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Abstract—Bloom Filter is a widely used data structure in 

computer science. It enables memory efficient and fast set 

membership queries. Bloom filter-based solutions have been 

proposed in the past decade for lookup in forwarding tables of 

backbone routers [2]. However, the main shortcomings of using 

Bloom Filters for lookup lie in the absence of support for deletion 

operations that are needed to update the forwarding tables. 

Counting Bloom Filter supporting deletion has therefore to be 

used, increasing significantly the memory requirement. 

Moreover, Counting Bloom Filter suffers from both false positive 

and false negative. In this paper, we propose to solve the issue 

with deletion of Bloom Filters by using a Withdrawal To 

annOuncement (WTO) mapping that replaces withdrawal with 

announcements, transforming deletions into additions or record 

changes. Moreover, as nowadays routing updates are becoming 

more and more frequent, and back routers routing tables are 

inflating, the number of entries in a Bloom filters increases, 

increasing the risk to saturate them, especially during bursty 

updates. In order to limit the worst case false positive rate, the 

size of Bloom filters should be dynamicly adjusted. We address 

this issue by an algorithm to Dynamicly Increase the Size of 

Bloom Filters (DISBF). Experimental evaluation show that the 

proposed techniques improve largely the performance of Bloom 

Filter used for forwarding lookup and open way for the use of 

Bloom Filters in real operational settings. 

I. INTRODUCTION 

Bloom Filter (BF) data structures have been applied to a 
large set of applications in computer science [5][6][7]. Bloom 
Filters are used for fast and memory efficient set membership 
queries. In the past decade, applications of these structures to 
networking problems have been proposed.  

In order to increase lookup speed and reduce its cost and 
power consumption, Dharmapurikar et al. [2] proposed the 
Prefix Bloom Filter (PBF) structure that uses on-chip Bloom 
Filter to represent the trie1 used to find the longest matched 
prefix. The evaluation shows that in average about 1.003 off-
chip memory accesses is needed for any single lookup, faster 
than TCAM in average but with larger worst case complexity. 

                                                           
1 Trie is a tree-like data structure allowing the organization of prefixes on a 

digital basis by using the bits of prefixes to direct the branching, an excellent 

survey of trie-based lookup solutions are provided in [1]. 

PBF only uses SRAM and achieved therefore lower cost and 
lower power consumption. However, any lookup solution has 
to deal with updates that are frequent in the current operational 
network. Unfortunately, Bloom Filter cannot support deletion 
operations that are needed to do updates. Therefore, they have 
to be replaced with Counting Bloom Filter (CBF) that uses a k 
bits counter to replace each bit of Bloom Filter array, i.e., 
supporting deletion operations CBFes entails k times more 
memory. This can prevent CBFs to be stored in on-chip FPGA 
memory. Moreover, in addition to false positive that is 
common in BFs, CBF can suffer from false negatives 
happening when a counter overflows [4]. False negative results 
in wrong lookups that are not acceptable for ISPs.  

Nonetheless, while deletion operations are problematic for 
Bloom Filters, insertion operations are natural. We propose in 
this paper the Withdrawal To annOuncement (WTO) mapping 
that transforms withdrawal messages to announcement 
messages, that have the same effect on the forwarding 
behaviour of the routing table. The technique is motivated by 
the fact that when a prefix is withdrawn in a forwarding or 
routing table, it always has a shorter less specific prefix that 
has a default next-hop. The idea of WTO mapping is therefore 
to transform a prefix deletion message into a prefix insertion 
(or change) with the next-hop set to the next-hop of the closest 
ancestor prefix node. We present the details of WTO mapping 
in Section IV. As most of update and withdrawals happen in 
the leaves, WTO mapping achieves excellent performances.  

During the past decade, backbone routers have witnessed a 
steady growth of their routing tables size. This implies Bloom 
Filters that should be used for forwarding lookup have to 
integrate an increasing number of entries. This results in 
increased false positive rate and eventual saturation of the 
Bloom Filter (when most bit in the bitmap are set). This 
increasing false positive rate means more hash probes in off-
chip memory for PBF algorithm, and ultimately degrades the 
system performance. In order to limit the worst case false 
alarm rate, the on-chip BFs should be dynamicly adjusted with 
the number of elements stored in the BF. Several approaches 
have been proposed to deal with this. Yu et al. [8] proposed to 
partition the forwarding table according to the outgoing port 
(outgoing link), and to build a specific BF for each outgoing 
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port. This BF is periodically reconstructed with the aid of a 
CBF and its size is increased accordingly. However, during the 
process of reconstructing BFs, packet forwarding should be 
suspended and arriving packets are inserted into a queue. This 
increases the risk of packet dropping and this is highly 
undesirable for ISPs. To address this issue, we propose a 
scheme that can dynamicly increase the size of BF, named 
DISBF algorithm. The core idea of DISBF algorithm is to 
assign additional memory to ensure that the false positive does 
not increase during the insertion updates. The cost of this 
dynamic adaption is a few additional memory accesses. The 
details are provided in Section IV. 

The rest of the paper is organized as follows. Section II 
introduces the background, including IP lookup, forwarding 
table, and the principle of Bloom Filters. Section III details the 
WTO mapping and Section IV describes the DISBF algorithm. 
Performance evaluation is provided in Section V, and finally 
we conclude our paper in Section VI. 

II. BACKGROUND 

A. Bloom Filter Theory 

Bloom Filter is a space–efficient data structure used for set 
membership queries. A Bloom Filter has two main components 
an m bits array, and k hash functions. When a new entry is to 
be added to the BF, it is hashed by each one of the k hashes to a 
value from 1 to m and the corresponding value is set to in the m 
bits vector. 

1) Initialization 

0 1 1 0 1 0 … 0 1 0

1 2 3 m...
 

Figure 1.  The initial state of Bloom Filter. 

In the beginning, as shown in Figure 1, the Bloom Filter is 
an m-bit array, every bit of which is 0. There are k mutually 
independent hash functions to map every element to k positions 
with a uniform random distribution. 

2) Insertion 

As shown in Figure 2, given a set 𝑋 =  𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚  , 

for each element 𝑥𝑖 in 𝑋, each hash function will compute an 
array position, which will be set to 1. Therefore, each element 
causes k bits in the m-bit array to be set to 1. Note that if the 
position of a hash value is already set to 1, no change is needed 
for standard Bloom Filter2. 

After the insertion of all the elements of the set 𝑋 , the 
construction of Bloom Filter is complete, and then membership 
query3 can be performed. 

0 1 1 0 1 1 0 1 0

1 2 3 m...

xi xj

…

 

Figure 2.  The insertion of Bloom Filter. 

                                                           
2 For Counting Bloom Filter, the position will increase by one. 
3 For convenience, the process of determining whether or not an element is a 

member of a set is called membership query in this paper. 

3) Membership Query 

0 1 1 0 1 0 … 0 1 0

1 2 3 m...

y

 

Figure 3.  Membership query of Bloom Filter. 

As shown in Figure 3, given an element y, the same k hash 
functions compute k positions in the array. If all the k bits 
corresponding to the k hash values are 1, the element is judged 
to be an element of the set 𝑋  with a probability of false 
judgment; otherwise, it is definitely not a member of the set 𝑋.  

 

Figure 4.  The relationship between t and k given the value of f. Given a set 

with n elements, the memory occupation is tn bits. We need to choose the 

optimal k and t to achieve the expected possibility of false positive. 

However, even if an element z is indeed not a member of 
the set 𝑋, the k hash positions might be all 1, this is called false 
positive. The probability of false positive has been well 
researched [3][4], thus we only present the important 
conclusions below: 

Suppose m is the size of the filter (the length of bit-vector), 
k is the number of hash functions, and n is the size of the 
element set. f represents the false positive probability, and it is 
given by: 

𝑓 =  1 −  1 −
1

𝑚
 
𝑛𝑘

 

𝑘

 

When m is large, the above equation can be simplified to: 

𝑓 ≈  1 − 𝑒
−𝑛𝑘

𝑚  
𝑘

 

Given the value of f, the following relationship can be 
concluded: 

𝑚 ≈ −
𝑘

𝑙𝑛  1 − 𝑓
1

𝑘 
𝑛 
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𝑡 =
𝑚

𝑛
= −

𝑘

𝑙𝑛  1 − 𝑓
1

𝑘 
 

The false positive probability is minimized when satisfying  

𝑘 =
𝑚

𝑛
𝑙𝑛2                                            (1) 

and 

𝑓 =  
1

2
 
𝑘

                                              (2) 

Given the value of the possibility of false positive, we can 
compute the optimal values of m and k according to equation (1) 
and (2). 

To simplify the description of the memory requirement of 
Bloom Filter, we define t=m/n, i.e., given a set with n elements 
to insert into a Bloom filter, the needed memory is tn bits. The 
optimal k and t to achieve an expected probability of false 
positive is given by the above relations. Figure 4 shows the 
relationship between t and k when the value of the possibility 
of false positive is given. For example, if f is required to be 10-8, 
k should be 21, and t should be 39.05, i.e., m=39.05n. For 
another example, if f is required to be 10-4, k should be 13, and 
t should be 19.17, i.e., m=19.17n. 

B. Bloom Filter applications for IP lookup  

The initial paper that proposed to use Bloom Filter for 
packet forwarding in IP networks proposed Prefix Bloom 
Filters (PBF) lookup algorithm [2]. This algorithm first builds 
a trie structure for the routing table. It regroups after the 
prefixes in each level with the same prefix length as a prefix set.  
PBF consists of two steps: on-chip 4  Bloom Filter query 
determining the matched trie level  (the longest matched prefix 
length5) and off-chip hash probes looking-up the next-hop, i.e., 
a Bloom Filter is built in the FPGA on-chip memory for each 
prefix set and an off-chip hash table for each level of the trie. 
This results in 32 Bloom Filters and 32 hash tables. Given an 
incoming IP address, we first query its high 1bit, 2bits, 
3bits, …, 32bits prefixes in the corresponding 32 Bloom filters. 
Due to prefixes overlap, several Bloom Filters can report a 
match. According to the Longest Prefix Matching (LPM) rule, 
PBF checks the longest matched level in the corresponding off-
chip hash table and returns the corresponding egress port. 
When the longest Bloom Filter returns a false positive, the 
search in the hash table will not find any corresponding record 
and PBF has to check the hash table for the second longest 
prefix. This process continues until a match is found in hash 
table. 

Membership query of Bloom Filter is so fast that it is 
considered to be able to be ignored compared with off-chip 
operations, and thereby the off-chip hash probes become its 
bottleneck. Indeed above-described PBF can achieve fast 
lookup with low cost, but there are two main shortcomings: 
updates, and routing table growth. 

Nowadays, networks have to deal with an increasing 
number of update and routing table changes. Therefore, the 
performance of incremental update has become a very 

                                                           
4 For FPGA [10] and ASIC, there are on-chip and off-chip memory: on-chip 

memory is fast but scarce, while off-chip memory is slow but abundant. 
5 The routing table can be stored in a binary trie, and the prefixes with the 

same length will be stored in the same level of the trie. 

important metric for routing lookup. Solutions that suspend 
lookup too long during routing table updates are highly 
undesirable. PBF authors have proposed to use Counting 
Bloom Filters in place of Bloom Filter to deal with this issue. 
In CBF, each bit of the membership array of Bloom Filter is 
replaced by a k bits counter that is incremented every time, and 
the corresponding position is set by the insertion of a new 
element in the CBF. This enables to delete one element from 
the CBF by simply decrementing the counters set by the 
insertion of the deleted element.  However, the ability to delete 
elements from a CBF comes at the cost of k fold memory 
requirements. Therefore, for a given memory footprint the false 
positive rate of a CBF becomes larger than the false positive 
rate of a BF. Moreover, the counters of a CBF can overflow 
(when the number of elements setting a position goes higher 
than 2k-1). This leads to false negative, i.e., claiming that an 
element is not in the Bloom Filter when it is in it. The false 
negative has more serous impact on routing than false positive 
as when they occur, there are two error cases: 1) The longest 
matched level is missed and the packet is forwarded to the 
wrong next-hop; or 2) no Bloom Filter reports match and the 
next-hop remains unknown. These points make PBF unsuitable 
for real routers. 

A second issue is relative to handling fast inflating routing 
tables. With routing table keeping a rapid growth during recent 
years, the on-chip Bloom Filters have to hold an increasing 
number of prefixes. With fix memory size this incurs an 
increase of the false positive rate, and a resulting increase of 
costly off-chip hash lookups, ultimately decreasing the lookup 
speed. To keep the system throughput one should manage to 
limit the false positive rate while the number of entries in the 
Bloom Filter increases by dynamicly adjusting the size of the 
Bloom Filter. Unfortunately, there has been no solution to 
dynamicly increase the size of Bloom Filters.  

III. WTO ALGORITHM 

First we give some conclusions of Bloom Filter and 
Counting Bloom Filter: 

 Bloom Filter supports insertion operations and 

membership query, but cannot support deletion operations. 

 Bloom Filter has false positive, but no false negative. 

 Counting Bloom Filter uses a counter in place of a bit of 

Bloom Filter, hence can support deletion operations. 

 Counting Bloom Filter has both false positive and false 

negative. 

In order to support incremental update, PBF adopts 
Counting Bloom Filter, then two problems arise: 

 If a counter in the Counting Bloom Filter costs x bits, then 

x times memory is needed as compared with Bloom Filter. 

Therefore, Counting Bloom Filter is probably too large to 

be held in on-chip memory. 

 Counting Bloom Filter has false negative. When false 

negative occurs, PBF algorithm probably returns a 

mistaken next-hop. 

Actually, the above two problems can be solved if there is 
no withdrawal message, but we cannot just ignore the 
withdrawal messages. 

Deletions are needed when withdrawal messages happen. A 
withdrawal message means that the announced prefix and its 
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next-hop should be deleted from routing table, e.g., let’s 
assume that the prefix1011*:4 has to withdraw. Now, if a 
packet with destination address IP 10110* arrives, to which 
egress should it be forwarded? In practice, there are always 
shorter prefixes matching the IP, like 101*, 10* and *, in the 
routing table. So in this example, the withdrawal message just 
changes the longest matched prefix from 1011* to 101*. 
Therefore, in place of deleting the prefix 1011*, one can just 
change its next-hop to the next-hop of prefix 101*. By doing 
this the forwarding behavior of the routing table will change. 
Nonetheless, we have just transformed the withdrawal 
messages into an announcement messages and suppress the 
need for a deletion operation in Bloom Filters. This example 
illustrates the rationale of Withdrawal To annOuncement 
(WTO) mapping algorithm. WTO algorithm aims at changing 
withdrawal message into announcement one while keeping the 
forwarding behavior of routers unchanged.   

By eliminating the need for deletion, WTO algorithm 
enables to simply use a Bloom Filter instead of the Counting 
Bloom Filter.  

The WTO mapping algorithm works as follows. It seeks a 
way to convert withdrawal messages to announcement 
messages by changing the next-hop of the prefix to be deleted 
to its nearest ancestor’s next-hop in the trie. For instance, as 
shown in Figure 5, node A, B, C, D and R are 4 prefix nodes in 
a trie and the circles represent that the egress port of these 
nodes is 1, while the rectangles represent port 2. When a 
withdrawal message: withdraw 101*, arrives instead of 
removing node D and updating the Bloom Filter, WTO 
algorithm changes the next-hop of node D to port 1 (the next-
hop of node C), suppressing the need to apply an operation on 
the Bloom Filter.  

                

(a) step I.                                            (b) step II. 

Figure 5.  The scheme of WTO algorithm. Node A, B, C, D and R are 4 

prefix nodes in a trie and the circles represent that the port of such nodes are 1, 

while the rectangles represent port 2. Given a withdrawal message: withdraw 

101*, instead of simply removing node D and updating the Bloom Filter, 

WTO algorithm changes the next-hop of node D to port 1 (the next-hop of 

node C), thus no operation on Bloom Filter is needed. When deleting node C 

after node D is deleted, WTO algorithm needs to change the port of node C to 

port 2, and the port of node D should be changed as well. 

It is noteworthy that WTO algorithm may cause domino 
effect. In the example shown in Figure 5, when deleting node C 
after node D being deleted, WTO algorithm needs to change 
both the egress port of node C and D to port 2. To address this 
potential problem, a simple solution consists in checking the 
sub-trie rooted at the updated node. However, this entails a 
longer time and larger memory. To accelerate WTO mapping, 
we assign a flag to each node. When during deletion operation, 
the updated node is not really deleted but changed, just like the 
node D in step I of Figure 5, the flag of the nearest ancestor 
node (node C in Figure 5) should be set to true. During next 

deletion, WTO algorithm finds that the flag of a node is true, it 
continues to traverse the sub-trie to change the corresponding 
nodes. This happens in the example of Figure 5, when node C 
is deleted after node D. 

However, getting the nearest ancestor and its flag needs a 
pointer in each node to point back to its parent node. To avoid 
this back pointer, we record the flag of the nearest ancestor 
node in the next node during the traversal process needed to 
find the updated node. This further reduces the additional 
memory accesses resulting from back pointers.. 

The above technique reduces strongly in practice the 
needed sub-trie traversals. We give in Algorithm 1 the pseudo 
code of WTO algorithm. 

Nonetheless, when the domino effect happens, it needs 
more time to apply an update than the common situations. The 
rate of domino effect depends on the update messages. In other 
words, the performance of WTO algorithm depends on the 
characteristics of update messages, in particular the withdrawal 
update messages. According to our previous experimental 
results in [12], the update messages happen mainly in Leaves 
nodes. This suggests that even when the domino effect happens, 
only a few levels of the prefixes are affected. 

 

Algorithm 1 Update(operationType, prefix, next-hop) 

1: insertNode = trie.root 

2: next-hopAncestor = insertNode.newPort 

3: for {i = 0 to prefix.length-1} 

4:  if {prefix[i] == 0} THEN 

5:   if {insertNode.leftChild == NULL} then 

6:    if {operationType == WITHDRAW} 

7:    return; 

8:    endif 

9:    create insertNode.leftChild 

10:   endif 

11:  next-hopAncestor = insertNode.newPort 

12:  insertNode = insertNode.leftChild 

13: else 

14:  if {insertNode.rightChild == NULL} then 

15:   if {operationType == WITHDRAW} 

16:    return; 

17:   endif 

18:   create insertNode.rightChild 

19:  endif 

20:  next-hopAncestor = insertNode.newPort 

21:  insertNode = insertNode.rightChild 

22: endif 

23: endfor 

24: if {operationType == ANNOUNCE} then 

24: insertNode.oldPort = next-hopAncestor = next-hop 

26: [Bloom Filter Operations] 

27: else 

28: insertNode.oldPort = 0 

29: endif 

30:if{flag==true} then 

30:  traversalUpdate(insertNode, next-hopAncestor) 

 

In addition to this, we have also carried out large-scale 
experiments and find that withdrawal messages are much fewer 
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than announcement messages (see Figure 8 in Section V). This 
phenomenon indicates that WTO algorithm is applicable for 
real routers. As explained above, the WTO mapping can fix the 
of the major problems that lead authors of [2] to use CBFs in 
place of BF, controlling therefore the memory increase. 
Moreover, the increase in the number of memory accesses 
induced by domino effect of the WTO algorithm is not too 
large to result in performance loss (see Figure 10 in Section 
VI).  

IV. DYNAMICLY ADJUSTING THE SIZE OF BLOOM FILTERS 

A. DISBF Algorithm 

Routing table size has taken a large increase in recent years, 
e.g., the Autonomous System 6447 routing table had only 
about 70K prefixes in 2000, but exceeded 450K prefixes at the 
beginning of 2013 [14]. One issue that such an explosive 
increase can generate for Bloom Filter based lookup is that the 
number of entries to add into the Bloom Filter increases and 
the false positive rate consequently increases. In order to 
control the false positive rate we need to adapt the size of the 
Bloom Filter dynamically.  

This issue has already been analysed. Yu  et al. proposed in 
[8] to re-construct periodically the Bloom Filter with the aid of 
Counting Bloom filters. Unfortunately, re-constructing the 
Bloom Filters interrupt the lookup of forwarding table, and 
might incurs packet loss. It is therefore not applicable in 
practice. 

We propose an algorithm to Dynamically Increase the Size 
of Bloom Filter (DISBF) that do not need to reconstruct the BF 
and avoid blocking the lookup process. Note that we also aim 
at keeping the false positive rate almost unchanged with 
increasing the number of elements inserted into the BF.  

Let’s assume that in Figure 6, xi is an element of to add to a 
Bloom Filter. The original BF membership array is the bits 
ranging from 0 to m, while the memory (the purple part) 
ranging from m+1 to m’ is the additional memory. hs is one of 
the k hash functions. 

Now, let’s define Bloom Filter to be ‘full’ when the number 
of inserted entries becomes larger than a threshold defined by 
the maximal acceptable false positive rate. Now let’s assume 
the BF becoming ‘full’. The DISBF algorithm consists of 4 
steps (see Figure 6): 

1) We compute a new size m' for the Bloom filter, and 
'malloc' additional m'-m memory for it. 

2) When inserting a new element, we still compute the k 
hash functions, and check the corresponding bit ℎ𝑠(𝑥𝑖). If the 
bit is set (is 1), nothing needs to be done. However, if the value 
is 0, we do not set it, but compute  the ℎ𝑠 𝑥𝑖  𝑚𝑜𝑑 (𝑚 −𝑚′), 
and set the corresponding bit in the additional memory to 1. 

3) When querying an element x, check the original k hash 
position: if all 1, report true; otherwise, if position indicated by 
the hash function i is 0, go to step 4). 

4) We check the positions ℎ𝑖 𝑥  𝑚𝑜𝑑 (𝑚 −𝑚′)  in the 
additional memory, if it is 1, we report true, otherwise, if there 
is a further round of added memory we apply the same 
approach. If in the last memory region the value is 0, we report 
a false.  

It is noteworthy that the above method does not add false 
negative, and the false positive rate is not increasing due to the 
addition of memory. Moreover we do not need any additional 

hash computations but only additional modulo operations. 

In conclusion, our scheme can dynamically increase the 
size of Bloom Filter, avoiding Bloom Filter reconstruction 
without adding false negative, and keeping the false positive 
below limit. No additional hash function and hash computation 
is needed. The additional modulo operations and corresponding 
memory accesses are also very rare (happening only for entries 
added after the Bloom Filter becoming ‘full’).  

 
Figure 6.  DISBF algorithm. xi is an element of the set. The memory ranging 

from 0 to m is the original Bloom Filter, while the memory (the purple part) 

ranging from m+1 to m’ is the additional memory. hs is one of the k hash 

functions. 

B. The False Positive of DISBF 

As mentioned before, the false positive probability of 
Bloom Filters stays bounded by using DISBF. In this section, 
we analyze formally the false positive probability of DISBF. 

Let’s suppose that before adding additional memory, n 
elements are inserted into the Bloom Filter that is using  k hash 
functions, and a membership array of size m. When m is large, 
the false positive probability f is given by : 

𝑓 ≈  1 − 𝑒
−𝑛𝑘

𝑚  
𝑘

 

As explained in section II.A, the optimal value of false 
positive is  

𝑓𝑜𝑝𝑡 =  
1

2
 
𝑘

 

and the values k,m and n are related by the below relation: 

𝑘𝑜𝑝𝑡 =
𝑚

𝑛
𝑙𝑛2 

When k is fixed,  1 − 𝑒
−𝑛𝑘

𝑚  
𝑘

 and f increase with n. We 

will assume that the Bloom Filter is becoming ‘full’ when the 
number of inserted elements exceeds nmax, resulting in a false 
positive probability less than   

𝑓𝑚𝑎𝑥 ≈  1 − 𝑒
−𝑛𝑚𝑎𝑥 𝑘

𝑚  
𝑘

 

Now if we keep k unchanged, and  

𝑚𝑐

𝑛𝑐
=
𝑚

𝑛
 

1    3     5 m

xi

hs

1 0 1

m'

hs(xi)%(m'-m)

111 1 0

x1, x2, x3, …, 

xi…, xn

Set X

additional memory
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The false positive probability still remains: 

𝑓𝑐 =  
1

2
 

𝑚𝑐
𝑛𝑐

𝑙𝑛2

=  
1

2
 

𝑚

𝑛
𝑙𝑛2

= 𝑓𝑜𝑝𝑡  

When nc>nmax, the DISBF algorithm 'malloc' m'-m 
additional memory. We use f' to represent the probability of 
false positive using DISBF algorithm. When nc = nmax, all the 
bits in the additional memory are 0, thus 

𝑓 ′ = 𝑓 ≈  1 − 𝑒
−𝑛𝑘

𝑚  
𝑘

 

When the probability of false positive reaches the 
predefined threshold 𝑓𝑚𝑎𝑥 , DISBF is activated, and the number 
of 1s in the original Bloom Filter array is not anymore 
increased by additional insertion. The rationale of DISBF 
scheme is to transfer the newly inserted 1s to additional 
memory. Now let’s suppose that after inserting x additional 
elements into the Bloom Filter, the 1s are evenly distributed in 
the added bits, and  

𝑚

𝑛
𝑙𝑛2 =

𝑚′

𝑥 + 𝑛𝑚𝑎𝑥
𝑙𝑛2 = 𝑘𝑜𝑝𝑡  

The false alarm probability f for a bloom filter not using the 
DISBF algorithm will become: 

𝑓 ≈  1 − 𝑒
−(𝑛𝑚𝑎𝑥 +𝑥)𝑘

𝑚  
𝑘

 

Now the DISBF, has larger size and fewer 1s, compared 
with BF, thus  

𝑓 ′ ≈  1 − 𝑒
−(𝑛𝑚𝑎𝑥 +𝑥)𝑘

𝑚 ′  
𝑘

<  1 − 𝑒
−(𝑛𝑚𝑎𝑥 +𝑥)𝑘

𝑚  
𝑘

= 𝑓 

The same argument is valid when after adding more entries, 
the new Bloom Filter becomes ‘full’, i.e., the probability of 
false positive reaches the predefined threshold 𝑓𝑚𝑎𝑥 . In this 
case, new additional memory is assigned and the four steps of 
DISBF algorithm are executed again. 

V. EXPERIMENTAL RESULT  

In this section, we will validate using empirical experiment 
the proposed techniques to implement Bloom Filter based IP 
lookup. 

A. Experimental Settings 

1) Data Set 

The data set is taken from RIPE NCC [11] at www.ripe.net, 
which collects routing updates from peers. In order to 
objectively evaluate the performance of WTO algorithm, we 
extracted the  RIB  on 2012/6/1 at 8:00 AM  from 10 backbone 
routers, and all corresponding update messages happening 
during a full day are downloaded and parsed. 

2) Computer Configuration 

Our experiments have been conducted on a windows XP 
sp3 machine with Pentium (R) Dual-Core CPU 
5500@2.80GHz and 4G memory.  

B. Experiments on WTO Algorithm 

The x-axis of Figure 7~12 represents the update time of 
update messages. For instance, '201210231945' means the time 
2012-10-10 23:19:45. The labels, rrc00, rrc01, etc. are the 
router ID defined by RIPE Network Coordination Centre [11]. 

As the WTO algorithm is executed for any withdrawal 

messages, so we study the number of withdrawal messages. 
We show in Figure 7 the number of withdrawal messages for 
the 10 routing tables. The maximum value is around 927496 
for one day (for rrc00). This number of withdrawal means in 
average 927496/24/3600≈10.73 updates per second. Moreover 
this number is small compared with the number of total updates: 
16956829 that means in average 196.26 update messages per 
second. 

 

Figure 7.  The number of updates in one day over 12 routers. The maximum 

value is around 927496 (rrc00) for one day. It is actually very tiny compared 

with the number of total updates: 16956829. The maximum 927496 

withdrawal updates mean that 927496/24/3600≈10.73 withdrawal updates per 

second in average. For the most frequent updating router RRC00, there are 

196.26 update messages per second in average. 

 

Figure 8.  The ratio of the number of withdrawal update messages to that of 

total update messages. It can be observed that the ratio ranges from 0.03 to 

0.16 with a mean of 0.1. This suggests that only 1/10 update messages are 

withdrawal. That means WTO is performed with the possibility of 1/10 in 

average. 

As mentioned in Section I, the relative rarity of 'withdrawal 
messages' makes WTO algorithm work well. To validate this, 
we plot the ratio of the number of withdrawal messages to the 
total update messages in Figure 8. It can be observed that the 
ratio ranges from 0.03 to 0.16 with a mean of 0.1. This 
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suggests that only 1/10 update messages are withdrawal. That 
means WTO is performed in average 1/10 of time. 

As mentioned in Section III, WTO algorithm may cause 
domino effect. When the flag of updating node or the nearest 
ancestor node is true, WTO algorithm must traverse the sub-
trie rooted at the updating node, then additional memory 
accesses are needed. Actually, because update messages are 
generally happening in 'Leaves' [12], additional memory 
accesses are very low. We plot in Figure 9 the number of 
additional memory accesses,. Results show that the maximum 
number of additional memory accesses is 3620 over one day. 
Given a common DRAM working at 333MHz, 3620 additional 
memory accesses only need 3620/333000000=10.9us that is 
negligible.  

 

Figure 9.  The number of additional memory accesses using WTO algorithm 

for 10 routing tables over one day. Because update messages have 'Leaves 

Characteristic', the additional memory accesses are very few, and increases 

slower and slower. Results show that the maximum number of additional 

memory accesses is 3620 over one day. 

To make a comparison, we plot the total memory accesses 
for updates including announcement and withdrawal messages 
over one day in Figure 10. The number of memory access 
number is about 0.4 billion, 110497 times of the additional 
3620 memory accesses. That’s to say, the negative effect of 
time overhead brought by WTO algorithm is only around 10-6 
of the original update time.  

We show in Figure 11, the number of additional memory 
accesses for each withdrawal after using WTO algorithm. It 
can be observed that in average only 0.001 additional memory 
accesses are needed.  

The other negative effect of WTO algorithm is the 
introduction of additional prefixes. As WTO algorithm 
changes the withdrawal messages to announcement messages, 
there will be more prefixes after using WTO algorithm. The 
number of additional prefixes is an important metrics for WTO 
algorithm, as too many additional prefixes means larger routing 
table size, that might make WTO algorithm not practical.  

According to Figure 7, there are 927496 update messages at 
most. One might think that the number of additional prefixes 
will be 927496. However, in practice the number is much 
smaller as only a small fraction of prefixes are frequently 
updated. We show in Figure 12 and 13, the number of 

additional prefixes observed after applying WTO. 

The ratio of the number of additional prefixes to the total 
prefixes is shown in Figure 12. It shows that the ratio ranges 
from 0.002 to 0.04 with a mean of 0.01. This means that WTO 
algorithm results in average in only 0.01 additional prefixes 
produced for each withdrawal message. 

As shown in Figure 13, the number of additional prefixes 
ranges from 979 to 13215 with a mean of 4050. This is much 
smaller than the number withdrawal messages (927496). If the 
router has enough memory, WTO algorithm can always work 
well. If the memory becomes insufficient, we can periodically 
perform a refresh, when the router is idle. 

 

Figure 10.  The number of memory accesses for update messages over one day. 

The maximum memory access number is about 0.4 billion, 110497 times of 

the additional 3620 memory accesses. That’s to say, the negative effect of 

time overhead brought by WTO algorithm is only around 10-6 of the original 

update time. 

 

Figure 11.  The number of additional memory accesses in average for each 

withdrawal message. 
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Figure 12.  The ratio of the number of additional prefixes to that of total 

prefixes on 10 routing tables over one day. Results show that the ratio ranges 

from 0.002 to 0.04 with a mean of 0.01. 

 

Figure 13.  The number of additional prefixes on 10 routers over one day. The 

number of additional prefixes ranges from 979 to 13215 with a mean of 4050. 

This is much smaller than the number withdrawal messages (927496). 

VI. CONCLUSION 

In order to solve the issue raised by the usage of Bloom 
Filter based techniques for IP lookup, we propose WTO 
algorithm to solve the update problem for Longest Prefix 
Matching; In order to limit the worst case false alarm rate, we 
proposed DISBF algorithm to dynamically increase the size of 
Bloom Filters. We carried out experiments to evaluate the 
performance of WTO algorithm, and results show that they can 
overcome the shortcomings of Bloom filter-based solutions at 
the cost of negligible overhead. Note that DISBF algorithm can 
be applied to all situations using Bloom Filters, especially the 
frequently updating Bloom Filters. In our next work, we plan to 
apply DISBF algorithm to the Bloom Filter-based solutions for 
Exact Matching [8][9]. 
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