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ABSTRACT

This paper describes the first step of the introductiofiatiious domain methods(FDM) in the simu-
lation of nuclear component fields. We consider the resmiutif a diffusion problem-div (&.Vil) = f,

in a physical domairs2, with different kinds of boundary conditions (B.C.). Theapk of this domain
is of the Steam Generator’s type. The aim of this work is te@né several ways to impose B.C. on an
immersed interface, without modifying locally the numafischeme and without using Lagrange multi-
pliers. The numerical resolution is implemented usingegithfinite element or a finite volume method.
Error estimates are performed in order to evaluate the dépadf this method. A comparison with
unstructured mesh methods is also presented.

KEYWORDS

Fictitious domain method, Immersed interface, Neptunea®tGenerator.

1 INTRODUCTION

Within the framework of the federal program NEPTUNE laurtthg the CEA and EDF concerning the
industrial simulation of two-phase flowsin the nuclear power plant components as steam generators
(SG) or cores, we propose investigations of new numericéthoaks based ostructured meshes

The advantages of numerical methods for partial diffeeérdiquations (PDE) involving structured
meshes are well known : easy implementation for fast sol(egised for instance on finite volume
methods with structured grids) and for multi-scale meth@ssgot et al. , 1993), good convergence
properties, easy simulation of moving boundaries (for gl@ammoving obstacles in a flow, fluid/structure
interaction...) ... However their main drawback is the diffiy to take into account boundaries or
obstacles in complex industrial situations. As a fact, nicaémethods involving unstructured meshes
are classical in the industrial software world.

1.1 Fictitious domain method

Since a few yeardictitious domain methods(FDM)(Saul’'ev, 1963. (in Russian), Marchuk, 1982 (1rst
ed. 1975)) have been arising for Computational Fluid Dyra@dhadraet al., 2000). In this approach,
the initial computation domaif (called physical domaipis immersed in a geometrical bigger and
simpler other on&2, calledfictitious domain(see Figure 1).

The spatial discretization is now performed in the fictiialomain(2, independently of the shape
of the physical domaif2. The physical domain and the computational one are uncdupemerical
methods involvingstructured meshescan be computed. Consequently{Inthe resolution of the new
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External domainQ

Physical domairEz

E

Fictitious domainQ

Figure 1: Example of a physical domaifl immersed in a fi ctitious domaift

equation will be fast and simple.

The main difficulty lies in the choice of the PDE solved in thetifious domainQ2 and in the
numerical scheme used for the resolution. These two chbiges to be coupled in order to take into
account the conditions on the initial bounda?f). Therefore the restriction of the solution on the
physical domain is expected to be the initial problem’s one.

Numerically, there are mainly three approaches to deal thighboundary conditions located on the
immersed boundary:

e “Thin” interface approaches : the physical boundary is apipnated without being enlarged in
the normal direction. The physical boundary and the appratéd one lie in the sanf®" space.
For example, in this group, we can find truncated domains odstiMcCorquodalet al., 2001,
Yeetal., 1999), immersed interface methods (I.I.M.) (Leveque &1994), as well as an adapted
Galerkin method proposed by Latché (submitted (octobeB800

¢ “Spread” interface approaches : the support of the appravdachinterface is larger than the physi-
cal one. The approximated interface has one dimension rharethe physical one. For example,
the boundary can be estimated as the set of the elementscoétiiation crossed by itself. In
particular, this kind of approach is used in the interfaceru@ary methods (1.B.M.) (Cortez &
Minion, 2000).

e Lagrange multipliers : in FDM using Lagrange multiplierslg®@inski & Kuznetsov, 1998), the
initial B.C. are imposed weakly as side constraints. Thigra@ch doesn’t use a continuous ap-
proximated boundary but only needs discretization poiitgylon the initial boundary.

Moreover, penalization methods (Angot, 1999, Khadtal. , 2000) have proved their efficiency to
impose values on an immersed interface or to solve suitaplat®ns in different domains.

In this paper, one is interested in a spread interface appro@amputed with a usual F.E. Scheme as
well as a thin interface approach computed using a F.V. Seheitt flux and solution jumps (Angot,
2003) are exposed.

A lot of papers are dedicated to embedded Dirichlet or Neumu€., e.g. (Saul’ev, 1963. (in
Russian), Marchuk, 1982 (1rst ed. 1975), Glowinski & Kuzogt 1998, Glowinskiet al. , 1996,
Leveque & Li, 1994) and the reference herein... Only a fewdissiare devoted to other embedded
Fourier B.C. (Kogenov, 1974. (in Russian), Marchuk, 1982 (1rst ed. 1975Q304n1999). The
fictitious domain approaches presented here deal Witichlet, Robin or Neumann B.C. on an
immersed interface without requiringeither the modification of the numerical scheme near the
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immersed interface nor the use of Lagrange multipliers Since the fictitious problenfP) isn’t
a saddle-point problem, the inf-sup condition must not befied (Glowinski & Kuznetsov, 1998).
Moreover, only one discretization grid is used (the streduregular mesh over the fictitious domain).

1.2 Presentation of the test problem

For sake of simplicity we choose to focus on 2D problems, hetformulations can be extended to 3D
problems without more difficulty. We study the resolutionaddiffusion problem in the unit disk €.
For symmetry reasons, we can solve this problem only on aeyuafrthis disk.

Let us consider the following model problem:
Q c R? open-bounded domain

Fora e (L*(2))>2 andf € L%(Q), find i defined on 7
Q such that
s

—div(a.vi) = f inQ 1

(a.vl).n=0 onT (1)

B.C. onx _

Q

where B.C. represents : r — 7 1

e a Dirichlet condition U= up,
up € HY?(%)

¢ a Robin (or Fourier) condition+(&.Vi).n = ar(l — UR) + OR,
aRr € L®(X); ar > 0, urand g € L3(X)
(with n the outward normal unit vector on the circle)
Remark:a Neumann condition-(a.Vl).n = g, is considerate as a particular Robin condition
wherear = 0 andgr = g.

Moreover, the symmetric tensor of diffusién= (&;j) 1< j<2 verifies the classical ellipticity assumption:
Jap > 0,V¢ € R?,A(x).£.¢ > &|¢]? aein (A1)

where|.| is the Euclidean norm iiR?.

In that case, classical variational techniques (Dautray i@ng, 1988) prove the existence and the
uniqueness of the solutian¢€ H1() of this problem.

For sake of simplicity, we suppose here thgt and ur are constant. The non constant cases can be
treated without more difficulty (e.g. with cell-centerepagximation of these variables).

In a fictitious domain approach, the quarter diskrisnersed in the unit square =]0, 1[x]0, 1].

N

2z
1
QeQ
/ 0
1Q = Te
P/
YO

Figure 2: Immersion of the unit quarter disk in the unit square
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In the next section, we present in detail the numerical ndslmplemented on the fictitious domain
Q. For each method, the equation solved on the fictitious doisantroduced. We expose several ways
to impose the different B.C. on an immersed interface forffaglon problem. Then, in Section 3, the
accuracy of this fictitious domain approach will be illustihwith numerical results. To conclude, future
works and perspectives are pointed out.

2 NUMERICAL METHODS

2.1 Finite Element (F.E.) Method
2.1.1 Numerical scheme

The F.E. numerical resolution is implemented using aF.E. Scheme, wher@) stands for the space
of polynomials of degree of each variable less than or equkl For exampleQ1 = spar{1, x, y, Xy}
in R2. The Q1 discretization nodes are located on the vertex of the ds&lements.

A “spread” interface approach has been chosen. The set of
the discretization elements K crossed by the immersedfatier
¥ forms the approximated interfacs, s;.

Discretization of the fictitious
domain€ : Oy, wp 5 andQepy

In comparison with the initial formulation, the equatiorv&al in 21, contains additional terms that
impose the initial B.C.. Given a rectangular méghof €2, the problem solved on the discrete fictitious
domainQ), has the following generic form :

Finduy € Vi = {W, € CO(Q), vh|k € Q1VK € T} C HY(Q) such that

—div(a.Vun) + b (U —ug) =f + ¢ inQp
(a.Vup).n=0 onl 2
suitable B.C. foup, onTe

wherea € (L (€2y))?*2 (symmetric tensor), ¢, Ue € L%(), andb € (L>(€)) such that:
g, =8, flg =Tfla,
a satisfies the assumption (A1) §ty, andb the following one:
dbp > 0, b(x) > by aeinQy (A2)
Here too, if the B.C. on the exterior fictitious bounddry are not uniquely Neumann conditions,
variational techniques (Dautray & Lions, 1988) allow to clude that the approximated solutioR of
the problem (2) exists and is unique.

The additional term$, ug andy enable to take into consideration the immersed boundaradkah
et al., 2000, Angotet al., 1999). We expect thus thﬂh\ﬁh = G\ﬁh. For each kind of boundary
conditions lying on the immersed boundatydifferent possibilities to Impose these conditianithout
modifying the numerical scheme and without using local unkownsare presented in Section 2.1.2.

2.1.2 Treatment of the initial B.C.

e Dirichlet case:
The Dirichlet B.C. are treated bgenalization (Angot et al., 1999). Settingp = % (where
0 < n << 1is calledpenalty coefficientandug = up enables to impose, = up. It's the
L2-penalty. When the coefficiena is also equal to;— (a= %Id), we obtain theH1-penalty. The
other coefficients of the equation (2) are arbitrary extamsin 2}, of the initial coefficients lying
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on{} (Ramiéreet al., in preparation).

In Section 3, we will compare theenalization of the spread interfaceto thepenalization of the
exterior domain.

Concerning the B.C. ofle, for a penalization of the spread interface, the DirichleE B, = up
must only be imposed on the nodes lyingua: NT'e. The B.C. on the rest dfe have no influence
on the solution obtained in the physical domain. To pendhizeexterior domain, the B.C. on the
whole exterior boundary/ e must be Dirichlet B.Cup|r, = Up.

e Robin case:
We consider the continuousansmission problem betweenS) and{2e. The addition of the two
weak formulations of the two diffusion subproblems definadespectively{) and( leads to the
following problem :
Findu € H(Q) such thatyv € H(Q)

/ avuvvaV = / fvadv— < [(aVu).n]s us,v > (3)
Q Q

[(aVu).n]x = (aVu).nl{ — (aVu).n|g

where{ ps is a measure carried by the hypersurfageus : v—< us,v>= [, V|z dS

In the distribution sense, we obtain the following equation
—div(a.Vu) =f — [(aVu).n]s px 4)

The jump of flux across ¥ can be interpreted as a source term carried by.

In our case, we want
—(avu).nly =ar(U—Ug) +gr and - (aVu).nly;=0

so that
[(aVu).n]g = ar(U— UR) + OrR

On (), then we have:

| —div(aVu) =f — [or(u— UR) + gr] i1z | (5)

However, with a structured mesh 6h the support of is not exactly defined. We introduce a
characteristic parameter e in order to approximate the measure supported by by mollifiers
(Brezis, 2000) on the spread interfacgsy.

The principle is the following:

/{aR(u —UR) + gr}VAS = / oR (U= UR) + Ryav we Vh (6)
s

Wh,x €

The equation solved ofy, is:

orR

?] II’UJh’E (7)

—div(aVuy) =f — [%(uh —UR) +

wherep,, - is @ measure carried by the spread interfaggs..

With the équation (7), the parameter of the generic fornmia2) can be easily set.

Only the B.C. of the nodes lying am, 5; N ' has an effect on the solution obtained in the physical
domain. These B.C. must be homogeneous Neumann B.C. intorlarve an external flux equal
to zero. However the B.C. on the whole boundBgycan’t be homogeneous Neumann B.C. since
the problem solved of2 becomes in this case bad-posed. The solution obtained dictitious
domain won't be unique. So the B.C. b are separated into two B.C.:

(aVup).n=0 onwpx NTe
Un = Uext otherwise
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whereueyt is unspecified.

The parametee can be estimated by several ways (Ramgfral., in preparation). We present
some of them in Section 3. Ifis the discretization step, Angot (1989) showed thiatin O(h).

2.1.3 Local adaptive mesh refinement (A.M.R.)

Using a spread interface approach, A.M.R. techniques atessary to improve the accuracy of the
solution near the immersed interface and by the way on thdembioysical domain. Most of these
techniques are derived from multi-grid methods (Hackbu$éBs).

A Local Defect Correction (L.D.C.) method (Hackbusch, 1984) is performed. This method is a
multi-grid method with a defect restriction in the asceepstThe local refinement zone is composed by
all the elements of the spread interfaggy; and their neighbors. This choice enables to correct theegalu
of all the nodes located on the spread interface. As a coeseguthe immersed B.C. are imposed more
precisely. As the solution of an elliptic problem strictlggknds on the B.C., we expect an improvement
of the solution on the physical domain.

2.2 Finite Volume (F.V.) Method
2.2.1 Numerical scheme

The F.V. numerical resolution is performed usingnadel of fracture with flux and solution jumps
(Angot, 2003).

Given an “admissible” finite volume medsh, of Q (Angot, 2003), with cell-centered discretization
nodes, letS be the family of edges or sides of the “control volumes™K C 7y. Letn, be the unit
normal vector orv oriented fromK to the exterior. For a functiog in L?(Q), lety* andvy~ be the
traces ofiy on each side of. We define the arithmetic mean of tracesyofisv|, = (y* + ¢ )/2
and the jump of traces af on o, oriented byn,, as[¢], = (¥ —14~). Then, the following fracture
conditions lie on each side C S:

[(@Vun).no]s = a(Uhle —Uy) —hs (8)
(@Vun) .ng|s Bolunle — 9o (9)

where the transfer coefficients;, 5, satisfy the following ellipticity assumptions:

amﬁa € LOO(U); 3;80 >0 ag(X),,BU(X) > 60 ono

andg,, h, andU, are given inL%(o).

The finite volume scheme built 6ff, doesn’t introduce unknowns located on the side of the volcome
trol. Indeed, the equations (8) and (9) enable to exprese theknowns according to the cell-centered
ones.

This F.V. scheme is based orithin” interface approach .

In this F.V. approximation, we suppose that the thin appnated interface:y, lies on sides of con-
trol volumes crossing the physical interfage ny, denotes the outward unit normal vector 0f
(ng,.ny > 0). Equations (8) and (9) enable to impose the immersed Bi&x0

The problem solved oft as the same generic form as in (2) with the above conditiopsmb moreover.
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(@) Exterior thin (b) Interior thin (c) ‘Cut” thin in-
interface interface terface
Figure 3: Examples of thin approximated interface

2.2.2 Treatment of the initial B.C.

We are interesting in the B.C. lying on the immersed appretéd interface2p. On the sides ¢ X,
o € S\(I'UTe), we set:

1 .
a, =h, =0,=0 and B, = oo (p, = — =0, fracture resistancg (10)

(2

Remark:Locally, on the physical domaif, and on the exterior domaifte,, we get a F.V. scheme
without jump of flux and without jump of the solution as in (Esird et al., 2000).

We focus on theransfer coefficients lying ono € S\ (I U Te).

e Dirichlet case:
We present two manners to deal with a Dirichlet condition.
The first one consists ipenalizing the exterior domain atip. To imposeup on the in-
terior side of the approximated interfade, (side located in the physical domain), we set
Boe = % Vo € In\(I' UTe). The other transfer coefficients are equal to zero.
In the second approachp is imposed directly bygurface penalizationon the approximated in-
terfaceXy, using the jump equations (8) and (9). WeSgt= % in order to havert = u™ ono and
thent|, = ut = u™ = u|,. In this case, penalizing alsa, = % while settingU, = up induces
U, = Up Yo € Zp\(I' UTe). The exterior domain has no influence on the solution obdgine

the physical domain.
In these two approaches, the B.C.BpN I'e are the only one of interestuy|x, ~r, = Up.

¢ Robin case:
We want that-(a.Vup).ng, |5, = ar(Uls, — UR) + gr, Whereu[s, = u™[s,..
There are many ways to deal with the transfer coefficientsderato impose a Robin B.C. diy,
(there is five coefficients for 2 equations). One of particigerest is the onwithout control on
the exterior domain. In this case, we eliminate (a.Vuy).nx, gh andu™ |y, in the equations (8)
and (9):
Vo € p\(T'UTe)

a h
oy = 20R, By = 7R Uy = UR, 3" —8g(Nx,.Ny)9s = Or (€9. h, = —2gr and g, = 0)

As in the spread interface approacltharacteristic parameter e is required to respect the equal
ity between the flux carried by the approximated interface tne flux carried by the physical
immersed interface.

The B.C. onl'¢\ X, are free (without effect on the solution on the physical donaOn X, N Te,
we set the Robin B.C. of the initial problem.

Remark:We can also use a spread interface approach by the same wgymse@ Section 2.1.2. In this
caseVo € S the transfer coefficients are set as in (10).
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3 NUMERICAL RESULTS

To solve the following test problems, the different appleec have been computed on six meshes:
4x4, 8x8, 16x16, 32x32, 64x64 and 128x128 cells. The digat@dn steps are respectively
h = 2, % 75 3 o - All these simulations have been computed on a 3.2 GHz IntsnX

bi-processor.

The linear system can be solved using a direct solver or aatiite one. As the matrix system
is symmetric positive definite, aterative solver of conjugate gradient’s typeseems to be suitable.
Moreover, the penalization coefficients render the matkiganditioned. Thus, a diagonal precondi-
tioner is necessary in order to speed up the resolution afytbem.

The F.E. simulations have been computed thanks to the fitétaemt industrial code PYGENE
(Grandotto & Obry, 1996, Grandottet al. , April 1989) of the Neptune project. This project, co-
developed by the CEA and EDF, is dedicated to the simulatfamwo-phase flows in Nuclear Power
Plants.

A F.V. code using a structured approach had been impleménitélde scheme (Angot, 2003) presented
here.

3.1 Dirichlet case

The problem solved on the physical domé&lris :

Al = 4 inQ
pe -
%“ 0 onT
0 = 0 onX

With the generic formulation (1), we set:
a=1(a=1d),f =4 andi'= up = 0on X (Dirichlet B.C.)
The analytic solution of this problem is :
i=1-r2 inQ

We compute this problem on the fictitious square donfainsing the two approaches described
Section 2.1.2 for the F.E. method. For the F.V. method, wetkestwo approaches exposed Section
2.2.2 for an exterior thin interface, and we also impleméetdecond approach (surface penalization)
with a “cut” interface approach.

As in the F.E. method, the discretization nodes are locatethe vertex of the discrete elements
the Hl-penalty leads to the same results as [tRepenalty as long as the penalization parametés
small enough. However investigating the behavior of theremccording to the penalization parameter
(modelization error), we observe that the error obtainedHe H-penalty converges faster toward the
discretization error as tHe? one. We sety = 10~12 to get a negligible modelization error.

In the F.V. method, the discretization nodes are cell-cedteA H-penalty is necessary to impose the
Dirichlet value on the approximated interface (locatedidesof control volume).

For each approach, Figure 4 represents the relative didcfetrror norms versus the discretization
step of the fictitious domain.

As excepted, the order of the method is approximatively Eguane for all the approaches since the
approximation of the interface is (h) (for the spread as for the thin one). The interface disagtn
error leads to a “global” discretization error@(h) even if the numerical scheme error is@{h?).
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Relative error norms (discrete L2 norm) Relative error norms (discrete L2 norm)

[lu-uhl/|jull Dirichlet B.C. llu=uhl/|jull Dirichlet B.C. - F.V. Scheme
10° . . 10° i

10" 10t b

107 | E 07 ¢

G—©O Penalization on the spread interface
— — - Regression : order=1 4—= Ext. interface - H1-penalty on the exterior domain => order=0.9
Penalization on the exterior domain (without the spread interface) Ext. interface - Surf. Penalization => order=0.9
Regression : order=0.86 G—© Cut interface - Surf. Penalization=> order=0.8

3

,3 ) ) 10 e L

10 07 107 10 10 h (discretization step)
discretization step

(a) F.E. method (b) F.V. method

Figure 4: Estimation of the discretization error for a Dirichlet B.C.

In the F.E. approach, the penalization of the exterior dansmore accurate than the penalization of
the spread interface. These results strictly depend ondbmetry of the physical domain. Since the
discretization nodes are located on the elements vertelesnioside the physical domain are penalized
with a spread interface penalization. In the quarter didecanterior penalized nodes are globally
farther of the physical interface than the exterior nodes.

In the F.V. approach, we can observe that, with an exteripragimated interface, thid 1-penalty of the
exterior domain and the surface penalization lead to theesemors. Indeed, with thid 1-penalty, the
solution and its gradient is penalized. &e= up on the exterior domain until the approximated inter-
face. Moreover, with a thin interface approach, the erritsioed are better for a “cut” approximated
interface than for an exterior interface. The cut approxiomaof the interface is more precise.

The last conclusion to draw is that the effect of #é exterior penalization is similar with the two
schemes.

As drawn on the Figure 5 the main differences between theoappated solution and the analytic
one are located around the spread interface. Using the éhEnmee, an adaptive mesh refinement is
performed in this zone. At each level an exterior penalirais performed. A three-grid LDC algorithm
(two refinement levels) is applied on each initial mesh. Athekevel, the local refinement zone is
composed by all the elements of the spread interfage and their neighbors. This algorithm converges
by three V-cycles.

Figure 5: Absolute error for the exterior penalization -F.E Scheme ichiet case - 32x32 mesh

The errors computed using a three-grid mesh refinement andrths obtained without refinement
are represented on Figure 6.
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Relative error norms (discrete L2 norm)
llu=uhli/jul] Dirichlet B.C. - F.E. Scheme

0"

107 | <

Penalization on the exterior domain => order=0.86
%— Mesh refinement (2 levels)+ exterior penalization=> order=0.9

. ) ‘
10 107 107 discretization step

Figure 6: Relative error norms with or without refi nement - F.E. SchemgteBor penalization - Dirichlet case

The results obtained with a local refinement ar&iiih) where h is the discretization step of the finest
refinement grid. With A.M.R., on the initial “coarse” mesheterror obtained after correction is similar
to the one obtained without A.M.R. on a mesh with a discrétpastep equal to the finest local grid's
one. Even if the order of the method doesn't increase withcal l;efinement, the errors on the initial
meshes are reduced.

3.2 Robincase

We consider the following problem:

AU = 162 inQ

a—;)“ =0 onT
-5 = u+3 onX

Identifying with the generic formulation (1), we get:

Il
Il

a=1(a=1d),f = 16r2,ar = 1,ur = 0 and gz = 3 (Robin BC.)

The solution of this problem is : N
i=2-r* inQ

In the F.E. approach, the characteristic parametan be estimated be several ways. In this section
we present three of them. From the equation (6), supposatghk flux carried by the spread interface
and the flux carried by the physical interface are ratherlam(ihis approximation is as much justified
as the discretization step becomes small), we obtain :

/ dS~ / Lav (11)
X UJh’E €

The three estimations efcan be deduced of the equation (11):
e In afirst approach is supposedonstanton wp s

_ meaguny)
~ meag})

¢ In the second approach, in the equation (11), the integratia, y. is weighted by a coefficient.
This coefficient estimates the presence rate of the phydaahkin in each elemeit crossed by
the boundan®: (K C whx). By constructiony is constant on ead :

_ volume of€} included inK
~ volume of the elemerk
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By this way, the right hand side of (11) is integrated only le& physical domain included iny, x..

We get :
_ DelremeagK)]
Te-meagy)

The value of is given by element.
This approximation ot is calledvolume weighted approximation

e In the last approach, the boundaXyis piecewiselinear approximated by a segmen; i in
each elemenK included inwpx. The equation (11) is written for each of these eleméfts
(respect to equation (6), we use test functiomgng only onK). Using the linear approximation

¥ = Ukeuw, 5 21,k Of 3, we get:
1
/ dS~ [ —dV
ElaK K €

_ meagK)
~ meag¥ k)

Finally,

€K

As in the second case, the valuecafepends on the elemet
This approach induces a local reconstruction of the interfa

For these three estimations @fthe errors obtained according to the methodology destr#ection
2.1.2 are reported Figure 7(a).

In the F.V. approach, the characteristic parameter is astidhby two manners.

e Global correction : the characteristic parameteis deduced from the same equation as in (11)
with a surface integral on the thin approximated interfaggnstead of the volume integral on the
spread interfacen x:

_ meagX)
- meag})

e Local correction : A local estimation ofe is made in each ceK of the mesh crossed by the
immersed interfac&. In this casek corresponds to the ratio between the sum of the measures
of the normal projections of the physical boundarpn each mesh axix @ndy in 2D), and the
measure of the physical immersed interfaciself. In 2D, with a piecewise linear approximation
¥ of ¥ composed by a segmeht i in eachK crossed by, we get:

ek = CcoSfk + sinfk
wheref indicates the angle between the normal directign, of ¥ x and the horizontal axis.

Figure 7(b) shows the errors obtained for these two estimsitofe with the transfer parameters
introduced Section 2.2.2 for two kinds of thin approximatif the interface (exterior and cut approxi-
mated interface).

All the F.E. variants are approximatively of order one (&ditbit under). The method using a
piecewise linear approximation of the interface leadsttte Ibetter results but not as excepted. Some
improvements are presented Section 3.3.

Concerning the F.V. variants (using a thin interface apjpnaxion), the global correction leads to an
asymptotic stagnation of the error with a cut interface drehtthe first-order precision is lost. This
stagnation disappears with the local correction (see atparé8(b)).

In Fig.7(b), for an exterior interface, the two estimatiarfse seem to lead to the same errors and
then to the same first-order method. However, in Fig. 8, we aaserve that for finer meshes
(256 x 256 512 x 512 cells) a stagnation appears also for a global correstiare the local correction
keeps the first-order precision.
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Relative error norms (discrete L2 norm) Relative error norms (discrete L2 norm)
||U‘Uh||/||oU|| Robin B.C. - F.E. Scheme flu=uhliul Robin B.C. - F.V. Scheme - No exterior control
10 T
/ 2] W' p
-1
10" b 1 w0t |
Global epsilon - Ext. interface => order=0.82
G—®© Constant epsilon (=meas(wh,S)/meas(S)) => order=0.80 Local epsilon - Ext. interface => order = 0.85
Variable epsilon (volume weighted) => order=0.84 G—-©O Global epsilon - Cut interface => order=0.6
Variable epsilon (lin. approx.) => order =0.86 @—@ Local epsilon - Cut interface => order =0.9
10° 0‘72 0‘" 10° 02 o'
1 1 discretization step 1 1 discretization step
(a) F.E. method (b) F.V. method
Figure 7: Estimation of the discretization error for a Robin B.C.
Relative error norms (discrete L2 norm) Relative error norms (discrete L2 norm)
[lu=uhli/ull Robin B.C. - F.V Scheme ~ Global epsilon [Ju=uhl}/|jull Robin B.C. - F.V. Scheme - Local epsilon
10° i 10° b
10" 07 ¢
107 4 102 |
Ext. thin interface => order=0.85
- _ . Ext. thin interface => order= 0.9
G—=o Cut thin interface => order=0.6 Cut thin interface => order= 0.9
10'310,3 o o T 10'310,3 o= o3 o
discretization step discretization step
(a) Global correction (b) Local correction

Figure 8: Comparison between the two estimationg &r a Robin B.C. with a F.V. Scheme

As in the Dirichlet case, the errors obtained with the cugrifaice are better as the ones obtained with an
exterior interface.

For the F.E. approach, a local adaptive mesh refinement ferpexd on the method involving a

constant epsilone(= %&)2)) and a local epsilon (linear approximatiep = %gﬂ()). As in the

Dirichlet case, we computed a three-grid LDC algorithm,chtdonverges by three V—cj/cles. The results
are presented Figure 9.

Here again the refinement method has a discretization err®(() with h the discretization step
of the local finest grid. However, performing a constanive observe a stagnation of the error for fine
meshes and the first-order is lost. In this case, the modielizarror is reached. This modelization error
seems to be due to the global estimatiore ¢géquation (11)) since no stagnation appears with a local
estimation ofe. The modelization error for a localdecreases with the discretization step.

For the two interface modelling (spread and thin), a localemiion is required to keep the first-order
method. With a global correction, the rough estimation lefads to a stagnation of the error.
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Relative error norms (discrete L2 norm)

||u—uh||/||0u|| Robin B.C. - F.E. Scheme - Constant epsilon
10 T

10°

G—=O Constant epsilon (=meas(wh,S)/meas(S)) => order=0.8
»——= Mesh refinement (3 grids) + constant epsilon => order=0.85

10” = -
2 10"

10

(a) Constant epsilon

discretization step

[lu=uhl|/jull
10°

10"

10°

13/17

Relative error norms (discrete L2 norm)

Robin B.C. - F.E. Scheme - Linear approximation
T

/%(
e Lin . Approx => order=0.86
x/// %—— Mesh refinement (3 grids) + lin. approx => order= 0.89
- L L
10° 10"

discretization step

(b) Local epsilon (linear approximation)

Figure 9: Relative error norms with and without refi nement - F.E. ScheRebin case

3.3 Some improvements

We present briefly some improvements under investigationaRobin B.C.. Those improvements are

presented for thé.E. approach

e Firstly, we try tocorrect the equation coefficients on the spread interface The aim of this
correction is to better approximate the physical domain.

* A first step is to setef instead off onwhx. In this case the source term is approximatively
integrated on the physical domain (the integration is ef@ch constant). Figure 10(a) presents
the errors obtained for the threeintroduced Section 3.2 with a source term weighted on the
spread interface. Figure 10(b) enables to appreciate thmirament of this approach compared

to the “classic” one of Section

Relative error norms (discrete L2 norm)

[lu=uhliull Robin B.C. - F.E. Scheme - f weighted
:

3.2.

107 &

10

G- —O Constant epsilon (=meas(wh,S)/meas(S)) => order=0.88
Variable epsilon (volume weighted) => order=0.92
Variable epsilon (lin. approx.) => order =1.06

10

10°

discretization step

(a) Approach with a weighted source term f

[lu=uhl/jul|
10°

Relative error norms (discrete L2 norm)
Robin B.C. - F.E. Scheme - f weighted or not

G—=© Constant epsilon (=meas(wh,S)/meas(S)) => order=0.80
Variable epsilon (volume weighted) => order=0.84
Variable epsilon (lin.approx.) => order =0.86

(3- —O Constant epsilon—f weighted=> order = 0.88
Volume weighted epsilon - f weighted=> order = 0.92
Lin. approx. - f weighted => order =1.06

.
L =
10 10 discretization step

(b) Comparison of the two approachesweighted or not

Figure 10: Relative error norms for a weighted source térm

The correction of the source tefnteads to better results for eachpproach. Moreover, for a con-
stante, the stagnation to the modelization error is reached fora32mesh, without using A.M.R.

* In a second step, for a locale linear approximated), the diffusion coefficient is also gieed
by 7e. This approach is implemented in order to get the diffusioefficient compatible with the
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source term. Locally, on each element of the spread inerfine balance of flux of the initial
problem is approximatively respected. However, we are@ons that this correction isn’t equiv-
alent to a physical domain integration of the diffusion teResults are presented on Figure 11.

Relative error norms (discrete L2 norm)

HU‘Uhll/HOUH Robin B.C. - F.E. Scheme - a and f weighted or not
10 T T

Variable epsilon (in.approx.) => order =0.86
Lin. approx. - f weighted => order =1.
Lin. Approx. - a and f weighted => order = 1.84

= e
10 10 discretization step

Figure 11: Relative error norms for a weighted diffusion coeffi ciant

This approach has a much better order as the other ones. dintheeorder reaches almost 2.
However, even with these corrections of the source term &tilieadiffusion coefficient, the dis-
cretization error stagnates around a modelization errath Wlocale, this modelization error is
reduced compared to the constastone.

e Secondly, beginning from the equation (3), we computed ersghiead interfactihe surface inte-
gral of the jump of flux :

< [(aVup).n]s ps,Vv >= /E[[(aVuh).n]]z vdS weV,c HY(Q)

On each element of the spread interface, we choose the bast@fs associated at each node as
test functions. If we calkg the barycenter of the immersed interface intersected itesment, the
local surface integral is approximated by an one point Géargssula onxg. This approach needs
a local reconstruction of the interface but avoids the estion of a characteristic parametein
order to obtain a volume integral. Following figures (Figligéa) and 12(b)) compare this surface
integral approach (weighting the source tdramd the diffusion coefficierd) with an unstructured
mesh approach in term of error/discretization step and/€RdJ time.

Relative error norms (discrete L2 norms) Relative error norms (discrete L2 norms)
l\“'“hl\/ljull Robin B.C. - F.E. Scheme - a and f weighted H“’“"leull Robin B.C. - F.E. Scheme - a and f weighted
10 T T 10” T T T T
k Surface integral
| [%—— Unstructured mesh
107 | 107
10° | 10° |
Surface integral
%—% Unstructured mesh
-4 L L = L L L L
10407 107 107" 10° o, 2 4 6 8 10
discretization step time (in secondes)
(a) Errors versus discretization step (b) Errors versus CPU time

Figure 12: Relative error norms for a surface integral approximation

In the approximated surface integral approach, a slop&kimesvents from determining the order
of the method. However, the errors obtained with this apgr@ae comparable to those obtained
for unstructured meshes, in term of discretization erranasrm of in CPU time. Moreover, in
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term of CPU time, the results presented here for the surfaegrial approach aren't optimal as the
software used is dedicated to unstructured meshes.

4 CONCLUSIONS

The first step of the introduction of a general fictitious domwapproach to deal with structured meshes
for complex industrial applications has been introducedhe Tictitious domain approach introduced
here don't use local unknowns and don’t modify locally thensuical scheme. Moreover, all the usual
embedded B.C. (Dirichlet, Neumann, Fourier) can be treaiddthese methods.

For a diffusion problem in a domain of SG's type, we exposed :

¢ the methodology to take into account usual B.C. lying on aérs®d interface using two numerical
schemes : a F.E. scheme and a F.V. scheme. The two main apptegiinterface approaches have
been tested : spread and thin interface.

e numerical results for Dirichlet and Robin B.C. on the imneernterface. These two cases provide
satisfactory results with errors @(h).

e some recent improvements in order to get better resultsgaoable to unstructured meshes).

The results presented here give confidence for the use dibfigtidomain methods in more complex
industrial applications. Even if the discretization erigon O(h), the computed relative errors are rather
small.

Moreover the use of structured meshes is full of promise :hingscosts are weak, local adaptive mesh
refinements are easily implemented, moving boundaries eamtulated without mesh reconstruction,
fast solvers can be used...

The resolution of an advection-diffusion problem with tHeNF presented here is on hand. Future

works will focus on homogeneous Navier-Stokes equationghfe simulation of two-phase flows in
Nuclear Power Plants.

5 NOMENCLATURE

subscript invoking data of the physical problem

Q physical domain

Q . fictitious domain

Qe : exterior domain

by :immersed interface

r = a0nan

I'e : exterior boundary

why . spread approximated interface

¥ . piecewise linear approximation &f
¥n : thin approximated interface

€ . characteristic parameter used to impose the immersed flux
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