
HAL Id: hal-01054667
https://hal.science/hal-01054667

Submitted on 8 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Matching of Antescofo Temporal Patterns
Jean-Louis Giavitto, José Echeveste

To cite this version:
Jean-Louis Giavitto, José Echeveste. Real-Time Matching of Antescofo Temporal Patterns. PPDP
2014 - 16th International Symposium on Principles and Practice of Declarative Programming, Sep
2014, Canterbury, United Kingdom. pp. 93-104 �10.1145/2643135.2643158�. �hal-01054667�

https://hal.science/hal-01054667
https://hal.archives-ouvertes.fr

Real-Time Matching of Antescofo Temporal Patterns

preprint version of an article accepted at PPDP 2014

Jean-Louis Giavitto José Echeveste

IRCAM – UMR STMS 9912 CNRS & INRIA MuTant project & Sorbonne Universités - University of Paris 6

1 place Igor Stravinsky, 75004 Paris, France

[giavitto,echeveste]@ircam.fr

Abstract

This paper presents Antescofo temporal patterns (ATP) and

their online matching. Antescofo is a real-time system for

performance coordination between musicians and computer

processes during live music performance. ATP are used to

define complex events that correspond to a combination of

perceived events in the musical environment as well as arbi-

trary logical and metrical temporal conditions. The real time

recognition of such event is used to trigger arbitrary actions

in the style of event-condition-action rules. The musical con-

text, the rationales of temporal patterns and several illustra-

tive examples are introduced to motivate the design of ATP.

The semantics of ATP matching is defined to parallel the

well-known notion of regular expression and Brzozowski’s

derivatives but extended to handle an infinite alphabet, ar-

bitrary predicates, elapsing time and inhibitory conditions.

This approach is compared to those developed in log au-

diting and for the runtime verification of real-time logics.

ATP are implemented by translation into a core subset of the

Antescofo domain specific language. This compilation has

proven efficient enough to avoid the extension of the real-

time runtime of the language and has been validated with

composers in actual pieces.

Keywords timed regular expressions, event-driven pro-

gramming, score following, timed and reactive system, do-

main specific language, computer music, Antescofo.

1. Introduction

Antescofo is a score following system that listens to a live

music performance to track the position in the score and the

[Copyright notice will appear here once ’preprint’ option is removed.]

tempo of a performer and to trigger accordingly electronic

actions (computations).

In this paper, we extend the Antescofo real-time language

dedicated to the specification of the electronic actions with

temporal patterns. Antescofo temporal patterns (ATP) are a

formalism for specifying sequences of discrete elementary

events and time intervals fulfilling an arbitrary property, oc-

curring one after the other, augmented with timing infor-

mation and arbitrary logical conditions. Antescofo Temporal

Patterns extend the idea of timed regular expressions [3] and

are fitted to the expression of temporal conditions that ap-

pears in the writing of Interactive Music (also called Mixed

Music i.e., mixing in real-time the human performance and

the electronic response). For instance, it is possible to spec-

ify a complex event E such as “a repetition of the same note

within 3/2 pulses such that there is no occurrence of E in

the previous 5 pulses”.

In fact ATP go strictly beyond propositional modal logic

as one may express for example “a repetition of a pitch

N within f(N) pulses, each lasting at least g(N) pulses”

where f and g are arbitrary functions that return a number

from a pitch. Nevertheless, checking that a prefix of a time-

event sequence of inputs matches an ATP can be checked

efficiently in real-time “without looking ahead”. Preliminary

validations in the context of real musical pieces show that the

implementation in the Max/MSP environment [26] always

reacted in less than 3 milliseconds (with a Max/MSP control

rate of 2ms), which ensure the musical simultaneity needed.

In the rest of this section, we give some background on

score following and motivate the use of temporal patterns

to trigger actions beyond the strict scope of score following.

Section 2 relates temporal patterns with other formalisms de-

veloped for instance in event processing, in online analysis

of logs (for intrusion detection) and in the runtime verifica-

tion for timed linear time temporal logic. Temporal patterns

are introduced informally in Section 4 and a formal seman-

tics is presented in Section 5. Temporal patterns are imple-

mented in Antescofo by source-to-source translation into a

core subset of the language using delays, nested condition-

als and synchronous control structures. The first uses of tem-

1 2014/8/8

poral patterns in new musical pieces provide evidences that

the performance of this implementation is sufficient for most

of the applications. Conclusions in Section 7 summarize the

work and sketch some perspectives.

1.1 Score Following

Human musicians have since long developed methods and

formalisms for ensemble authoring and real-time coordina-

tion and synchronization of their actions. Bringing such ca-

pabilities to computers and providing them with the ability

to take part in musical interactions with human musicians,

poses interesting challenges for authoring of time and inter-

action and real-time coordination.

In this context, automatic score following has been an

active line of research and development among composers

and performers of Interactive Music for 30 years [11, 31].

An automatic score following system implements a real-time

listening machine that launches necessary computer music

actions in reaction to the recognition of events in a score

from an incoming music signal.

We have proposed in [9] a novel architecture for score

following, called Antescofo, where the artificial machine

listening is strongly coupled with a domain-specific real-

time programming language. The motivation is to provide

the composers an expressive language for the authorship

of interactive musical pieces and to provide the performers

with an effective system to implement efficiently dynamic

performance scenarios. Using this dedicated language, the

composer creates an augmented score. The augmented score

includes the instrumental parts (i.e., the specific events that

should be recognized in real time), the electronic parts (i.e.,

the electronic actions) and the instructions for their real-

time coordination during a performance. Expressiveness is

a primary concern and the language focuses on the writing

of time as a semantic property rather than a performance

metric [20]. During a performance, the machine listening

in Antescofo is in charge of encoding the dynamics of the

outside environment (i.e., musicians) in terms of incoming

events, tempo and other parameters from the polyphonic

audio signal. The language runtime evaluates the augmented

score and controls processes timed to unfold synchronously

with the musical environment.

The Antescofo unique approach allows the specification

of flexible and complex temporal organizations for compo-

sitional and performative purposes. It has been validated

through numerous uses of the system in live electronic

performances in contemporary music repertoire of com-

posers such as Pierre Boulez, Philippe Manoury, Marco

Stroppa. . . and adopted by various music ensembles such

as Los Angeles Philharmonics, Berlin Philharmonics. . . to

name a few.

1.2 Score Follower as Transducer

As explained above, an Antescofo augmented score is a spec-

ification of both an instrumental part and the accompaniment

actions. The instrumental part is specified as a sequence of

musical events such as note, chords, trills, glissandi. . . The

sequence of events e1e2 . . . eℓ is simply the translation in

a textual format of the traditional graphical notation of the

score to follow. An accompaniment action ai is associated

with the event ei that trigger it.

Thus, from an abstract point of view, the reactive en-

gine can be roughly seen as a linear finite state transducer (a

Mealy machine) that waits for the notification of the occur-

rence of a notes to launch the associated actions, see Fig. 1.

The notification of the occurrence of a note is done by the

listening machine that is responsible to analyze the audio in-

put and to detect the onset of a new note. A reaction of the

reactive engine is a transition in the transducer whose under-

lying automaton models the score to follow.

This is a rough approximation because the reactive en-

gine manages errors from the listening machine and from

the musician (e.g., a note can be missed), the score can in-

clude jumps (e.g., to implement repeats like da capo spec-

ification), and most importantly, actions are not necessarily

atomic and they unfold in time with complex synchroniza-

tion and duration constraints. However, we can ignore these

complications in a first stage and, without loss of generality,

we can restrict our attention only to notes defined by a pitch.

s0 s1 s2 s3
G4/a1,1 a1,2 B#4/ G4/a3

Figure 1. Modeling the reactive engine as a transducer for

the “augmented score” G4a1,1 a1,2 B#4 G4a3 (events are anno-

tated with the actions they launch, written in superscript). In

the automaton, a transition is labeled by the input events and

the output actions. For the sake of the simplicity, we neglect

the specification of duration in events.

1.3 Score Follower as Pattern Matcher

The previous standpoint is definitively score oriented, that is,

actions are subordinated to the notes in the score. However,

an alternative vision is possible by reversing the perspective:

events become labels of some actions. In this approach, the

reactive program is primarily organized through its actions,

not through its events. A program is a set of rules e → a
specifying for each action a, its triggering event e. The score

is no longer modeled in the reactive engine which acts rather

as a pattern-matcher, constantly seeking some event in the

output stream of the listening machine to trigger the actions.

In this approach the pitches to recognize in the audio

input can be seen as constant patterns and it is tempting to

introduce pattern variables and logical guards, for example

to specify easily that we want to trigger an action each time

“a note is followed by the same note transposed by a fifth”.

Fig. 2 shows the occurrence of a pattern corresponding to a

sequence of three consecutive notes x, y, z such that x < y
and y > z > x (we refer here to the pitch of the notes).

2 2014/8/8

However we stress that the real challenge is to embed timing

information in patterns to express complex synchronization

strategies and to detect the occurrence of a pattern “in time”

and not in the score.

Figure 2. Occurrences (boxed) of a pattern of three consec-

utive notes x, y and z such that x < y and y > z > x.

Adding the possibility to write rule e → a in addition

to an Antescofo augmented score might seem at first sight

unnecessary: because the score to follow is known a priori,

it might seem enough to search prior any performance for

the occurrence of the pattern e (as illustrated in Fig. 2) and

to insert the action a in the augmented score. Nevertheless:

• Even if the occurrence of a pattern can be found before

a performance, it can be convenient for the composer to

factor out a series of actions to trigger repeatedly.

• Performance errors make the actual sequence of musical

events different from the sequence specified in the score.

• The pattern may refer to the current value of a parameter

specified only partially in the score (e.g., the specification

of the tempo in the score is relative and its true value is

known only at performance time).

• The pattern may take into account parameters of the au-

dio input that are not specified in a score (like dynamics

or any signal descriptor that can be used to characterize

the current audio input).

• Logical conditions may refer to the value of variables

computed in the actions that cannot be statically inferred.

• And patterns make possible to specify an electronic re-

sponse in the case of improvisation or in case of open

score where the sequence of notes is only partially known

(as in the case of non deterministic jumps between sev-

eral score fragments).

These reasons motivate the introduction of temporal patterns

in Antescofo in addition to the more classical transducer

approach of score following.

For example, with temporal patterns it is possible to

mimic neumatic notations used in Eastern and Western early

musical notation to define a general shape but not necessarily

the exact notes or rhythms to be produced. It is also possible

to specify open scores [15], that is, score where the actual

sequence of musical events is known only at performance

time.

2. Related Works

Event-condition-actions (ECA) rules are a common formal-

ism for the declarative specification of actions to be per-

formed in response to events provided some condition hold.

ECA rules are widespread in data warehouse and active

databases systems [10, 25], business processes [21], network

management [32], intrusion detection systems and monitor-

ing application [27], real-time systems [6, 18] and in many

other application fields. These different communities stress

the concepts of “timeliness” and “flow processing” as a com-

mon goal but the corresponding systems differ in many as-

pects, including architecture, rule languages, and processing

mechanisms.

In the domain of databases, the focus is certainly more put

on the processing of streams of data coming from different

sources. The relationships between the information items

and the passing of time is mainly restricted to precedence

relationships [10] and time is handled by time-stamping the

events.

This is also the case for the synchronous languages ap-

proach in real-time systems, as exemplified by LUSTRE

or Esterel, where powerful constructions make possible

to specify concisely sophisticated precedence relationships

but where time-stamping or the introduction of a periodic

event (a clock) must be explicited to take into account the

time elapsed between two events. The synchronous dataflow

paradigm developed by LUSTRE makes explicit the stream

of events as a value specified declaratively through equa-

tions. This is also the case in Functional Reactive Anima-

tion developed to specify time-varying media [14], as well

as many other DSLs. However temporal regular expression

have not been explicitly considered as a language construct

in these contexts, with the exception of the related notion of

mode automaton [23] in LUSTRE. Mode automata are used

to specify several independent “running modes” but they are

not used to span new actions, only to switch between set of

predefined actions.

The handling of time, either discrete or quantitative, is

also present in log auditing tools, in fault diagnosis and mon-

itoring systems where the objective is to detect deviations

from normal activity profiles. Some of them explicitly rely

on temporal logic for the definition of the misuses to de-

tect [7, 28]. Temporal logics have the advantage that they

are a high-level and powerful notation for events occurring

as time passes. The expression of temporal patterns as log-

ical formulas transforms the pattern-matching as a problem

of model-checking. This approach has the advantages of be-

ing well-founded and model-checking temporal logics is a

well-studied topic. This approach is however less attractive

than it may appear at first sight, for several reasons.

Antescofo temporal patterns may express quantitative

properties on time, for instance to put a deadline on the

waiting of an event (operator Before which can be used to

specify that an event should occur after d time units regard-

3 2014/8/8

less how many other events have occurred in between). This

feature calls for bounded temporal operators, as in MTL

(Metric Temporal Logic) [19] or TPTL (Timed Proposi-

tional Temporal Logic) [2]. But the possibility to express

non-local timing requirements, through pattern variables,

rules out MTL and more generally requires a fragment of

first-order temporal logic.

Model-checking a propositional temporal formula uses

the standard automata-theoretic model-checking algorithm [30].

For first-order temporal logic, this automaton would be in-

finite. The code generated in Sect. 6, derived from the se-

mantics presented in Sect. 5, can be seen as constructing

finite portions of this infinite automaton on demand and in

real-time, for a relevant fragment.

The works on the run-time verification of logical formu-

las are more recent and addresses the problem in a real-

time context. The objective is to check whether the run of

a system under scrutiny satisfies or violates some correct-

ness properties. In [4], a technique is proposed to translate

a correctness property ϕ into a monitor used to check the

current execution of a system. The property is expressed in

timed linear time temporal logic (TLTL), a natural counter-

part of LTL in the timed setting [12]. The run-time verifica-

tion shares many similarities with model checking, but there

are important differences: only one execution is checked (not

all possible execution paths), the run is bounded (only finite

traces are considered) and the techniques focus on on-line

checking (considering incremental check and disallowing to

make multiple passes over the sequence of events). Never-

theless, Antescofo temporal patterns only deal with the his-

tory of past events to produce their output, while formula

in TLTL may express rules that require future information to

be entirely evaluated. This leads [4] to the development of an

ad-hoc three valued semantic (true, false and don’t know yet)

which is not relevant to decide if a pattern matches the pre-

fix of a trace. The problem is that TLTL is not totally suited

to the task of pattern matching: it is both too expressive and

sometimes too cumbersome. Antescofo temporal pattern se-

quences lead to formulas of form ψ∧⋄ϕ where ψ are formu-

las whose validity can be decided without having to look at

future events and ϕ are formulas of the same form. So, An-

tescofo patterns address a very limited set of TLTL formulas

and only specify eventuality properties. But this set is ded-

icated to the concise expression of the temporal conditions

that are relevant in our application domain. The need for sim-

ple formalisms when dealing with event-based requirements,

instead of powerful but often cumbersome logics, has been

pointed out in several works [1, 29]. For example, the speci-

fication of a pattern which matches an event e0 followed by

two events e1 and e2 (in any order) which are not separated

by another event e3 leads to the logical formula

after(e0) ⇒ ((¬(after(e1) ∧ after(e2)))

∃U(after(e1) ∨ (¬after(e3)∃Uafter(e2))))

∧ ((¬(after(e1) ∧ after(e2)))

∃U(after(e2) ∨ (¬after(e3)∃Uafter(e1))))

which is neither concise nor very readable. This drawback

should not prevent using a temporal logic as a back-end

to define the semantics of temporal patterns. However, we

prefer to give in Sect. 5 a formal semantics in a denota-

tional style, defining explicitly the matching function on

time-event sequence. This approach gives us both a refer-

ence point for understanding patterns, a direct executable

specification and also paves the way for considering opti-

mizations of the generated code, which is subject to stringent

efficiency requirements, both in time and in space.

3. Brief Overview of Antescofo DSL

The Antescofo domain specific language relies partly on con-

cepts introduced in synchronous programming languages in

the field of embedded systems. It further addresses the man-

agement of dynamic duration related to the musical tempo

extracted from an audio stream. As a reactive language, an

Antescofo augmented score establishes a correspondence be-

tween the occurrence of events in the environment and ac-

tions that are triggered by this event. The occurrence of an

action may also trigger some other actions.

The action language is procedural: atomic actions can be

used to evaluate expressions, to launch conditionally or to

delays others actions, to send messages to the external envi-

ronment and to update variable values1. Variable identifiers

start with a dollar character to distinguish it from the mes-

sage receiver used to communicate with the external envi-

ronment. The @local statement introduces local variables in

compound actions. Compound actions can be used to group,

to iterate or to span others actions.

The group is the simplest compound action: in a sequence

a1 a2 . . . , the action ai+1 is launched right after the launch-

ing of ai that is, “simultaneously but in the right order” [5].

Delays d can be expressed in relative time (i.e. relatively

to the tempo of the musician during the performance) or

in absolute time (wall clock time). They are used to post-

pone the triggering of the associated action. So for a group

a1 1.5 a2 a3 a4 2 a5, if a1 occurs at date 0, then a2, a3 and

a4 occur at date 1.5 and a5 at date 3.5. As usual in syn-

chronous languages, an atomic action takes no time to be

performed.

The whenever action is a compound action used to launch

actions conditionally on the occurrence of an arbitrary logi-

1 The language includes data types like boolean, string, float, vector,

map. . . and also lambda expressions and processes. Lambdas are first-order

values, as well as processes, which are abstractions over actions where

lambdas are abstractions over expressions.

4 2014/8/8

cal condition. The occurrence of the condition is qualified as

an “out-of-time” event because it does not explicitly appear

in the event specified in the score. The action

whenever (cond) { actions } stop

becomes active when it is triggered and remains active un-

til its end specified by the stop clause. When active, each

time a variable appearing in the boolean expression cond is

updated, cond is re-evaluated. We stress the fact that only

the variables that appear syntactically in cond are tracked.

If the condition evaluates to true, an instance of the body of

the whenever is launched as a parallel process. Notice that

several such processes can coexist at the same moment, de-

pending on the duration of the actions in the body and the

updates of the boolean condition cond.

The stop clause is optional and used to limit the temporal

scope of the whenever. When missing, the whenever is active

until the end of the Antescofo program. If stop is a clause

during[n#], the whenever becomes inactive after the condi-

tion has been evaluated n times (irrespectively of the result

of the evaluation). If the clause takes the form during[d] the

whenever will be active for a period of d time unit (implic-

itly, the time unit is relative to the tempo of the musician, but

it is also possible to refer to wall clock time).

Antescofo variables can be updated from the external en-

vironment. A whenever on these variables allows Antescofo

to react to arbitrary external conditions and extends the cou-

pling of the reactive engine with the environment beyond

the listening machine. The listening machine also updates

the variable $PITCH representing the current pitch,$DUR rep-

resenting the duration of the current note in the score and

some other parameters (position in beat in the score, current

tempo of the musician, etc.).

3.1 A Motivating Example

The detection of the pattern described in Fig. 2 cannot be

written as a sequence of three whenever (they would be

activated in parallel) but rather as nested whenever, where

the triggering of an enclosing body activate a new one, see

top of Fig. 3.

The behavior of this code fragment on the notification

of a series of pitches (indicated in the middle of Fig. 3) is

illustrated on the bottom of the same figure. This sequence of

pitches contains only one occurrence of the pattern, figured

in bolder line.

The whenever in line 1 (W1) has no stop clause. It will

be active until the end of the program. The net effect is that

its body is triggered each time $PITCH is updated (a non-zero

number evaluates to true). The whenever at line 4 (W2) and

at line 7 (W3) have a during clause specifying that they must

be deactivated after 1 test. The activity table at bottom of

Fig. 3 represents the flow of evaluation. A column is a time

instant. The evaluation of the condition of (W1) is pictured in

pale gray, (W2) in middle gray and (W3) in dark gray. When

the evaluation returns true the border is solid, otherwise it is

dashed.

On the reception of the first note, the condition of (W1)

returns true. So, one instance of the body of (W1) is running

now in parallel with (W1), that is, one instance of (W2) is

activated and waiting for a note. The different instances of

(W1) body are numbered and correspond to the row of the

activity table. On the reception of the second note, this in-

stance (row 1) evaluates to true so (W2) launches its body

and one instance of (W3) is activated. The reception of the

third pitch does not satisfy the condition of (W3). Mean-

while, (W1) has also been notified by the reception of the

1 whenever ($PITCH) {

2 @local $x

3 $x := $PITCH

4 whenever ($PITCH > $x) {

5 @local $y

6 $y := $PITCH

7 whenever ($PITCH <$y & $PITCH >$x) {

8 @local $z

9 $z := $PITCH

10 print "Found one occurrence of P"

11 } during [1#]

12 } during [1#]

13 }

time

pitch

G B E B A G

1

2

3

4

5

Figure 3. A fragment of Antescofo code that triggers action

a on the reception of 3 consecutive notes x, y, z such that

x < y > z > x. See text for explanation.

5 2014/8/8

second notes which trigger one instance of (W2) body (row

2) in parallel. Etc.

Admittedly the specification of such a simple pattern is

contrived to write. And it becomes even more cumbersome

if one wants to manage duration and elapsing time. The

objective of Antescofo temporal patterns is to simplify such

definition. The idea is to specify a pattern elsewhere and then

to use it in place of the logical condition of a whenever:

@pattern P { ... }

...

whenever pattern ::P

{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and trans-

lated on-the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns

We describe through examples the notion of temporal pat-

terns. Their semantics is proposed in Sect. 5 and their imple-

mentation in Sect. 6.

Antescofo temporal patterns are inspired by regular ex-

pressions. An ATP P is a sequence of atomic patterns. There

is no operators similar to the option operator r? or the itera-

tions operators r∗ or r+ available for a regular expression r.

The reason is that ATP matching must be done in real-time

and must be causal: the decision that a pattern matches must

be done with the last atomic event matched by the pattern,

as soon as it occurs. This is not the case for example with r+

which need to look one token ahead to determine the subse-

quence matched.

There are two kinds of atomic patterns: Event that cor-

responds to a property satisfied on a time point and State

corresponding to a property satisfied on a time interval.

4.1 Event Patterns

A pattern Event $X matches an update of the variable $X.

This variable is said tracked by the pattern. Three optional

clauses can be used to constraint the matching: value, where

and at. The value clause constrains the value of the tracked

variable. For example:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where

clause is used to specify a guard with an arbitrary boolean

expression: the guard is evaluated at matching time and the

matching fails if it evaluates to false. The boolean expression

can be any valid Antescofo expression and may refer to

arbitrary variables. The at clause is used to constraint the

date of matching.

Pattern Variables. Pattern variables can be used to match

and to record some parameters of the matching. Pattern

variables are declared at the beginning of a pattern definition

with a @local statement and can then be used elsewhere in

the pattern expressions. For example, the pattern described

in paragraph 3.1 becomes:

@local $x, $y, $z

Event $PITCH value $x

Event $PITCH value $y where $x < $y

Event $PITCH value $z

where ($y > $z) & ($z > $x)

Pattern variables can be used in the pattern clauses. For

example:

@pattern Twice {

@local $x

Event $PITCH value $x

Event $PITCH value $x

}

matches two consecutive updates of variable $PITCH with the

same unknown value referred by $x: local variables appear

as constraints linking the patterns.

However, not all constraint are accepted: only syntactic

matching as time progress is used to resolve the constraints

expressed through the pattern variables. This restriction en-

sure that the matching is causal. For example, a pattern like

@local $x, $y

Event $PITCH value ($x + $y)

Event $PITCH value $x + 2*$y

is rejected at parsing time by Antescofo because the con-

straint between the values of the first and second event is

an equation that cannot be solved by syntactic substitution as

the time progress (in the example, we have to wait the second

update of $PITCH to decide if the first pattern has matched the

first update).

The constraint accepted in ATP have a simple operational

interpretation. Consider pattern Twice: when the first event

is matched, a value is given to the pattern variable $x. When

the second event is matched, this value is used to constrain

the match. This record-then-match behavior is just the oper-

ational explanation of the existential quantification in logic

formula when no unification nor solver are available, only

matching following the patterns order, as in ML-like pattern-

matching [22].

The scope of the pattern variables extend to the actions

triggered by the pattern, when they can be used as ordinary

variables. For example:

@pattern P {

@local $t

Event $PITCH at $t

}

...

whenever pattern ::P

{ print "found a P at " $t }

will report the date of the matching for each occurrence of

the pattern.

Tracking Multiple Variables Simultaneously. It is possi-

ble to track several variables simultaneously: the pattern

matches when one of the tracked variables is updated (and

6 2014/8/8

if the other clauses are fulfilled). For instance, to match an

update of $X followed by an update of either $X or $Y before

1.5 beat, we can write:

@local $t1 , $t2

Event $X at $t1

Event $X , $Y at $t2

where ($t2 - $t1) < 1.5

4.2 Temporal Scope and the Before Clause

The previous example shows that timed properties can be

expressed relying on the at and the where clause. It is how-

ever not easy to express that a variable must take a given

value within the next three updates. This drawback motivates

the introduction of the Before clause to specify the temporal

scope on which a matching is searched.

When Antescofo is looking to match the pattern Event $X,

the variable $X is tracked right after the match of the previous

pattern. Then, at the first value change of $X, Antescofo

check the various constraints of the pattern. If the constraints

are not met, the matching fails. The Before clause can be

used to shrink or to extend the temporal interval on which

the pattern is matched beyond the first value change. For

instance, the pattern

@pattern TwiceIn3B

{

@local $v

Event $V value $v

Before [3] Event $V value $v

}

is looking for two updates of variable $V for the same value

$v within 3 beats. Nota bene that other updates for other

values may occurs as well as updates for $V but, for the

pattern to match, variable $V must be updated for the same

value before 3 beats have elapsed from the match of the first

event.

If the temporal scope [3] is replaced by a logical count

[3#], we are looking for an update for the same value that

occurs in the next 3 updates of the tracked variable. The

temporal scope can also be specified in seconds.

The temporal scope defined on an event starts with the

preceding event. So a Before clause on the first Event of a

pattern sequence is meaningless and actually forbidden by

the syntax.

4.3 State Patterns

The Event pattern corresponds to a logic of instants: each

variable update is meaningful and a property is checked on

a given point in time. This contrasts with a logic of states

where a property is looked on an interval of time. The State

pattern can be used to face such case.

A Motivating Example. Suppose we want to trigger an

action when a variable $X takes a given value v for at least 2

beats. The pattern sequence

@Local $start , $stop

Event $X value v at $start P

Event $X value v at $stop
}

Q
where ($stop - $start) >= 2

does not work: it matches two successive updates of $X that

span over 2 beats:

$X:=v $X:=v
2 beats

Pok Qok

but it would not match three consecutive updates of $X for

the same value v, one at each beat, a configuration that

should be recognized:

$X:=v $X:=v
1 beat

$X:=v
1 beat

Pok Qfail

Pok Qfail

It is not an easy task to translate the specification of a

state that lasts over an interval into a sequence of instan-

taneous events, because they can be an arbitrary number of

events that does not change the state, while the Event pattern

matches exactly one event.

The State pattern make the previous constraint easy to

specify:

State $X where ($X == v) during [2]

matches an interval of 2 beats where the variable $X con-

stantly has the value v (irrespectively of the number of vari-

able updates).

Four optional clauses can be used to constraint a state

pattern: Before and where clauses constrain the matching as

described for Event patterns. The at clause is replaced by

the two clauses start and stop to record or constrain the

date at which the matching of the pattern has started and the

date at which the matching stops. There is no value clause

because the value of the tracked variable may change during

the matching of the pattern, for instance when the state is

defined as “being above some threshold”. The where clause

may refer to a pattern variable set in the start clause, but

not to the value of a stop clause because the date at which

the pattern ends is known only in the future. The during

clause can be used to specify the duration of the state, i.e. the

time interval on which the various constraints of the pattern

must hold. If the specified constraints are not satisfied, the

matching fails but, if there is a Before clause, a new attempt

is launched at each update of the tracked variable, until the

expiration of the before clause.

“Discrete” vs. “Continuous” State Properties. Contrarily

to Event, the State pattern is not driven solely by the up-

dates of the tracked variables: in addition, the constraints are

7 2014/8/8

also checked when the matching of a State is initiated. Fur-

thermore, the matching of a State stops when the specified

duration has elapsed, independently of the variables update.

If there is no during clause, the pattern tracks the variables

whilst the constraints are satisfied and the matching stops as

soon they are no longer satisfied.

Still, it remains that checking the guard of a state is done

on discrete time instants (corresponding to the occurrence of

a variable update eventually delayed by durations taken in

a finite set). This constrains the kind of properties that can

be handled to the properties that can be expressed relatively

to a given countable set of dates (in continuous time) and

set aside arbitrary properties defined on continuous time.

Consider for example the pattern

State $X where true during [1.5]

Event $X where ($X == v)

with $X updated at date 0 and assigned to v at date 3. We

suppose further that the pattern matching starts at date s = 0.

With these assumptions, one may consider that there is a

match M starting at date s′ = 1.5 and ending at date 3:

s $X:=v
3 beats s′

Pstart
Pend,Qok

1.5 beats

Nevertheless Antescofo does not report any match because

there is no event at date 1.5 that can be a possible start to

match the State pattern. The arbitrary date s′ = 1.5 does

not belong on the set of dates on which the pattern properties

are checked.

One may wonder if the notion of state can be extended

to handle such examples. For instance, in the FRAN frame-

work [14] it is possible to express arbitrary equations on the

date of an event in the specification of this event. Interval

analysis is then used to solve numerically the equations. This

approach can be used to extend the kind of constraints ex-

pressible in a where clause but does help here: the constraint

on the start date of the State pattern implies the date of a

future event not yet known. As a matter of fact, reporting the

matchM would imply either: a) to start the matching at each

time instant of the continuous time, which is not reasonable,

or, b) to access all the past states of the system to check the

State pattern a posteriori when the Event pattern occurs.

The approach (b) implies an unbounded memory and cannot

be extended to patterns that do not end with an event.

Example. We illustrate the State construction with a pat-

tern used to characterize some kind of “non monotonic in-

crease” of a signal:

State $X during[a] where $X > b

Before[c] State $X where $X > d

The corresponding behavior is sketched in Fig. 4.

The diagram assumes that variable $X is sampling at a

rate δ the underlying continuous evolution of a signal f .

time

$X

b

d

A T
a c r

Figure 4. Matching two successive states, the first above

level b with a specified duration of a and the second above

level d with no duration and within a temporal scope of c.
See text for explanations.

The first State pattern is looking for an interval of length

a where constantly variable $X is greater than b. The first

possible interval start at date A and is figured by the two

white circles on the time axis. The second State pattern

must start to match before c beats have elapsed since the

end of the previous pattern. The match starts as soon as $X is

greater than d. There is no specification of a duration for the

second state, so it finishes its matching at time T as soon as

$X becomes smaller than d. The matched interval is marked

with the two dark circles on the time line.

4.4 Limiting the Number of Matches

The same pattern may match distinct occurrences that start

or that stop at the same time instant. This behavior may be

unwanted because it will produce “spurious matches” that

reach, by multiple paths, the same time point T .

The “Earliest Match” Property. A regular expression may

match several prefixes of the same string. For example, a.b∗

matches the three prefixes a, ab, abb of the word abb. Usu-

ally, a pattern matcher reports only one match, characterized

by an additional property, e.g., “the longest match”.

A similar problem exists for temporal patterns, even in the

absence of iteration operators: several distinct occurrences

of the same pattern starting at the same date but ending

a different date may exists. Such alternative solutions may

appear when the temporal scope of a pattern is extended

beyond the first value change: then, distinct matches within

the temporal scope may satisfy the various constraints of

the pattern2. For instance, consider the pattern TwiceIn3B in

paragraph 4.2. If the variable $V takes the same value three

times within 3 seconds, say at the dates t1 < t2 < t3,

then TwiceIn3B occurs three times as (t1, t2), (t1, t3), and

(t2, t3).
To ensure the real-time decidability of the matching, the

occurrence (t1, t2) of the match must be reported because

at t2 there is no information about a possible further match.

So the question is to decide if further matches have to be

2 If there is no Before clause, the temporal scope is “the first value

change” which implies that there is at most one match.

8 2014/8/8

reported or not. We adopted the common behavior of report-

ing only one match (this is for instance the behavior of lex

or grep).

In other word, the Antescofo pattern matching stops look-

ing for further occurrences in the same temporal scope, after

having found the first one. This behavior is called the earliest

match property. In the previous example, with this property,

only the two matches (t1, t2) and (t2, t3) are reported.

The Refractory Period. Symmetrically, several occur-

rences of the same pattern may start at distinct time points to

end on the same time point. For instance, the curve sketched

in Fig. 4 presents many other possible occurrences of the

pattern that finishes at instant T . These occurrences start at

A + nδ, where δ is the sampling rate of the curve (i.e., the

rate at which $X is updated), as long as f(A + nδ + x) > b
for x ∈ [0, a].

In such case, a @refractory period can be used to re-

strict the number of successful (reported) matches. The

@Refractory clause specifies the period after a successful

match during which no other match may occur. This period

is counted starting from the end of the successful match. A

possible refractory period r is represented in Fig. 4. The re-

fractory period is defined for a pattern sequence, not for an

atomic pattern. The @Refractory clause must be specified

at the beginning of the pattern sequence just before or after

an eventual @Local clause. If there is no refractory period

specified, all feasible paths trigger the action.

4.5 Patterns Hierarchization

Because atomic patterns track ordinary Antescofo variables,

it is very easy to create patterns P for more complex events

and states from more elementary patterns Q. The idea is

to update with Q a variable which is then tracked by P .

For instance, suppose that patterns G1, . . . , G4 match some

basic gestures reported through the updates of some vari-

ables. Then, the recognition of a sequence Gseq of gestures

G1 · (G2|G3) ·G4, i.e. G1 followed either by G2 or G3 fol-

lowed by G4, is easily specified as:

$g := 0

whenever pattern ::G1 { $g := 1 }

whenever pattern ::G2 { $g := 2 }

whenever pattern ::G3 { $g := 3 }

whenever pattern ::G4 { $g := 4 }

@pattern Gseq {

Event $g value 1

Event $g where ($g==2) || ($g==3)

Event $g value 4

}

...

whenever pattern ::Gseq { ... }

5. Antescofo Temporal Patterns Semantics

We present in this section a simplified pattern-matching al-

gorithm for Antescofo temporal patterns, following a deno-

tational style. We first introduce the notion of time-event

sequence which formalizes the input stream on which the

matching is done. Then we define the matching of a pattern

P on a time-event sequence S by a function which returns

either the time at which the matching succeeded (from the

start of S) or fail. This function is defined by induction on

both P and S.

5.1 Time-Event Sequences

It should be clear by now that the Antescofo DSL goes be-

yond the synchronous stream of atomic events, to handle the

metric passage of time. This leads to the notion of time-event

sequence representing an interleaving of time passages and

events [3]. As usual in synchronous languages, an event is

atomic: updates of a variable occur at certain time points and

consume no time. Time-event sequences allow two events to

happen simultaneously but still one after the other. It is very

convenient to have events and actions that can happen at the

same metric time instant, but in some well definite order.

For example, on some event, an audio filter must be turned

on and then it must receive some control parameters. Ob-

viously, the control parameters must be sent only when the

filter is on, but it is pointless to explicitly wait some arbitrary

small delay between the two actions.

We formalize time-event sequences as follows. We rep-

resent the time passage by an element of R+. The elements

of U , the set of events, are the updates of the variables: an

element of U is a term x := v where x ∈ I is an Antescofo

variable and v ∈ V an Antescofo value. We look at these

sets as flat domains U⊥ and R
+

⊥
with the same minimal el-

ement ⊥: all elements except ⊥ are incomparable [24] for

the ordering � (this order is the domain order and should

not be confused with the numerical order ≤ on R
+). So, a

time-event sequence is an element of the monoid

S = (U⊥ ∪ R
+

⊥
)∗ / ∼

where the monoid operation is denoted by · and where ∼ is

the congruence relation defined by:

d · d′ ∼ d+ d′, 0 · s ∼ s, s · 0 ∼ s

for d, d′ ∈ R
+ and s ∈ S . The congruence relation is

used to aggregate consecutive time passages and to throw

away useless time passages of duration zero: time passages

are indecomposable and bounded by events. This monoid

equipped with the prefix order �, i.e. s � s′ iff it exists t
such that s′ = s · t, is a domain. The empty element of S is

denoted by ǫ.

5.2 The Patterns

Without loss of generality, we restrict ourselves to the case

of patterns tracking only one variable. We assume also that

the argument of the clauses at, value, start and stop is

always a fresh pattern variable (that is, a pattern variable

that do not appear in a previous clause). Furthermore, for

9 2014/8/8

an Event pattern, we assume that all the clauses appear. For

a State pattern, we assume that there is a Before clause

and no start and stop clauses. The management of these

clauses is similar to the value clause of an Event as done in

the equations of Fig. 5 and presents no difficulty. If a pattern

is the first of the sequence, the value of its Before clause is

+∞ by convention.

As a matter of fact, a pattern can always be rewritten

into an equivalent pattern that fulfills these assumptions. For

example

Event $X value v at $s where e

Event $Y value v′ at $s where e′

where v, v′ are expressions, can be rewritten in

Event $X value $v at $s

where e && ($v == v)

Event $Y value $w at $t

$where e′ && ($w == v′) && ($s == $t)

where $v, $w, $t are fresh identifiers.

An implicit Before clause corresponds to a temporal

scope of “first value change”, so

Event $X ...

Event $Y ...

can be rewritten in

Before[+∞] Event $X ...

Before [1#] Event $Y ...

And a pattern tracking two variables $X and $Y

Event $X , $Y ...

can be rewritten into an equivalent program using a fresh

variable $XY to track the updates of both $X and $Y.

whenever ($X==$X || $Y==$Y) { $XY:=true }

...

Event $XY ...

Here, the expression $X==$X is used to have a predicate

which is always true on the update of $X.

With these assumptions, a pattern is a sequence of Event

and State:

P ::= ε | Event · P | State · P

Event ::= Before[Dur] Event I at I value I where Exp

State ::= Before[Dur] State I where Exp during[R+]

| Before[Dur] State I where Exp

Dur ::= R+ | N#

where ε is the empty pattern sequence, Exp is the (unspeci-

fied) set of Antescofo expressions, R+ = R
+ ∪ {+∞} and

d < +∞ for all d ∈ R
+. The notation Px is used to make

explicit the variable x tracked by the pattern P .

5.3 The Pattern Matching Function

An environment ρ ∈ E is a partial function from the set

of variables I to the set of values V . The augmentation

ρ[$X := v] of an environment ρ with identifier $X and value v
is a new environment ρ′ such that ρ′($X) = v and ρ′(x) =
ρ(x) for all x 6= $X. We write ρ[x1 := v1, x2 := v2, . . .] as

a shorthand for
(

ρ[x1 := v1]
)

[x2 := v2, . . .] and ρ[x += d] as

an abbreviation for ρ
[

x := ρ(x) + d
]

. We also reserve the

identifier $NOW to record the “current time” in the environ-

ment for some bookkeeping.

Let E : Exp → E → V be the function used to evaluates

an expression e ∈ Exp: E
q

e
y

ρ returns the value of the

expression e in the environment ρ. The two booleans true

and false belong to V . We do not specify the function E in

this article but its definition is standard.

Let P be a pattern sequence. We define the matching of

P on a time event sequence S by a function M:

M : P → E → S → R
+ ∪ {fail}

specified inductively by the equations on Fig. 5. If P
matches a prefix of S, the function M returns a date, else it

returns fail . The date returned in case of success is the date

at which the action triggered by the pattern must be launched

(i.e., the at date for an Event and the stop date for a State

pattern of the last atomic pattern of the sequence). This date

is the earliest possible match, thus satisfying the earliest

match property. We do not model here the mechanism of

refractory period, which is straightforward by recording the

history of matches, nor the semantics of actions, which is

out of the scope of this paper3.

The basic idea is to define by case analysis what happens

on the reception of an event or when the time is passing.

In this sense, the M function is similar to the Brzozowski’s

derivatives of a regular expression [8]. Our context at the

same time is simpler (there is no iteration operator and there

is no need to represent symbolically the derivatives in a

closed form) and presents specific difficulties (the handling

of both event and time passage, and the management of

variables). We follow the approach already taken in [17] by

augmenting the derivatives with an environment.

The equations of Fig. 5 are commented below. These

equations are well formed recursive definitions: the left hand

sides specify mutually disjoint cases, and the right hand

sides are composition of continuous functions on domains.

So they admit a least fixed point which is the denotation of a

pattern: a function which, given an environment and a time-

event sequence, returns the date of the earliest match or fail.

3 It would require transformations of the time-event sequence in the right

hand side of the equations in Fig. 5 beyond taking its tail. To take into

account causality, this imply to rely on (U⊥ ∪ R
+
⊥
)$ / ∼ for the time-

event sequences where X $ ∼= X ⊗ X $
⊥

which differs from the domain of

streams in that the former does not allow ⊥ components to be followed by

non-⊥ components. This domain makes the handling of temporal shortcut,

i.e. a pattern that launches an action which leads to trigger the same pattern

in the same time instant, more simple.

10 2014/8/8

(1) M
q

ε
y

ρS = ρ($NOW)

(2) M
q

P
y

ρ ǫ = fail , P 6= ε

(3) M
q

Px ·Q
y

ρ
(

x′ := v · S
)

= M
q

Px ·Q
y

ρ[x′ := v] S where x 6= x′

let Px = Event x at y value z where e in:

(4) M
q

Before[d] Px ·Q
y

ρ (d′ · S) =

{

fail , if d ≤ d′

M
q

Before[d− d′] Px ·Q
y

ρ[$NOW += d′] S, if d > d′

(5) M
q

Before[0#] Px ·Q
y

ρ S = fail

(6) M
q

Before[n#] Px ·Q
y

ρ (d′ · S) = M
q

Before[n#] Px ·Q
y

ρ[$NOW += d′] S

(7) M
q

Before[D] Px ·Q
y

ρ
(

x := v · S
)

=

{

M
q

P ′

x ·Q
y

ρ′ S, if E
q

e
y

ρ′′ = false

min
(

M
q

P ′

x ·Q
y

ρ′ S, M
q

Q
y

ρ′′ S
)

if E
q

e
y

ρ′′ = true

where ρ′ = ρ[x := v] and ρ′′ = ρ′[y := ρ($NOW), z := v] and P ′

x =

{

Before[d] Px, if D = d

Before[(n− 1)#] Px, if D = n#

let Px = State x where e and P x ∈
{

Px, Px during[d]
}

in:

(8) M
q

Before[d] P x ·Q
y

ρ (d′ · S) =































fail if d ≤ d′ ∧ E
q

e
y

ρ = false

M
q

Before[d− d′] P x ·Q
y

ρ′ · S if d > d′ ∧ E
q

e
y

ρ = false

MS

q

P x ·Q
y

ρ
(

d′ · S
)

if d ≤ d′ ∧ E
q

e
y

ρ = true

min

(

MS

q

P x ·Q
y

ρ (d′ · S),

M
q

Before[d− d′] P x ·Q
y

ρ′ · S

)

if d > d′ ∧ E
q

e
y

ρ = true

where ρ′ = ρ[$NOW += d′]

(9) M
q

Before[d] P x ·Q
y

ρ (x := v · S) =











M
q

Before[d] P x ·Q
y

ρ′ S if E
q

e
y

ρ′ = false

min

(

MS

q

P x ·Q
y

ρ′ · S,

M
q

Before[d] P x ·Q
y

ρ′ · S

)

if E
q

e
y

ρ′ = true

where ρ′ = ρ[x := v]

(10) MS

q

P x ·Q
y

ρ ǫ = fail

MS

q

P x ·Q
y

ρ (x′ := v · S) = MS

q

P x ·Q
y

ρ[x′ := v] S where x 6= x′

(11) MS

q

Px ·Q
y

ρ (d′ · S) = MS

q

Px ·Q
y

ρ[$NOW += d′] S

MS

q

Px ·Q
y

ρ (x := v · S) =

{

MS

q

Px ·Q
y

ρ[x := v] S if E
q

e
y

ρ[x := v] = true

M
q

Q
y

ρ[x := v] S if E
q

e
y

ρ[x := v] = false

(12) MS

q

Px during[d] ·Q
y

ρ (d′ · S) =

{

M
q

Q
y

ρ[$NOW += d] (d′ − d · S) if d ≤ d′

MS

q

Px during[d− d′] ·Q
y

ρ[$NOW += d′] S if d > d′

MS

q

Px during[d] ·Q
y

ρ (x := v · S) =

{

fail if E
q

e
y

ρ[x := v] = false

MS

q

Px during[d] ·Q
y

ρ[x := v] S if E
q

e
y

ρ[x := v] = true

Figure 5. Specification of the Antescofo temporal pattern matching function M. In these equations: d ∈ R+; d′ ∈ R
+; x, x′, y

and z are elements of I; P,Q are elements of P and Px, P
′

x are patterns, or parts of a pattern, tracking the variable x; ρ ∈ E ;

v ∈ V; n ∈ N and n 6= 0;D ∈ Dur, i.e.,D = d orD = n#; and S ∈ S . The function min is the usual function on R
+ extended

such that min(d, fail) = min(fail , d) = d and min(fail , fail) = fail . The auxiliary function MS has the same signature as M.

11 2014/8/8

General Equations. The matching always succeeds if the

pattern is the empty sequence (Eq. 1). Symmetrically, the

matching fails if the input timed-event sequence is exhausted

but there is still an atomic pattern to process (Eq. 2). And

(Eq. 3) expresses the matching is insensitive to the update

of a variable that is not the tracked variable. The remaining

equations correspond to a definition by case on the structure

of the first pattern of the sequence (the rest of the sequence

is denoted by Q).

Matching an Event. The matching of an Event pattern is

defined by (Eq. 4–7). The notation Px is used to factorize

the writing of the Event through the various possible value

for the Before clause. (Eq. 4) specifies the effect of the time

passage on a temporal scope defined by a metric interval: if

the passage of time exceeds the temporal scope, the match-

ing fails. If the passage of time is smaller than the temporal

scope, then both the temporal scope and the notion of current

time are updated accordingly. If the temporal scope is a log-

ical count (of variable updates), then the passage of time has

no effect on the matching (Eq. 6). But if the logical count

is exhausted, the matching fails (Eq. 5). When the tracked

variable is updated, (Eq. 7), the guard of the pattern is eval-

uated in an environment where the tracked variable has its

new value. If the result is false, this event cannot match the

pattern and the matching is resumed on the rest of the se-

quence, with the environment updated by the new value of

the tracked variable. If the guard evaluates to true, they are

two possibilities: accepting this event as the event match-

ing the pattern, or delaying the acceptation to a future event.

These two possibilities are the argument of the function min
in the right hand side of (Eq. 7). The function min returns

the earliest date of the potential matches (fail is defined as

a neutral element of min to accommodate the possible mis-

matches).

Starting the Matching of a State. The matching of a

State pattern is defined by (Eq. 8–9) with the help of the

auxiliary function MS defined in (Eq. 10–12). The notation

Px is used to factorize the writing of the State through the

various possible values for the Before clause. P x represents

a Px statement optionally completed by a during clause.

(Eq. 8) specifies the passage of time on a State that has

not yet been triggered. The guard is evaluated at the begin-

ning of this time passage. The property of a state must be

true when “entering” in the state and remains true through

the events, until the “exit” of the state. So, if the guard is

false, and if the elapsed time exceeds the temporal scope,

the matching fails (first case of (Eq. 8)). If the guard is false

but the elapsed time does not exhaust the temporal scope, the

matching resumes with the same pattern, but with an updated

temporal scope to reflect the time passage (second case of

(Eq. 8)). If the guard of the pattern evaluates to true, then two

cases are to be considered. If the passage of time exceeds the

temporal scope, then the only alternative is to accept the cur-

rent time instant as the start of the matching, which is then

handled by the function MS (because the next input event

falls outside the temporal scope and so cannot be an admis-

sible starting point). If the temporal scope is greater than the

passage of time, then we can either posit the hypothesis of

the beginning of the matching, or delay it to the next event.

Hence the two arguments of the min function in the last case

of (Eq. 8). The update of the tracked variable is specified by

(Eq. 9): two cases are considered following the evaluation of

the guard. If the guard is not fulfilled, the matching resumes

with the environment updated. If the guard is satisfied, as be-

fore we can accept this matching or delay it to a future event

(the two cases of the min operator).

Finishing the Matching of a State. The function MS is

used to manage the duration specified by the optional during

clause. It is defined by case through (Eq. 10–12). Once a

State has started, it fails if there is no more events, nor time

to finish it, (Eq. 10). And the update of a non-tracked variable

has no effect, except the update of the environment. A State

without during clause finishes as soon as its guard becomes

false. The guard is evaluated on event only. This behavior is

specified by (Eq. 11). When to stop the matching of a State

with duration is defined by (Eq. 12). The first equation gives

the effect of the passage of time and the second one, the

effect of an event. On an event, the guard is re-evaluated and,

if false, the matching fails.

The semantic equations of Fig. 5 make together an exe-

cutable specification of the matching. This specification is

however not very efficient. For instance, in (Eq. 7,8,9) the

min function selects the earliest matching after the comple-

tion of both branches. An efficient on-line implementation

will cut the concurrent threads of matching as soon as one

solution has been found.

6. Compilation

We have developed a full prototype of ATP matching by

translating the temporal patterns in a series of nested whenever.

As a matter of fact, the body of a whenever is launched in

parallel with the other computations on the reception of an

event achieving a kind of process call, hence, a kind of func-

tion call. It is also possible to launch a group of actions after

some delays and to stop a whenever after some duration,

which corresponds to primitives making possible the online

handling of the time passage. So, the idea is to translate

the equations of Fig. 5 defining the function M into an on-

line version using real-time processes through whenever and

delays. The explicit environment used by the definition of

M is implemented using local variables.

The function M is defined inductively on the sequence

of atomic patterns. A rapid inspection shows that the nested

calls grow exponentially with the size of the pattern se-

quence because of (Eq. 7,8,9). But this exponential growth is

only apparent. Indeed, in term of processes, one can notice

that the father processes (the left hand side of the equations)

are waiting for the result returned by the recursive call on the

12 2014/8/8

right hand sides. So it is possible to rephrase them in order to

avoid the spawn of a son. The net effect is that the generated

code is a static nest of whenever where the number of nest-

ings is the number of atomic patterns in the sequence. Each

whenever can be seen as the state of an automaton waiting

an event or the passage of time to go into another state. But

this automaton is unfolded in real-time by the body of the

whenever instantiated at each occurrence of an event or the

time passage.

Code Template for an Event. The code generated for an

Event is straightforward. Suppose that the pattern

Before[D] Event x at y value v where e · P

is the first of the pattern sequence. Then, it translates into the

template:

$last_matching := −∞

whenever (x==x) {

@Local $continue , y, v

$continue := true

v := x

y := $NOW

if (e) { P }

}

Note that the expression e is evaluated after the initialization

of the pattern variable y and v because e may refer to these

variables. The variable $last_matching is used to manage

the refractory time and will record the date of the last suc-

cessful match in the code generated for the last pattern of

the sequence. The local variable $continue is used to abort

the whenever spanned by the hierarchy when the first match

found. The condition x==x is a boolean expression which

triggers the whenever when there is an update of x. The

$continue will disallow this triggering when false. There

is no during clause because when the pattern sequence is

activated, the matching must start on each incoming event.

For an Event pattern in the middle of the pattern se-

quence, the generated code is simpler:

whenever ($continue && (x==x)) {

@Local y, v

v := x

y := $NOW

if (e) { P }

} during [D]

The body is launched only if the variable $continue is true.

The during clause stops the tracking of the variable x when

the interval of time specified by D is exhausted. This does

not kill the instances of the body already spanned, it only

avoids the spanning of new instances.

For an Event pattern at the end of a pattern sequence,

the code includes the management of the $continue variable

and of the refractory period:

whenever ($continue && (x==x)) {

@Local y, v

v := x

y := $NOW

if (e && ($NOW - $last_match < r)) {

$last_match := $NOW

$continue := false

a

}

} during [D]

The constant r refers to the value of the refractory period

and a to the action to launch on the recognition of the pattern

sequence.

The Code for a State. Similarly to the Event pattern,

there is a slight difference between the code generated for

a State in the first position, in the middle or at the end

of the pattern sequence. We give here only a sketch of the

code generated for a State in the middle without considering

the management of $continue and $last_matching. We do

not detail the management of the clauses start and stop

because it is very similar to the management of the at and

value clauses for Event, but cumbersome.

The code for a State with or without duration constraint

is different but in the two cases, we keep track of the State’s

property: if it is satisfied we record the date the property

became true. So,

Before[D] State x where e during[d]

is translated into

1 @Local $started , $halt , $start

2 $started := -1

3 $halt := ($started > 0) && ! [D]

4 ...

5 whenever (x==x) @Immediate {

6 @Local $start

7 $start := ...

8 if (e) {

9 if ($started < 0)

10 { $started := $NOW }

11 d if ($started >=0 && $start >= $started)

12 { ... }

13 } else

14 $started := -1

15 } until ($halt)

The @Immediate attribute of a whenever forces an addi-

tional evaluation of its guard at firing time, independently

of the update of the variables present in the condition. This

whenever maintains a variable $started which is positive

if the property e is true and records the last date at which e
goes from false to true. When e is true, a conditional is also

launched with a delay d (line 11). This delay is the expected

duration of the State. When it expires, the conditional is

triggered and its body is launched only if the start time of

the pattern, recorded in the variable $start, is posterior to

the last time the property became true.

The variable $halt play a role similar to $continue and

is used to abort the whenever when the time goes outside the

13 2014/8/8

specified temporal scope. The computation of the expression

[D] is not figured here (it implies several auxiliary variables

to record the number of updates of the tracked variable or of

the elapsed time). Such optimization is needed to dispose

efficiently the instances of the body of the whenever.

Examples. Fig. 7 illustrates the occurrences of Q on a curve

sampled every 10−2 seconds:

@pattern Q {

@local $s1 , $t1 , $s2 , $t2

@refractory 2

State $X start $s1 stop $t1 during [0.5]

where $X > [1#]:$X // Q1

Before [1.3]

State $X start $s2 stop $t2 during [0.5]

where $X > [1#]:$X // Q2

}

This pattern matches two intervals, of length 0.5, sepa-

rated by less than 1.3 time units, such that on this interval

$X > [1#]:$X holds. The notation [1#]:$X is used to access

the past value of $X (the specification [n#] corresponds to

the value at the n to the last update. In other word, this prop-

erty simply characterizes a series of increasing values.

The input signal plotted on Fig. 7, is increasing on

[0, 1], [2, 3] and [4, 4.6]. It is decreasing on [1, 2] and [3, 4].
There are two occurrences of Q: the first matches the inter-

vals [0.49, 0.99], [2.05, 2.55] and the second the intervals

[2.48, 2.98], [4.08, 4.58]. Notice that the second match can-

not ends in the interval [2.55, 2.55 + 2] because of the re-

fractory period. The small shift in the interval boundaries is

caused by a small lag phase in the sampling (so, there is no

sampling point at integer time coordinates).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

"/tmp/tmp.data"

0.2

0.4

0.6

0.8

1

0
 0.5
 1.5
 2.5
 3.5
 4.5
1
 2
 3
 4

first Q

occurrence
Q1 Q2

second Q occurrence Q1 Q2

Figure 6. The plot shows the signal on which the pattern

Q is matched. The events correspond to the sampling of

an arbitrary curve every 1/100s. The occurrences of Q are

outline on the time axes where the matching of the State

sub-patterns Q1 and Q2 have been outlined.

Note that after the match of the first State pattern Q1,

each update of the variable $X every 10−2s, a whenever is

triggered to look for the second State pattern Q2. So, at the

end of the temporal scope of 1.3, they can be about 50 ac-

tive parallel whenever for Q2 only (because of the effect of

the during clause). This is not a problem for the current im-

plementation, even if we lower the sampling rate by a factor

of 4. We are not able to push the system further because the

Antescofo system is embedded in the Max/MSP environment

which allows a time slot for Antescofo computation only ev-

ery 2ms.

7. Conclusions

Research around the Antescofo system focuses on how to

achieve a high-level musical interaction between live mu-

sicians and a computer. Temporal patterns extend the An-

tescofo domain specific language for the out-of-time specifi-

cation of complex timed sequences of events.

We presented only a subset of the available constructs. In

particular, we have not discussed the NoEvent atomic pattern

that can be used to check the absence of an event of a given

kind over a definite period. But the fragment presented here

is sufficient enough to give a flavor of the temporal construc-

tions, especially pattern variables, the possibility to deal with

temporal bounds in term of number of logical events as well

as in term of metric time, the distinction between properties

satisfied on an event or on an interval, the constraints brought

by the online evaluation and the causality, the earliest match

property and the notion of refractory period.

The semantics developed here do not face the problem

of being integrated in the semantics of the entire Antescofo

DSL. A semantic for the static kernel of the DSL has been

given in term of timed-automata in [13]. For the sake of

the simplicity, we have defined the matching function on

a given time-event sequence whilst the actions triggered by

the occurrence of pattern may generate new events. But the

handling of such recursion is orthogonal to the problem of

defining the meaning of temporal patterns.

We plan to continue our research in several directions.

First, we will explore issues related to hierarchy and group-

ing. We will also extend the pattern language, e.g. to include

pattern matching on Antescofo data structure, following the

approach of [16, 17] and to support uncertainty. Second,

it will be useful to investigate alternative implementations.

For instance, using the history mechanism on variables, it is

possible to implement the example of Fig. 3 with only one

whenever. How histories may simplify the handling of State

pattern and metric Before is much less clear. Finally, we will

study the applicability of temporal patterns to the implemen-

tation of audio processing, especially for spectral computa-

tions. This kind of computations is even more computation-

ally demanding and requires a better handling of time and

space resources.

8. Acknowledgments

The authors wish to thank Arshia Cont, the members of

the MuTAnt project, Hanna Klaudel, Antoine Spicher and

the members of the SynBioTIC group for their support and

comments. Discussions with the composers Julia Blondeau,

Gilbert Nouno and José Miguel Fernandez were always

constructive and fruitful, providing bold motivations and

14 2014/8/8

strong applications. This work has been partly supported by

the ANR projects SymBioTIC (ANR-10-BLAN-0307) and

INEDIT (ANR-12-CORD-0009).

References

[1] A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero. Visual

timed event scenarios. In Proceedings of the 26th Interna-

tional Conference on Software Engineering, pages 168–177.

IEEE Computer Society, 2004.

[2] R. Alur and T. A. Henzinger. A really temporal logic. Journal

of the ACM (JACM), 41(1):181–203, 1994.

[3] E. Asarin, P. Caspi, and O. Maler. Timed regular expressions.

Journal of the ACM, 49(2):172–206, 2002.

[4] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification

for LTL and TLTL. ACM Transactions on Software Engineer-

ing and Methodology (TOSEM), 20(4):14, 2011.

[5] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs,

P. Le Guernic, and R. De Simone. The synchronous languages

12 years later. Proceedings of the IEEE, 91(1):64–83, 2003.

[6] G. Berry and G. Gonthier. The Esterel synchronous program-

ming language: Design, semantics, implementation. Science

of computer programming, 19(2):87–152, 1992.

[7] P. Bouyer, F. Chevalier, and D. D’Souza. Fault diagnosis

using timed automata. In Foundations of Software Science and

Computational Structures, pages 219–233. Springer, 2005.

[8] J. A. Brzozowski. Derivatives of regular expressions. Journal

of the ACM (JACM), 11(4):481–494, 1964.

[9] A. Cont. Antescofo: Anticipatory synchronization and con-

trol of interactive parameters in computer music. In Proceed-

ings of International Computer Music Conference (ICMC).

Belfast, August 2008.

[10] G. Cugola and A. Margara. Processing flows of information:

From data stream to complex event processing. ACM Com-

puting Surveys (CSUR), 44(3):15, 2012.

[11] R. B. Dannenberg. An on-line algorithm for real-time accom-

paniment. In Proceedings of the International Computer Mu-

sic Conference (ICMC), pages 193–198, 1984.

[12] D. D’souza. A logical characterisation of event clock

automata. Int. J. of Foundations of Computer Science,

14(04):625–639, 2003.

[13] J. Echeveste, A. Cont, J.-L. Giavitto, and F. Jacquemard. Op-

erational semantics of a domain specific language for real time

musician–computer interaction. Discrete Event Dynamic Sys-

tems, 23(4):343–383, 2013.

[14] C. Elliott and P. Hudak. Functional reactive animation. In

ACM SIGPLAN Notices, volume 32, pages 263–273. ACM,

1997.

[15] J. Freeman. Web-based collaboration, live musical perfor-

mance and open-form scores. International Journal of Per-

formance Arts and Digital Media, 6(2):149–170, 2010.

[16] J.-L. Giavitto and O. Michel. Declarative definition of group

indexed data structures and approximation of their domains.

In Proceedings of the 3rd ACM PPDP Conference, pages 150–

161. ACM, 2001.

[17] J.-L. Giavitto, O. Michel, and J. Cohen. Pattern-matching and

rewriting rules for group indexed data structures. SIGPLAN

Not., 37(12):76–87, Dec. 2002. Selected papers from the

workshops of the fourth Principles, Logics, and Implemen-

tations of High-Level Programming Languages (PLI) confed-

eration of conferences.

[18] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-

chronous data flow programming language LUSTRE. Pro-

ceedings of the IEEE, 79(9):1305–1320, 1991.

[19] R. Koymans. Specifying real-time properties with metric

temporal logic. Real-time systems, 2(4):255–299, 1990.

[20] E. A. Lee. Computing needs time. Communications of the

ACM, 52(5):70–79, 2009.

[21] D. C. Luckham. The power of events: An Introduction to

Complex Event Processing in Distributed Enterprise Systems.

Addison-Wesley, 2002.

[22] L. Maranget. Compiling pattern matching to good decision

trees. In Proceedings of the 2008 ACM SIGPLAN workshop

on ML, pages 35–46. ACM, 2008.

[23] F. Maraninchi and Y. Rémond. Mode-automata: a new

domain-specific construct for the development of safe critical

systems. Science of Computer Programming, 46(3):219–254,

2003.

[24] P. D. Mosses. Handbook of Theoretical Computer Science,

volume 2, chapter Denotational Semantics, pages 575–631.

Elsevier Science, 1990.

[25] N. W. Paton and O. Dı́az. Active database systems. ACM

Computing Surveys (CSUR), 31(1):63–103, 1999.

[26] M. Puckette. Combining Event and Signal Processing in

the MAX Graphical Programming Environment. Computer

Music Journal, 15(3):68–77, 1991.

[27] M. Roesch et al. Snort: Lightweight intrusion detection for

networks. In LISA, volume 99, pages 229–238, 1999.

[28] M. Roger and J. Goubault-Larrecq. Log auditing through

model-checking. In Computer Security Foundations Work-

shop, IEEE, pages 0220–0220. IEEE Computer Society, 2001.

[29] M. H. Smith, G. J. Holzmann, and K. Etessami. Events and

constraints: A graphical editor for capturing logic require-

ments of programs. In Requirements Engineering, 2001. Pro-

ceedings. Fifth IEEE International Symposium on, pages 14–

22. IEEE, 2001.

[30] M. Y. Vardi. An automata-theoretic approach to linear tempo-

ral logic. In Logics for concurrency, pages 238–266. Springer,

1996.

[31] B. Vercoe. The synthetic performer in the context of live

performance. In Proceedings of the ICMC, pages 199–200,

1984.

[32] E. Wu, Y. Diao, and S. Rizvi. High-performance complex

event processing over streams. In Proceedings of the 2006

ACM SIGMOD international conference on Management of

data, pages 407–418. ACM, 2006.

15 2014/8/8

@local $04_last_matching_time ,

$08_started

$04_last_matching_time := -1.0

$08_started := -1.0

WHENEVER ($X == $X) @Immediate

{

@local $21_duration , $s , $t

$21_duration := 0.2

$s := $NOW

$t := $NOW + $21_duration

if ($X > 0.5 && $X > [1#]: $X)

{

@local $03_continue_matching

if ($08_started < 0.0) {

$08_started := $NOW

}

$03_continue_matching := true

$21_duration

if ($08_started >=0.0 && $s >= $08_started)

{

@local $09_started , $17_tscope , $18_cpt , $13_halt

$09_started := -1.0

$17_tscope := 2

$13_halt := false

$18_cpt := -1

WHENEVER ($03_continue_matching && $X == $X) @Immediate

{

@local $s2 , $t2

$18_cpt := $18_cpt + 1

$s2 := ($09_started >= 0.0 ? $09_started : $NOW)

$t2 := $NOW

if ($X < [1#]: $X)

{

if ($09_started < 0.0) {

$09_started := $NOW

}

} else {

if ($09_started >= 0.0)

{

$13_halt := true

if ($04_last_matching_time < 0.0

|| $NOW - $04_last_matching_time >= 2)

{

$04_last_matching_time := $NOW

$03_continue_matching := false

print "OK start1 " $s1 " to stop1 " $t1

print "OK start2 " $s2 " to stop2 " $t2

}

}

$13_halt := $18_cpt >= $17_tscope

$09_started := -1.0

}

} until ($13_halt)

}

} else {

$08_started := -1.0

}

}

Figure 7. Full Antescofo code generated by the pattern Q in section 6.

16 2014/8/8

