W. Ackermann, Untersuchungen ???ber das Eliminationsproblem der mathematischen Logik, Mathematische Annalen, vol.110, issue.1, pp.390-413, 1935.
DOI : 10.1007/BF01448035

P. Blackburn, Y. Maarten-de-rijke, and . Venema, Modal logic, volume 53 of Cambridge Tracts in Theoretical Computer Science, 2001.

A. Chagrov and L. A. Chagrova, The truth about algorithmic problems in correspondence theory, Advances in Modal Logic, pp.121-138, 2006.

W. Conradie, S. Ghilardi, and A. Palmigiano, Unified Correspondence, Johan F.A.K. van Benthem on Logical and Informational Dynamics, Outstanding Contributions to Logic, 2014.
DOI : 10.1007/978-3-319-06025-5_36

W. Conradie, V. Goranko, and D. Vakarelov, Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA, Logical Methods in Computer Science, vol.2, issue.1, 2006.
DOI : 10.2168/LMCS-2(1:5)2006

W. Conradie and A. Palmigiano, Algorithmic correspondence and canonicity for distributive modal logic, Annals of Pure and Applied Logic, vol.163, issue.3, pp.338-376, 2012.
DOI : 10.1016/j.apal.2011.10.004

W. Conradie, Y. Fomatati, A. Palmigiano, and S. Sourabh, Sahlqvist Correspondence for Intuitionistic Modal µ-Calculus

B. A. Davey and H. A. Priestley, Lattices and Order, 2002.

H. Hansen, Monotonic modal logic, 2003.

B. Jónsson and A. Tarski, Boolean Algebras with Operators, American Journal of Mathematics, vol.74, issue.1, pp.891-939, 1951.
DOI : 10.2307/2372074

J. B. Nation, An approach to lattice varieties of finite height, Algebra Universalis, vol.108, issue.4, pp.521-543, 1990.
DOI : 10.1007/BF01188998

L. Santocanale, A duality for finite lattices. preprint, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432113

M. V. Semënova, Lattices That are Embeddable in Suborder Lattices, Algebra and Logic, vol.277, issue.5, pp.483-511, 2005.
DOI : 10.1007/s10469-005-0027-7

J. Van-benthem, Modal Logic and Classical Logic Indices : Monographs in Philosophical Logic and Formal Linguistics, Bibliopolis, vol.3, 1985.