(4.2) (b′)ε =
(
eε�(b♭)

)♯

we get a smooth time-dependent vector field satisfying div(b′)ε = 0 (see [17] Propo-
sition 4.4.1). Then we regularize (b′)ε in time by convolution with a smooth kernel
with support [−ε/2, ε/2] (for this we need to extend b by letting b(t, x) = 0 for
t < 0 and for t > T ). Let us call bε(t, x) the regularized vector field. It is also
divergence free since the divergence operator commutes with the time integration,
and it approximates b in (Lq([0, T ] ×M,TM)). For each ε > 0 we can construct
a semimartingale flow as a strong solution to (2.1) where u(t, g(t)(x), ω) has been
replaced by bε(t, g(t)(x)). Let us denote by gε the solution. Letting (εn)n≥0 a

sequence of positive numbers decreasing to 0 we let Θn = Θg
εn
. Now using the fact

that

E (gε) =
1

q

∫ T

0

(∫

M

‖bε(t, x) dt‖q dx

)
dt ≤

1

q

∫ T

0

(∫

M

‖b(t, x) dt‖q dx

)
dt+ 1

for ε sufficiently small we proceed similarly to the proof of Theorem 3.4 to es-
tablish that possibly by extracting a subsequence, there exists a generalized flow
Θt such that for all ϕ, ψ ∈ C∞(M) Θn(ϕ, ψ) converges in law to Θ(ϕ, ψ) and∫ ·

0
DΘ̃ns (ϕ, ψ) ds converges in law to the drift of Θ̃(ϕ, ψ). We have DΘ̃n(ϕ, ψ) =

Θn(ϕ, div(ψ bεn)) which is defined as
∫
M
ϕ(x) div(ψ bεng(·)(x)) dx. Since b is time-

dependent and not smooth we have to extend this definition. We let (α̃i)i≥1 be
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a family of smooth functions [0, T ] → R such that, possibly by extending the
family Ψk defined in the proof of Theorem 3.4, linear combinations of functions
(t, x) 7→ α̃i(t)Ψk(x) with rational coefficients are dense in Lq([0, T ]×M). Now for

all β(t, x) =
∑L

ℓ=1 aℓα̃
iℓ(t)Ψkℓ(x) with rational aℓ we can assume that the processes

t 7→

∫ t

0

Θns (Φ
j , β(s, ·)) ds =

L∑

ℓ=1

aℓ

∫ t

0

Θns (Φ
j ,Ψkℓ)α̃iℓ(s) ds

all together converge in law as n→ ∞ to processes t 7→

∫ t

0

Θs(Φ
j , β(s, ·)) ds which

satisfy

(4.3) E

[∫ T

0

Θs(Φ
j , β(s, ·))q ds

]
≤ ‖Φj‖pq‖β‖

q
Lq([0,T ]×M),

from the fact that for all n ≥ 1

(4.4) E

[∫ T

0

Θns (Φ
j , β(s, ·))q ds

]
≤ ‖Φj‖qp‖β‖

q
Lq([0,T ]×M).

Here p is the exponent conjugate to q: p =
q

q − 1
.

This bound allows to define t 7→

∫ t

0

Θs(ϕ, β(s, ·)) ds for all smooth ϕ and β ∈

Lq([0, T ]×M). So t 7→
∫ t
0 Θs(ϕ, div(ψ b)) ds is well defined (recall that div(ψb) =

〈dψ, b〉), and by an argument similar to the proof of Theorem 3.4 we see that

t 7→
∫ t
0 Θ

n
s (ϕ, div(ψ b

εn)) ds converges in law to t 7→
∫ t
0 Θs(ϕ, div(ψ b)) ds. So we

can make the identification
∫ t
0 DΘ̃s(ϕ, ψ) ds =

∫ t
0 Θs(ϕ, div(ψ b)) ds.

We are left to prove the bound for the kinetic energy. But this is exactly similar
to the proof of Theorem 2.13. �

5. Constructing generalized flows from solutions of finite variation
transport equations

In this section we aim to give an alternative construction of generalized flow
with prescribed drift, using Ocone Pardoux method and weak solution of transport
equations (in the sense of DiPerna and Lions).

To start with, let us consider a semimartingale flow g(t)(x) satisfying g(0)(x) ≡ x
and

(5.1) dg(t)(x) = σ(g(t)(x)) ◦ dWt + b(t, g(t)(x), ω)dt,

with the same assumptions as in the beginning of section 2. In particular the vector
fields σi are divergence free. Assume that σ and b are C1 in the space variable. Let
g̃(t)(x) be the martingale flow satisfying

(5.2) dg̃(t)(x) = σ(g̃(t)(x)) ◦ dWt, g̃(0)(x) ≡ x.

Notice that g̃(t) is measure preserving. The method of Ocone and Pardoux ([20])
consists in writing

(5.3) g(t)(x) = g̃(t) (ψ(t)(x))

with ψ(t)(x) a bounded variation flow to be determined. From (5.3) we get

(5.4) dg(t)(x) = (dg̃(t)) (ψ(t)(x)) + Tψ(t)g̃(t) (dψ(t)(x))
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where Tψ(t)g̃(t) is the tangent map at ψ(t) to x 7→ g̃(t)(x) (we omit the dependence
in ω). This together with (5.1) and (5.2) yields

(5.5) dψ(t)(x) = b̃(t, ψ(t)(x), ω) dt

with

(5.6) b̃(t, y, ω) = (Tyg̃(t)(·))
−1

(b(t, g̃(t)(y), ω)) .

For ϕ ∈ C∞(M) define θg,ϕt , θg̃,ϕt , θψ,ϕt as: for φ ∈ C∞(M)
(5.7)

Θg(ϕ, φ) = (θg,ϕt , φ)L2(M) , Θ
g̃(ϕ, φ) =

(
θg̃,ϕt , φ

)

L2(M)
,Θψ(ϕ, φ) =

(
θψ,ϕt , φ

)

L2(M)
.

From (2.16) and (5.3) we get

θg,ϕt = ϕ ◦ g(t)−1

= ϕ ◦ ψ(t)−1 ◦ g̃(t)−1.
(5.8)

and this yields

(5.9) Θgt (ϕ, φ) = Θ
g̃(t)
t

(
θψ,ϕt , φ

)

which implies

(5.10) Θgt (ϕ, φ) = Θψt (ϕ, φ ◦ g̃(t))

where we used the fact that g̃(t) is measure preserving.

Lemma 5.1. We have for all φ ∈ C∞(M), t ∈ [0, T ], a.s.

(5.11)

∫

M

(
div b̃(t, ·, ω)

)
(x)φ(x) dx =

∫

M

div b(t, ·, ω)(y)
(
φ ◦ (g̃(t))−1

)
(y) dy.

In particular, if div b(t, ·, ω) ≡ 0 then div b̃(t, ·, ω) ≡ 0.

Proof. We will write b(y) = b(t, y, ω), b̃(x) = b̃(t, x, ω) For φ ∈ C∞(M),
∫

M

(div b̃)φ =

∫

M

〈dφ, b̃〉

=

∫

M

〈
dφ, (T g̃)−1 ◦ b ◦ g̃

〉

=

∫

M

〈
d
(
φ ◦ (g̃)−1

)
(g̃(x)), b(g̃(x))

〉
dx

=

∫

M

〈
d
(
φ ◦ (g̃)−1

)
(y), b(y)

〉
dy

=

∫

M

(
φ ◦ (g̃)−1

)
(y)(div b)(y) dy

where we used in the fourth equality the fact that g̃ is measure preserving. �

Now consider a deterministic drift b(t, x) such that b ∈ L1([0, T ], Lq(TM)) for
some q > 1, and div b ≡ 0 in the weak sense. It is easily seen that Lemma 5.1 is
still valid for b, so we have a.s. div b̃ ≡ 0. Moreover a.s. b̃ ∈ L1([0, T ], Lq(TM)).
Under this condition we can apply Proposition II.1 in [9] and we deduce that a.s.
the transport equation which is the weak version of (5.5), namely

(5.12)
∂θt
∂t

= −(b̃ · ∇)θt, θ0 = ϕ, ϕ ∈ C∞(M),
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has a solution θb̃,ϕt in
⋂

p≥1

L∞(0, T ;Lp(M)). Moreover since b̃ is adapted the process

θb̃,ϕt can also be chosen so that all θb̃,ϕt , ϕ ∈ C∞(M) and also g̃,W are jointly
adapted to the same filtration for whichW is still a cylindrical Brownian motion and

g̃ satisfies (5.2): instead of considering θb̃,ϕt as the limit in law of some regularized

processes θb̃
ε,ϕ
t , consider ((θb̃,ϕ̃

j

t , g̃,W ) as limit in law of ((θb̃
ε,ϕ̃j

t , g̃,W ) for (ϕ̃j)j≥1

a dense subsequence in C∞(M).
So by analogy to (5.9) we define

(5.13) Θσ,bt (ϕ, φ) = Θg̃t

(
θb̃,ϕt , φ

)
, ϕ, φ ∈ C∞(M)

Proposition 5.2. Take a deterministic drift b(t, x) such that b ∈ L1([0, T ], Lq(TM))
for some q > 1, and div b ≡ 0 in the weak sense. Then the generalized flow Θσ,b

defined in equation (5.13) is a generalized flow with kinetic energy

(5.14) E
′
q

(
Θσ,b

)
≤ Eq(b)

where

(5.15) Eq(b) =
1

2

∫ T

0

dt

∫

M

dx‖b(t, x)‖q

Proof. We have

Θσ,b(ϕ, φ) = Θg̃t

(
θb̃,ϕt , φ

)
=

∫

M

θb̃,ϕt
(
(g̃(t))−1(x)

)
φ(x) dx

=

∫

M

θb̃,ϕt (x)φ (g̃(t)(x)) dx

(5.16)

and this implies

dΘ̃σ,b(ϕ, φ)

=

∫

M

θb̃,ϕt (x)
〈
dφ, dItôg̃(t)(x)

〉
dx+

∫

M

θb̃,ϕt (x) div
(
b̃(φ ◦ g̃(t))

)
(x) dx dt

=

∫

M

θb̃,ϕt (x) 〈dφ, σ (g̃(t)(x)) dWt〉 dx+

∫

M

θb̃,ϕt (x)
〈
d(φ ◦ g̃(t)), b̃

〉
(x) dx dt

=
∑

i≥1

∫

M

θb̃,ϕt (x) 〈dφ, σi〉 (g̃(t)(x)) dx dW
i
t +

∫

M

θb̃,ϕt (x) 〈dφ, b〉 (g̃(t)(x)) dx dt

=
∑

i≥1

∫

M

θb̃,ϕt
(
(g̃(t))−1(y)

)
〈dφ, σi〉 (y) dydW

i
t +

∫

M

θb̃,ϕt
(
(g̃(t))−1(y)

)
〈dφ, b〉 (y) dy dt

=
∑

i≥1

Θσ,b(ϕ, 〈dφ, σi〉) dW
i
t +Θσ,b(ϕ, 〈dφ, b〉) dt

(5.17)

where the first term in the right is the martingale part and the second term is the
finite variation part. We prefer to write the last equality as

(5.18) dΘ̃σ,b(ϕ, φ) =
∑

i≥1

Θg̃
(
θb̃,ϕt , 〈dφ, σi〉

)
dW i

t +Θg̃
(
θb̃,ϕt , 〈dφ, b〉

)
dt.

From this equation the properties of a generalized flow are easily checked.
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We are left to prove that E ′
q(Θ

σ,b) ≤ Eq(b). Again this can be done via a regu-

larization procedure of b̃ of the form b̃ε =
(
eε�(b̃♭)

)♯
, an extraction of subsequence,

and similar estimates as before. We leave the details to the reader.
�
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anticipating stochastic differential equations, Ann. Inst. Poincar 25 (1989), 39–71.



19

[21] A. I. Shnirelman, The geometry of the group of diffeomorphisms and the dynamics of an

ideal imcompressible fluid. Mat. Sb.,128 (1709 (1985), 82–109.
[22] Y. Watanabe, Differential geometry on diffeomorphism groups and Lagrangian stability.

Physica D, 225 (2007), 197–203.
[23] K. Yasue, A variational principle for the Navier-Stokes equation. J. Funct. Anal., 51 (2)

(1983), 133–141.
[24] W. A. Zheng, Tightness results for laws of diffusion processes. Ann. de l’ I.H.P., s. B 21

n2 (1985), 103–124.

Dep. Nonlinear Analysis
Institute of Mathematics NAS Ukraine
Tereschchenkivska str, 3
Kyiv, 01 601 UKRAINE
E-mail address: antoniouk.a@gmail.com
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