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ABSTRACT

In the framework of the two-phase fluid simulations of theastegenerators of pressurized water
nuclear reactors, we present in this paper a geometricoversi a pseudo-Full MultiGrid (pseudo-
FMG) Full Approximation Storage (FAS) preconditioning adlance equations in the GENEPI code.
In our application, the 3D steady state flow is reached byresieat computation using a semi-implicit
fractional step algorithm for the averaged two-phase méxhalance equations (mass, momentum and
energy for the secondary flow). Our application, running arkstation clusters, is based on a CEA
code-linker and the PVM package. The difficulties to apply geometric FAS multigrid method to the
momentum and mass balance equations are addressed. THeaussgoential pseudo-FMG FAS two-
grid method for both energy and mass/momentum balanceiegsausing dynamic multigrid cycles,
leads to perceptibly improvements in the computation c@emces. An original parallel red-black
pseudo-FMG FAS three-grid algorithm is presented too. Timaerical tests (steam generator mock-
up simulations) underline the sizable increase in speedmfergence of the computations, essentially
for the ones involving a large number of freedom degreesuab@0 thousand cells). The two-phase
mixture balance equation residuals are quickly reduceglrdébched speed-up stands between 2 and 3
following the number of grids. The effects on the convergebehavior of the numerical parameters are
investigated.

1 INTRODUCTION

This paper is devoted to the presentation of the multigretpnditioning of the mixture momentum
balance equations in the CEA GENEPI software (Obry et abp}]@edicated to the Steam Generator
(SG) simulation. It is based on a geometric pseudo-full igdt (FMG) version of the Full Approxi-
mation Storage method (FAS) to accelerate the solve of tlvansi balance equations. The reader can
get more details in the reference (Belliard, 2001) and (&el| 2003).



The GENEPI code solves the balance equations of an equivalgture in a porous media. The fol-
lowing strong formulations of the mixture balance equatiare issued from a homogenization process,
(Grandotto and Obry, 1996):

1. mass balance

_>
@ T.e3)=0
2. momentum balance

BPOV +Bo(V. )V + div(BX(L— X)p& @ W)
(2) =PpT —PAPY — BTP+div(Byr (B V +07))

3. energy balance (enthalpy)

BodH + B(C. TH + div(Bx(L— X)pL )
©) _ BQ-+div(Bxr TH)

Concerning the mixture energy and the mixture momentunmialaquations (2) - (3) , the steady-
state flow regime is reached by mean of a pseudo-time marchiogime marching is applied for the
mixture mass balance equation (1). Hence this approachk teaah algorithm very close to those used
in the incompressible fluid dynamic framework: at each pedirde step, a Chorin like scheme (Gresho
and Chan, 1990) allows the simultaneous computation of tkieire mass flux and the mixture pressure.
During a pseudo-time step, the balance equations are si@gssolved: energy, then momentum/mass
balance equations.

Space discretization is done by mean of a Galerkine finitmete method (FEM) leading to a
weighted integral version of the above equations (weak ttation) in which the mechanical stress
term and the energy diffusion one are integrated by part. drbkowns are :H (Q1), P (Q0) and
V (Q1). The porosity and the mass qu>8 = pV are taken in Q1. Generally, the other physical
guantities (i.e.p, X, ur, A\, ...) are taken in QO (i.e. by element). According to the higpkc type of
the flow equations, Dirichlet boundary conditions are ugetthe inlets of the domain (mass flux and
enthalpy) and Neumann ones at the outlets (pressure). ibelmundaries of the domain are adiabatic
and impermeable walls. At each pseudo-time step, the grlgiear systems are partially solved (5
to 20 iterations) by an iterative method. In order to comgute andL in function ofH andP, we
need water thermodynamic tables and fhe xT, A, V& terms are obtained by the use of a large set
of semi-empirical closure relations (Obry et al., 1990).e Heat sourc® in the enthalpy equation is
linked to the resolution of an energy balance equation fempitimary flow. To evaluate this term, other
correlations on the heat exchange coefficient and the wafpéeature are included.

The paper is organized as follow. The Section two is devatettheé presentation of the multigrid
correction scheme and of some specific points concerningAlBcorrection implementation for the
mixture balance equations (energy, momentum and mass).inigiementation itself is the object of
the Section three. Finally, | present some numerical testsan the Section four, followed by some
concluding remarks.



2 THEFASMETHOD IN THE GENEPI CODE

In the framework of the weighted residual method, a typicabfem is to finds(s€ V, V is a Hilbert
space) solution of :

@ ' ::/T(s)cp'(x)dv:o vg eV

where {¢'} is a basis ofV, T(s) a residual function of the solutiomandr! (s) the weighted integral of
the residual. I is an approximation of the solutianthe error is defined bg:= s— u. Roughly speak-
ing, a multigrid technique is an iterative method to solvis #yuation on a given gri€ (here, called
the finest grid), based on successive estimations of the @nra hierarchy of nested coarser gridg
0 < I <lImaxWherelmaxis the index of the coarsest grid. It uses a nested sequea®-gid methods.

In a two-grid method, we perform only some passes of an iteratethod on the fine gri@. Then,
on the coarse gri@;, an error equation is formed, involving the restricted firid gesidual § := PPrg
(and the restricted fine grid approximatioa := Pfuo in the case of non-linear problems). Then, a
coarse grid error is obtained. It is defineddyy.= u; — 4. This one is either exact or only estimated.
This coarse grid error is then prolonged to the fine grid ireotd correct the former estimation of the
solution (eventually with a relaxation coefficiam): ug < ug+ O(Pgel. This relaxed scheme can be also
written as:

(5) up < (1—aPiPP)up+ aPiuy.

In a FAS multigrid method, on each coarse giid 0 < | < Ihax, the error equation is :

© [Twdov=5vd ey
with :
M 8= [TWdeodv+T

There are two ways to construct the coarse grid operdi@ys The first one is to build it only from the
fine grid @Q,_1) equation discretization (arithmetic multigrid versiofihe second one is based on the
discretizations of the balance equations on the coarseyiiidelf (geometric multigrid version). In this
paper, we only consider the geometric multigrid version.

Now, we perform some analyses concerning some specifictasgfebe introduction of a geometric
FAS method for the solving of the mixture balance equati@me(gy, momentum and mass). They are
related to the strong variations of the forcing terms follogwthe space discretization step, to the specific
application of the mass flow Dirichlet condition near thelwahd the use of the FEM and the Chorin’s
projection algorithm.

For the full mixture balance equation FAS preconditioning, restrict the mixture mass flux, pres-
sure and enthalpy, the primary fluid temperature and theur@xnomentum and energy balance resid-
uals. As explained here after, the restriction of the mixturass balance residual is not necessary. Let
notice that we choose to restrict the mixture mass flux inlstézhe mixture velocity for a compatibility
reason with the divergence free mass flux constraint. A neal@bleu;_1 is restricted by a canonical
restriction (in this case, the coarse node | and the fine oreethe same nodes) and a mixture weighted
residual by a nodal weighted average restriction. The ehemiablewﬁ_‘ll (e.g. mixture pressure) are
transferred by mean of an arithmetic average or by a volumghtesl restriction. The errors concerning

the mixture specific enthalpy, the mass flux, the pressuretl@grimary fluid temperature must be



computed and prolonged. The prolongation operator usetihéonodal quantities is the trilinear inter-
polation. For the element quantities, we use a direct affect.

In our geometric version of the FAS multigrid method, thegsity field is independently computed
on each grid. We use an unique U-tube bundle description ewetal computation domain meshes.
Consequently, the porosity fie[dl and3;_1 are different in discontinuity regions (boundaries of the
U-tube bundle).

2.1 Divergence Free Mass Flux

The pressure evolution in the Chorin-Gresho algorithm $6oeand Chan, 1990) is based on succes-
sive updates of pressure distributions associated at Wieegéince free space projections. If we denote
G = p(H",P")V* based on the solution* of the mixture momentum balance equation (2) using the
pressure value taken at the previous pseudo-timeRstewe have:

i,n+1 _ ix Xe AeD(qu)
8 GmMl-Gh TB v

and
2)\6

ent+l _ pen
9 P =P 5

with A€ solution of a weak formulation of the following equation:
= =2 =
(10) T.pTA=T.pG"

This scheme is also used to satisfied the free divergencdraimmdor a given mass flux field. For
each pseudo-time step, the divergence free constraintiequa) is solved to the computer precision.
Hence the termr = PII 1r| 1 in Equation (7) is zero. But, the mass flow restricted on thersm grid

G| is not generally divergence free. Hence, the coarse grid ¢d&kf®cted mass balance equation is no
longer compatible with the the coarse grid mass flow divesgdree condition. So, the pressure Poisson
equation (10) must be adapted. For the strong formulatidheobalance equations, it becomes:

- = = =, ==
11) O.p0n=0.8G*—O.BG.

2.2 Boundary Conditions

Usualy, the user specifies the mixture mass flow @teand the mixture specific enthalpgy;, at
the inlets and the pressure is specifigg; at the outlet. Concerning the outlet pressure and the inlet
enthalpy, the locations and the values of the boundary tondiare similar for all the grids. It is not
longer true for the inlet mass fluxes, since similar mass flates for all the grids lead to different
inlet average mixture velocities (the inlet porosities nchgnge). For each pseudo-time step, using the
mixture density distributiop(Hin, P), new inlet mixture velocity values are deduced:

o Qin
(12) vm B p‘]‘Snlet Bd .

and assigned to the inlet nodes. To avoid discrepanciegibdbndary conditions between the several
grids, the values of the fine grid inlet mass fluxes are resttion the coarse grid inlet nodes.



2.3 Pressure Computation

As previously mentioned, the pressure evolution in the DRGresho algorithm is based on succes-
sive updates of the initial pressure distribution. Thisidhipressure must be in coherence with the initial
mass flux (Consistent Pressure Poison Equation -CPPE+)l0lVeen, a pressure update is performed at
each divergence free space projection. In the case of theakgfffithm, two error terms are potentially
prolonged on the fine grid: the mass flux error and the pregsure Simultaneously applying these two
error corrections breaks the coherence between the weluitthe pressure. Indeed, we apply the mass
flux error correction and then compute a new fine grid preseice solving the CPPE, before running
the Picard iterations.

24 Forcing Terms

As previously mentioned, the porosity fields may be differameach grid: thé, field is build by
intersecting several meshes of the inner technologicatdeyU-tube bundle, baffles, ...) with the com-
putation domain mesf;. Consequently, following the geometrical scale addrestexiforcing terms
may be strongly different. For example, friction forces nteyapply to a coarse grid node, but not to
the equivalent fine grid node, see Fig. 1. Friction forcesrataced by the U-tube bundle or the baffles
included in the cells. Hence nodal friction forces are spraathe whole nodes belonging to cells “with
friction forces” (see Fig. 1).

The forcing term formulation on a given grid has no direcatieh with the formulations on the
other grids (geometrical multigrid version). Hence, thberence of the several formulations between
the grids is not generally assumed. Clearly, this point niayt the error reduction in the multigrid
algorithm as seen in the FAS correction of the mixture enbajgince equation (Belliard, 2001).

2.5 Primary Fluid Energy Balance Equation

We don’t implement the FAS method for the the primary fluidrggebalance equation. This equa-
tion is very easily and quickly solved on the primary cundlar grid. However, because it is implied in
the source term in the RHS of the mixture energy balance eguate compute a coarse grid restriction
and a coarse grid error of the primary fluid temperature. Adime correction is then performed.

Fine grid node Tt Coarse cell with Friction Forces

O Coarse grid node L __, Fine cell with Friction Forces

Figure 1: Forcing Terms



3 ANIMPLEMENTATION

In this Section, we review the expressions of the coarse apitection terms (tern$] of Equa-
tion (6)) for the energy balance equation, the momentunmicel@quation and the mass balance equa-
tion, the definition of the error criterion driving the dynmnmultigrid cycle and we present our FAS
algorithm.

We can do a remark. Multigrid method are first of all useful &s& of a big number of cells. To
day, a computation involving 250,000 cells needs about BBites memory and three grids is enough
even for this reference computation. In fact, with hexahkeelements in 3-D geometry, the coarsening
ratio between two consecutive grids is 8 and, for a four lewaltigrid algorithm, the cell number
ratio between the finest and the coarsest gridtis-81096. Hence, the coarsest grid for our reference
computation contains only about 60 cells. It is too smalldiorefficient simulation.

3.1 CoarseGrid Correction Terms

We have to compute thg term of Equ. (6) . It is formed by two parts. The first one is the
JSTi(X)d (x) dv term built using the restricted variables(see below). The second one is completely
defined by the chosen restriction (nodal weighted averaggaton for the nodal residuals). It is worth
to notice that the first part of the correction terms are thersm® grid non-linear residuals of the fully
non-linear steady-state flow balance equations, built thighrestrictions of the primary fluid and mixture
variables. The values of the coefficients implied in the seayrid correction terms (denoteekstricted
coeffzicie__rlts) are evaluated using these restricted vasaflherestrictedcoefficients are:x, L , pi, .

XT: NI, W
3.1.1 Energy Balance Equation

The term[ T, ()ﬁ)(p{ (x)dvis computed by (subscript | stands the coarse grid) :
[ro0dav= [ dvd (9 (G T+ divip KL - RoIL %)
(13) - [ vl 00BiQ + [ vl (9 (BT )
with the restrictedcoefficients defined as previously mentioned Q]Tdhe restrictedsource term, in-
cluding therestrictedvolume thermal source computed with the restricted prinflaig temperature,

the coarse grid boundary thermal flux and, eventuallyréstrictedpressure gradient terms (if it exists,
this last term is a function of the restricted variables).

3.1.2 Momentum Balance Equation

For the momentum balance equation, the tgrf(X )¢ (x) dvis computed by :
[T0dxdv= [ dval (9[Bei(V-T) T+ div(p Hi— Bor % © W)
(14) ~ [ dvel 0oBipr (3 ~A V)~ [ v 0oB A - B R(E T+ T )+ B
3.1.3 MassBalance Equation
The term -/ T (X )WE (x) dv (a correction field by element) is computed IBy:& ) :

1) [TEOWFRdv= [aFRD.EG).



In fact, we don’tgolve directly this equation, but we entotbe divergence free projection of the gap
mass qux:((_BT -G).

3.2 A Criterion To Stop The Dynamic Multigrid Cycle

An important feature is related to the going out of the multigycles. In fact, the high efficiency of
the multigrid solver is drastically reduced after some egcleading to a stalled regime in case of static
cycle. To overcome this drawback, we needadrhoctest on the relative variations of the errors (testing
if the error no longer decreases). Doing this, we face to olyoanultigrid cycles. The goal is to stop
the coarse grid runs (or reduce the associated computhtos) and to disconnect the corrections of
the variables for the fine grid. The first point is motivatedthg high cost of the computation in regard
of the communication one.

For the mixture specific enthalpy and the mixture mass fluxpuitl the following indicator set
_abga|l—lal3 "

(16) indi(g) = =
@) el

wheregq is the coarse grid error, m is the multigrid cycle countgr, denotes the discretie;-norm,
|eq|r|_ezf a referencd.,-norm (here g |%,) and abs(...) the absolute value function. Doing this, thre ¢
rections on the finer gri, _; is monitored by the stalled regime detections of the contpeitsors itself.

For each coarse grid task, we can give a general toleraneéslﬁéﬁ The default value for the
industrial SG simulations is 5102 but it can be user managed. If during the computation, wehreac
the following condition for one of the coarse grid error (Sfie enthalpy error or mass flux error):

(17) ind(q) < eMC,

the value of the computed error is bring to zero. When, thigltmn is reached for the specific enthalpy
and the mass flux, the value of the coupling period for the talsited to the grid, is gradually reduced
to two iterations (we successively multiply by 0.8 the cauplperiod).

3.3 TheTwo-grid Algorithm

A GENEPI two-grid cycle is a pseudo-FMG FAS two-grid slasiale (without post-smoothing)
since no correction is applied during the first cycle. Hetioe effective computation begins by a coarse
grid solving. The number of coarse grid pseudo-time steydvad in the first cycIeI:pl0 iS user man-
aged. If this number is big enough (of the same magnitudethieapseudo-time step number required
to solve the coarse grid problem alone), we gétua FMG method. If it is only equal to the current
number of pseudo-time stepg;, then we get a pseudo-FMG method.

3.4 A Red-black Parallel Version Of A Three-grid Algorithm

A two-grid FAS Method is essentially a sequential method. Wiee tested a parallel red-black
three-grid method. As in a red-black Jacobi method, two gsaaf grids are set-up (here Mjp, M2}
and {M1}). The two groups work sequentially and all the tasks of thme group work in parallel. The
groups are set-up in the way that two consecutive grids dbelohg to the same group. Following this
rule, we apply a sequential non-ideal two-grid method tdhezriple of consecutive grids. See Belliard
(2001) for more details.



4 NUMERICAL TESTS

To test our implementation of the FAS method on steam gesretab-phase fluid simulations, we
present some sequential two-grid and parallel red-blagketlgrid computations of the CEA Clotaire
mock-up (Campan and Bouchter, 1988). The riser part fornadfachlinder of 0.62 m in diameter and
9.16 m in height. The inside is filled with U-shaped tube bandl.2 m in height, into which the hot
primary flow enters. One flow distribution baffle, nine tubemort plates and one anti-vibration bar are
fixed in respectively the bottom, upright and curved parthef bundle. The simulation fluid is Freon
(r114).

Except when it is mentioned, the boundary conditions, thesishl and numerical parameters are iden-
tical for all the computations. We stop the computation whaaoh variablai (specific enthalpy, mass
flux, pressure, primary fluid temperature) has verified adstestate flow criteriorerit:

n+1
(1g)

with crit = 1073571 or 10~*s~1. These computations differ by the number of grids (2 or 3,rthmber

of fine grid cells (22,400 or 88,704), tlenoothertype (CG or CGS), the pseudo-time step number
during the first multigrid cycleqp®, 0 < | < Imay), the coupling periodsp and the dynamic multigrid
cycle cut-off criteriae]® (see Equation 16).

Our reference computation is a pseudo-FMG FAS simulationlwng the following numerical
parameters:

e Cpp=15,cpy =60 andcp, = 120,
¢ preconditioned CG smoother,

e 0 =07, ) =103 ande)® = 103 (dynamic multigrid cycle cut-off criteria on the coarse
grids).

Each fine grid is built by subdivision of the coarser one: eawdrse grid cell is cut in eight parts. The
22,400 cells fine grid is shown on Figures 2 and 3 with its dased coarse grid (2,800 cells). Compu-
tations involving 22,400 grid cells are run on a 1,700 MHz Pgtsonal Computer (roughly one hour
CPU time and 100 Mb). Computations involving 88,704 gridscate run on the CEA supercomputer
IXIA, a 64 Dec-Alpha ES40 stations with four 833 MHz EV68 pessors (roughly height hours CPU
time and 700 Mb). Results are compared in terms of pseud®gtep number and CPU time (eventually,
elapsed time).

4.1 Clotaire Mock-up Sequential Two-grid FAS Simulations
411 The22,400-cdl Grid

Table 1 shows the reference computation results in conguavisth the standard computation and
the FMG FAS method ones. Concerning the fine grid, Figure 4vshtbe convergence histories of
the mixture flow variables and Figure 5 shows the evolutiohthe corrections of these variables

unew

(| uold‘“md') and of the non-linear balance equation residuals inivelaiscrete_? norm. The CPU time
speed up is 1.5 for the reference computation. As a whatecalarse grid solution does bring an accel-
eration of the fine grid computation: about 57% of the stathdamputation fine grid pseudo-time steps
are saved (the iteration speed-up is about 1.7). The dynauliigrid cycles are stopped before the ob-
tention of the 102 s~1 steady-state criteria and after this point the standardaods run. The number
of multigrid cycles is 25 £ 15*25 = 375 fine grid pseudo-time steps or 1500 coarse gridduséme



Figure 2: Fine (22,400 cells) and coarse grid (2,800 cells).

Figure 3: Fine (22,400 cells) and coarse grid (2,800 cetig)ss-sections.

steps).



Clotaire BM test case (fine grid)

Rel. mg error crit.=10-3, CP=15; 60 relax=0.7 CG
0 ‘ w ‘ !

mass flux (std)
> enthalpy (std)
pressure (std)
mass flux (fas) :
> enthalpy (fas)
pressure (fas)

Relative difference in L2 norm (log10)

[ ‘duu
%vmm.mmwm

0 1000 2000

Pseudo time steps

Figure 4: Clotaire mock-up simulations: comparison of thevergence histories of the fine grid vari-
ables for the FAS method and the standard solv&rPinorm. Pseudo-FMG FAS method: 22,400 cells,
cpo = 15,cp = 60,€)'® = 1073, a = 0.7; CG smoother.

The true application of the FMG algorithm does not increaseGPU time speed-up: the number of
fine grid pseudo-time steps roughly is the same as for thedpseMG FAS computation and the first
900 coarse grid pseudo-time steps lead to a CPU time overhigtzalit compensation, see Table 1.

An important feature is the fine grid correction of the prignlow temperature. It provides a sub-

stantial increase in the mixture enthalpy convergenceh®iit correction, the specific enthalpy conver-

Table 1: Clotaire mock-up simulations (steady-state:316°1); sequential two-grid FAS method:
22,400 cellsgpp = 15,cpy = 60 (firstcp, = 900; FMG FAS)a = 0.7, €}'¢ = 10-3, CG smoother.

Std Pseudo-FMG FAS FMG FAS

Qo O Qo O Qo
Steady-state (10~ 3s™1):
Pseudo-time step countgrl,472 1,782 630 2,566 645
PIIl CPU time(s) 1,315.7 1,795.2
PIV CPU time (s) 3,478.6 1,625.1 1,664.8
Speed-Up (CPU time) 15 15
Speed-Up (iterat.) 17 14




Clotaire BM test case

Rel. mg error crit.=10-3, CP=15; 60 relax=0.7 CG
0 k.~ ~ T - T T T T T T T
: —— mass flux correction
enthalpy correction
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Figure 5: Clotaire mock-up simulations: convergence hissoof the fine grid variable corrections
(O(P&el) and non-linear residuals I? norm. Pseudo-FMG FAS method: 22,400 callgg = 15,cpr =
60,e)'® = 1073, a = 0.7; CG smoother.

gence is not so fast, due to the coupling of the mixture enkajgnce equation with the primary fluid
one and the physical time needed to propagate the primanyrifonmation.

As a whole, the speed-up bring by the pseudo-FMG FAS metheinigar to the nested iteration
method one for this degres of freedom number. In this verymsimmpler method, we only use a coarse
gird computation result to initialize the fine grid compigat In fact, the 88,7040-cell grid test case will
show the advantage of the pseudo-FMG FAS method in the casbigfdegres of freedom number.

412 The88,7040-cell Grid

Again, the reference computation is confronted to the stahdhethod computation. We give the
CPU time and the elapsed time, more representative of tHerpgences seen by the user. For the
standard method computation the CPU time and the elapsedrergmilar (no communication time).
For the FAS methods, speed-up measurements based on thecktape lead to low bound values of
the CPU time speed-up.

Table 2 gives a comparison between the results and the Fggeshmws the convergences of the
fine grid variables. For this high space resolution computathe pseudo-FAS method performance is
higher than the nested iteration method one (speed-ups/ahmut 2.0). As a whole, the FAS algorithm
performance is very good, even larger than in the case of2i#0@-cell grid: about 2.5 instead of 1.5.
Explanation is to be found in a relative cheaper coarse gradigo-time step cost and a lower efficiency
of the standard method in term of convergence: 3,887 ingiEh@ 72 fine grid pseudo-time steps. After
25 multigrid cycles £ 375 fine grid pseudo-time steps), the dynamic multigrid eyalt-off criterion



Table 2: Clotaire mock-up simulations (steady-state73191); sequential two-grid pseudo-FMG FAS

method: 88,704 cellgpy = 15,cp, = 60,0 = 0.7, /'S = 1073, CG smoother.

Standard|| Pseudo-FMG FAS
Qo O Qo
| Pseudo-time step counter || 3,887 [ 2,435 1,170
Elapsed time (s) 29,366.3 12,001.0
CPU time (s) 29,330.5| 2,340.1 9,198.6
\ Memory (Mbyte) H 696.2 H 75.9 709.5
Speed-Up (elaps. time) 24
Speed-Up (CPU time) 25
Speed-Up (pseudo-time steps) 2.7

Clotaire BM test case

Convergence histories; 88704 cells; CG
-1 . ‘ : I ‘ T

—= two—grid
standard
e—=8 three—grid
—— - Nest. It.

Relative difference in L2 norm (log10)

2000 3000

Pseudo time steps

4000

Figure 6: Clotaire mock-up simulations: comparison of thevergence histories of the fine grid mass
flux and pressure for the FAS method, the nested iteratiohadetnd the standard solverlif norm.
Pseudo-FMG FAS methods: 88,704 cellgy = 15, cp; = 60, cpy = 120,€)1¢ = 1073, el€ = 1073,

o = 0.7; CG smoother.

(eY'© = 1073) is reached for the mass flux. And after 35 multigrid cyctes5@5 fine grid pseudo-time
steps), the dynamic multigrid cycle cut-off criterion iswbed for the specific enthalpy. Then, the FAS
method is stopped and the standard one is run. The slopeebétite specific enthalpy convergence at
this time is related to this solver change, see Figure 6.



Using a higher value of theﬁ"G criterion leads to reduce the number of fine grid pseudo-staeps.
With e)!® = 10~4, 50 multigrid cycles are performed and the fine grid pseute-tstep number is
reduced to 1,080 (instead of 1,170). But the increase ofdhese grid pseudo-time step number limits
the increase of the speed-up.

4.2 Clotaire Mock-up Parallel Red-black Three-grid Pseudo-FM G FAS Simulations

The simulation of the Clotaire mock-up using the 88,704-getl is now performed with the paral-
lel red-black three-grid pseudo-FMG FAS algorithm introeld above. The computation parameters are
similar to the Section 4.1.2 ones. We confront our referamraputation with the sequential two-grid
pseudo-FMG FAS method computation of Section 4.1.2.

Table 3 shows the reference computation results. Compangh the Table 2 points out a fine grid
pseudo-time step number reduction: 1,005 instead of 1Arf@an other one for the intermediate grid
pseudo-time steps: 1,773 instead of 2,435. This enhanaaetigence is summarized in the pseudo-
time step number speed-up: 3.1 instead of 2.7 for the seiquénb-grid pseudo-FMG FAS method
computation. Moreover, taking advantage of a parallel @p i parallel with Q,) and of theQ;
pseudo-time step number reduction, the elapsed time sgeédelose to the pseudo-time step speed-up
(or the CPU time speed-up).

Table 3: Clotaire mock-up simulation (steady-state:316°1); parallel red-black three-grid pseudo-
FMG FAS method: 88,704 cellspy = 15,cp; = 60cp, = 120,a = 0.7,e)1¢ = 1073, €}/¢ = 1073, CG
smoother.

Standard Pseudo-FMG FAS
Qo Q, Q Qo
| Pseudo-time step counter || 3,887 [ 2,202 1,773 1,005 |
Elapsed time (s) 29,366.3 9,714.5
CPU time (s) 2,9330.5| 510.3 1,752.0 7,800.8
\ Memory (Mbyte) H 696.2 H 10.1 76.2 709.5 \
Speed-Up (Elaps. time) 3.0
Speed-Up (CPU time) 31
Speed-Up (pseudo-time steps) 31

Concerning the dynamic multigrid cycle algorithm, the offtcriterion (sQ"G = 1079) is reached
for the mass flux after 23 multigrid cycles and after 25 multigycles for the specific enthalpy (more
quickly than for the two-grid pseudo-FMG FAS case).

4.3 Choice Of TheFineGrid Correction Relaxation

Relaxation is a crucial point for the Clotaire mock-up siatidn with the FAS method. Figure 7
shows the influence of the choice of the relaxation parantefer computations involving the 22,400-
cell grid (two-grid method). We look at the mixture mass flwneergence because generally it is the
variable that has the slowest convergence. Clearly, chgasin the range [0.4; 0.9] leads to similar
mass flux convergence histories (even if [0.7; 0.9] seembeleinterval). Using a value of 1 €. no
relaxation) induces the divergence of the pseudo-FMG FA®Boce
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Figure 7: Clotaire mock-up simulations: comparison of thevergence histories of the fine grid mass
flux (L? norm) function of the relaxation parameter Pseudo-FMG FAS method: 22,400 celigg =
15,cpy = 60, eY'¢ = 10-3; CG smoother.

4.4 Choice Of The Coupling Periods

Figure 8 shows the influence of the choice of the couplingoplsrior computations involving the
22,400-cell grid (two-grid method). The dynamic multigdgcle cut-off criterion is fixed to 10°. This
very low value allows to catch all the convergence behavimtaced by the multigrid corrections. Let
us notice that the stalled regime is reached after abou0Zi08 grid pseudo-time steps (except for the
(15; 60) computation, and after this point, a standard nteihioun.

As a whole, all the convergence histories are spread neawtrse grid standard method conver-
gence history. But, particular choices of the coupling gasgibring the best convergences. It is the case
of the couple (15; 60) (understamghy = 15 andcp; = 60). Moreover, some similarities in the conver-
gence histories can be found. For instance, (15; 30) and6@B0lead to the same convergence. For
these two couples, the coarse grid / fine grid ratio is the s@mailar convergence properties can also
be found for the couples (15; 60) and (15; 120). This lasttpanderlines that 60 coarse grid pseudo-
time steps is enough plvethe coarse grid problem. At the opposite, if the two coupliegiods are
too close each other, as (20; 20) or (15; 30), the coarse grlulgm is notsolvewith enough accuracy,
leading to a slower convergence on the fine grid.

45 Pseudo-FMG FASMethod Scalability

We can define the scalability as the following. Suppose alenolinvolving nd degrees of freedom
solves innt pseudo-time steps with a multigrid method using a given remob3D grids. If we multiply
nd by height and use one additional grid, then the number ofduséime steps should b again.
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Figure 8: Clotaire mock-up simulations: comparison of thevergence histories of the fine grid mass
flux (L2 norm) function of the coupling periodsp. Pseudo-FMG FAS method: 22,400 cek$\® =
107°, a = 0.7; CG smoother.

Figure 9 shows the comparison of fine grid mass flux convergefar 88,704 cells (three grids),
22,400 cells (two grids) and 2,800 cells (one grid; 22,4@@1&). Also it shows the convergences related
to the one-grid standard method for 88,704 cells, 22,408 eed 11,088 cells (88,704/8). During the
first 500 pseudo-time steps (active multigrid solver), ditates a pretty nice scalability of the pseudo-
FMG FAS method. The cell number ratio between 88,704 andd®2glonly about four and not eight,
but standard method computations show similar mass fluxezgence behaviors for the 22,400-cell grid
and the 11,088-cell grid test cases (about the same spaetaiition following the mean flow direction)
that suggests roughly similar convergences for the 11¢@li8and 22,400-cell two-grid pseudo-FMG
FAS method.

5 CONCLUDING REMARKS

The FAS multigrid method has been successfully implemeaiettested in the GENEPI code. The
high efficiency of this scheme as been proved in the case ofidusirial simulation as the Clotaire
Benchmark one. The FAS algorithm performances are very, dngicheed a large amount of computa-
tional cells to really be efficient. For a 22,400-cell testesathe CPU time speed-up is relatively low:
roughly 1.5 (two grids). But for the 88,704-cell test casghhCPU time speed-up is obtained: about
2.5 (two grids) and 3.0 (three grids). Larger is the numbegraf cells (here, one hundred thousand),
bigger is the speed-up.
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Figure 9: Clotaire mock-up simulations: comparison of thevergence histories of the fine grid mass
flux (L% norm). Pseudo-FMG FAS methodpy = 15, cpy = 60, cp, = 1,200, a0 = 0.7, e¥¢ = 1073,
CG smoother. Scalability test.

Moreover, parameter studies has been performed provitmgétermination of a set of parameter
values leading to the best results. In term of CPU time, the wersion of the FMG method is not the
best one to maximize the speed-up. Pseudo-FMG algorithach i@ better score. The relaxation of the
fine grid error correction and a dynamic manadgement of thiéigrid cycles are crucial points to get
stable and fast convergences and to save CPU time. Congéh&ircoupling periods, a good choice is:
Cpo = 15,cpp = 60 andcp, = 120 (if any).

NOMENCLATURE
e cp : coupling period for gridQ,
. cgo . first coupling period for grid,
e C : mixture mass flux (V)

g : gravity (ms™2)
H : mixture specific enthalpy Kg 1)

His : saturated liquid specific enthalpyKg—1)

Imax : maximal number of computational grids



L : latent heat (kg™ ?)

e L, : typical vortex length (m)

e m: multigrid cycle counter

e n: iteration (or pseudo-time step) counter

e P: pressure (Pa)

. F’lk . grid Qg to grid Q, transfer operator

e Q: heat source (Wh™3)

e §: Coarse grid Q) balance equation RHS (FAS)
e t:time (s)

e V : mixture velocity (ms™1)

o V& : relative velocity (gas minus liquid, srt)

e x: static quality & ")

e o : multigrid relaxation parameter

e [3: porosity (:=0m/w)

¢ Ot : Pseudo-time step (s)

e X7 : turbulent diffusion coefficient for the mixture energy atjon (kgm—1 s71)
e |7 : two-phase turbulent dynamic viscosity (kg ! s™1)
e p: mixture density (kgn3)

e A two-phase friction tensost(?)

e w: volume of the homogenization cethf)

e Wy : mixture volume of the homogenization ceathy)
e Q; : computation domain grids @ | < lnay)

@ : nodal function

e °: element function
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