Goal-oriented control of finite element models: recent advances and performances on 3D industrial applications
Ludovic Chamoin, Pierre Ladevèze, Florent Pled

To cite this version:

HAL Id: hal-01057238
https://hal.archives-ouvertes.fr/hal-01057238
Submitted on 21 Aug 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ABSTRACT

In this work, we present two recent developments in goal-oriented error estimation applied to finite element simulations. The first one is a non-intrusive enrichment of the adjoint solution using handbook techniques, inserting locally the (generalized) Green functions associated with the quantity of interest under study. The second one is a new bounding technique, based on homothetic domains, that is an alternative to classical Cauchy-Schwarz boundings. Technical aspects and capabilities of the resulting verification tool will be shown on 3D numerical experiments.

INTRODUCTION

During the last five years, a general method has been set up in order to address robust goal-oriented error estimation for a large class of mechanical problems solved using the finite element framework [1]. This method uses the concept of Constitutive Relation Error (CRE) [2] and associated admissible fields, as well as a classical adjoint-based procedure devoted to the quantity of interest under study. Several works [3–5] illustrated the performances of this method for controlling discretizations when dealing with (visco-)elasticity problems, fracture mechanics problems solved with XFEM, transient dynamics problems, or nonlinear (visco-)plasticity problems.

REFERENCE PROBLEM AND CLASSICAL ERROR ESTIMATION STRATEGY

We consider a linear elasticity problem, with displacement-stress solution \((\mathbf{u}, \sigma)\), and assume it is in practice solved using the finite element method which provides for the approximate solution \((\mathbf{u}_h, \sigma_h)\). We are interested in assessing the discretization error on a given quantity of interest of the problem, denoted \(I(\mathbf{u})\), which is a linear functional of the displacement field \(\mathbf{u}\). Defining the associated adjoint problem, with solution \((\hat{\mathbf{u}}, \hat{\sigma})\), the error on
I can be strictly bounded as [6]:

$$|I(u) - I(u_h) - I_{hh}| \leq E_{CRE}(\tilde{u}_h, \sigma_h) \times E_{CRE}(\tilde{u}_h, \sigma_h)$$

(1)

where $I_{hh}$ is a computable correcting term, $(\tilde{u}_h, \sigma_h)$ (resp. $(\hat{u}_h, \hat{\sigma}_h)$) is an admissible solution for the reference (resp. adjoint) problem, and $E_{CRE}$ is the CRE functional. The construction of admissible solutions is detailed in [2]. Let us note that no Galerkin orthogonality property is used to obtain (1), so that independent meshes can be used to solve reference and adjoint problems.

ENRICHMENT OF THE ADJOINT SOLUTION

We propose to search the adjoint displacement field under the form $\tilde{u} = \tilde{u}^{hand} + \tilde{u}^{res}$ where:

- $\tilde{u}^{hand}$ is an enrichment (or handbook) function that corresponds to the (generalized) Green’s solution in a (semi-)infinite domain. It is obtained analytically [7] or numerically (see Fig. 1 for a 3D example);
- $\Phi$ is a weighting function, with bounded support, so that the enrichment is introduced locally. It is in practice constructed by means of the PUM defined by linear shape functions;
- $\tilde{u}^{res}$ is a residual term that enables to verify boundary conditions of the adjoint problem.

FIGURE 1. EXAMPLE OF 3D GREEN’S FUNCTION.

In practical applications, $\tilde{u}^{res}$ is a smooth solution (high gradients of $\tilde{u}$ are captured by the enrichment term) and can be accurately approximated with the initial (and potentially coarse) mesh. Furthermore, the CRE term $E_{CRE}(\tilde{u}_h, \sigma_h)$ of the adjoint problem becomes very low, providing for high-quality error bounds on $I$ at reasonable cost and in a non-intrusive way.

NEW BOUNDING PROCEDURE

The bounding given in (1) uses the Cauchy-Schwarz inequality; it may be a rather coarse bounding, particularly when discretization errors of reference and adjoint problems are concentrated over different domains. This is often the case as the error on the adjoint problem usually concentrates around the area in which the quantity of interest is defined. To avoid coarse boundings, the error on the reference problem is split into two parts: (i) a part $E_1$ defined over the zone in which the error on the adjoint problem concentrates; (ii) a part $E_2$ defined over the remainder of the physical domain. Mathematical arguments based on relations among errors defined over homothetic domains enable to relate part $E_1$ with the error on a larger domain, so that a more precise and still guaranteed bounding can be obtained. Fig. 2 shows comparisons between classical (resp. new) bounds $\xi_{inf}$ and $\xi_{sup}$ (resp. $\zeta_{inf}$ and $\zeta_{sup}$) on $I$ with respect to the number of elements used in the adjoint mesh.

FIGURE 2. COMPARISON BETWEEN CLASSICAL AND NEW BOUNDINGS.

REFERENCES


