A Brief Tutorial On Recursive Estimation With Examples From Intelligent Vehicle Applications (Part IV): Sampling Based Methods And The Particle Filter

Abstract : Following the third article of the series "A brief tutorial on recursive estimation", in this article (the fourth article) we continue to focus on the problem of how to handle model nonlinearity in recursive estimation. We will review the particle filter a.k.a. a sequential Monte Carlo method which has the potential to handle recursive estimation problems with an system model and a measurement model of arbitrary types and with data statistics of arbitrary types. We will explain basic principles that underlie the particle filter, and demonstrate its performance with examples from intelligent vehicle applications. We will explain its advantage as well as limitation.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01054713
Contributeur : Hao Li <>
Soumis le : vendredi 8 août 2014 - 11:01:53
Dernière modification le : lundi 12 novembre 2018 - 10:59:20
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 16:00:18

Fichier

LI_TRE_04_Particle_Filter.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01054713, version 1

Collections

Citation

Hao Li. A Brief Tutorial On Recursive Estimation With Examples From Intelligent Vehicle Applications (Part IV): Sampling Based Methods And The Particle Filter. 2014. 〈hal-01054713〉

Partager

Métriques

Consultations de la notice

236

Téléchargements de fichiers

94