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The Landau critical velocity for a particle in a Fermi superfluid

Yvan Castina, Igor Ferrier-Barbuta, Christophe Salomona

aLaboratoire Kastler Brossel, ENS-PSL, CNRS, UPMC-Sorbonne Universités and Collège de France, Paris, France

Abstract

We determine à la Landau the critical velocity vL
c of a moving impurity in a Fermi superfluid, that is by restricting

to the minimal excitation processes of the superfluid. vL
c is then the minimal velocity at which these processes

are energetically allowed. The Fermi superfluid actually exhibits two excitation branches : one is the fermionic

pair-breaking excitation, as predicted by BCS theory ; the other one is bosonic and sets pairs into motion, as predicted

by Anderson’s RPA. vL
c is the smallest of the two corresponding critical velocities vL

c, f
and vL

c,b
. In the parameter space

(superfluid interaction strength, fermion-to-impurity mass ratio), we identify two transition lines, corresponding to a

discontinuity of the first-order and second-order derivatives of vL
c . These two lines meet in a triple point and split the

plane in three domains. We briefly extend this analysis to the very recently realized case at ENS, where the moving

object in the Fermi superfluid is a weakly interacting Bose superfluid of impurities, rather than a single impurity. For

a Bose chemical potential much smaller than the Fermi energy, the topology of the transition lines is unaffected ; a

key result is that the domain vL
c = c, where c is the sound velocity in the Fermi superfluid, is turned into a domain

vL
c = c + cB, where cB is the sound velocity in the Bose superfluid, with slightly shifted boundaries.

Keywords : Fermi gases ; superfluidity ; critical velocity ; Landau criterion ; ultracold atoms

1. Introduction, reminders et motivations

Degenerate gases of interacting spin 1/2 fermionic neutral atoms, taken here to be non-polarized that is with

equal populations in the two internal states, have been realized in the laboratory since 2002 [1]. Below a critical

temperature, they exhibit two distinct and remarkable macroscopic quantum properties. The first one is the presence

of a condensate of pairs, that is the existence of a macroscopically populated mode of the two-body density operator

[2], which physically implies a macroscopic coherence length for the field of pairs, only limited by the size of the

system. This “long-range order" can be in principle be directly measured by interferometry [3], but only the fraction of

condensed pairs fc was measured up to now [4]. The second property, the one that is of interest here, is superfluidity. It

is perceived as being more subtle, because it involves a complex of phenomena, some of them relying on metastability

rather that on equilibrium properties. Let us mention here only two aspects, skipping quantum vortex lattices [5] and

permanent currents.

The first aspect involves the concept of superfluid fraction fs: for periodic boundary conditions in a cube of size

L, it is the fraction of the gas which is not set into motion by a moving external potential, even after an arbitrarily long

time allowing the system to reach thermal equilibrium in the moving frame. For an external potential moving along

direction x at velocity v, the normal fraction fn = 1 − fs of the gas is by definition moving at that velocity, so that

1 − fs = lim
N→∞, ρ=const

lim
v→0

lim
η→0

〈Px〉

Nmv
(1)

where N is the number of atoms in the gas, m is the atom mass, ρ = N/L3 is the gas density and 〈Px〉 is the mean

equilibrium total momentum of the gas along x in presence of the external potential. The triple limit must be taken

in that order, so as to make the normal fraction an intrinsic quantity. On first takes the limit of a vanishing external

potential amplitude η, so that fn does not depend on the shape of the potential. Then on takes the limit of a vanishing

stirring velocity, before one takes the thermodynamic limit, so as to always have

v ≪
2π~

mL
(2)
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For v equal to the velocity quantum 2π~/(mL), the periodic boundary conditions are indeed Galilean invariant, so

that the gas would be at rest in the external potential frame and would have a mean momentum 〈Px〉 = Nmv in

the lab frame, leading to the constant (and unphysical) result fn = 1 [6]. The superfluid fraction fs of a spin 1/2

non-polarised Fermi gas was very recently measured in the strongly interacting regime, as a function of temperature T

[7], allowing one to check that the superfluid phase transition takes place at the pair condensation temperature [4] and

at the temperature where thermodynamic quantities have singularities [8]. An expected key property is that fs → 1 at

zero temperature, and this is experimentally confirmed on other systems.

The second aspect of superfluidity is in principle restricted to the zero temperature case. It corresponds to the

existence of a critical velocity vc below which an object moving through the gas does not experience any friction

force and cannot deposit any energy, thus having an undamped motion. This aspect was indeed observed with cold

atomic Fermi gases for a moving one-dimensional optical lattice [9]. Predicting the critical velocity is often difficult,

as it generally depends on the object intrinsic properties and on its coupling to the gas [10]. For an arbitrarily weak

coupling to the gas density however 1, in the spirit of the definition (1), one may limit oneself, as Landau did for a

Bose gas [11], to the first step in the dissipation of the object kinetic energy, that is the creation of the minimal number

of elementary excitations in the gas, a single excitation in the case of [11]. Formally, this amounts to evaluating the

object-gas scattering amplitude in the Born approximation, to first order in the gas-object coupling, or the emission

rate of excitations by the object according to the Fermi golden rule, to second order in the coupling constant; in both

cases, one gets as a factor a Dirac distribution ensuring the conservation of unperturbed energy [12]. In this work,

except in section 5, the object is a particle of mass M, distinguishable from the atoms of the gas, of initial velocity v

and initial kinetic energy 1
2

Mv2. After emission in the gas of an excitation of wavevector q and energy ǫq, its velocity

is v − ~q/M, due to momentum conservation, so that

~q · v =
~

2q2

2M
+ ǫq (3)

due to unperturbed energy conservation. Since |q · v| ≤ qv, this condition cannot be satisfied by any q if v is below the

Landau critical velocity

vL
c = inf

q
vq with vq =

~
2q2

2M
+ ǫq

~q
(4)

For a particle of mass M → +∞, vL
c was calculated in [13] with the approximate BCS and RPA theories; to this end,

both excitation branches of the Fermi superfluid were taken into account, the gapped fermionic branch corresponding

to a breaking of Cooper pairs of atoms, and the gapless bosonic branch with a phononic behavior close to q = 0,

corresponding to pairs being set into motion. One then gets [13]

vL
c (α = 0) = min({[(µ2

+ ∆
2)1/2 − µ]/m}1/2, c) (5)

where c is the sound velocity in the Fermi superfluid, µ is the chemical potential, ∆ is the gap, and the fermion-impurity

mass ratio is denoted by

α =
m

M
(6)

The predicted critical velocity for M → +∞ is different from zero. This seems to contradict the reasoning below

equation (2). The effect of an infinite mass object on the superfluid is the same as an external potential moving at

constant velocity, so that one should have vc ≤ 2π~/(mL) → 0 in the thermodynamic limit. Landau’s reasoning

is however saved by the (subtle) concept of metastability, which gives a physical meaning to the predicted critical

velocity vL
c at least at short times: for v < vL

c , the first step towards dissipation is blocked by an energy barrier, but

the system can in principle overcome this barrier at long times thanks to processes of arbitrarily high order in the

gas-object coupling, involving an excitation energy ǫq very different from the one of the elementary excitations of

equation (4). For example, the improbable process of order N setting the whole gas into motion at velocity 2π~/(mL)

along x, by a momentum boost of 2π~/L applied to each atom along that direction, corresponds to q = 2πN/L and

1. This can be an effective coupling: for a pointlike object, it is proportional to its s-wave scattering amplitude with the atoms of the gas.
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ǫq = N(2π~)2/(2mL2), that is to a critical velocity vq = 2π~/(2mL) that indeed vanishes in the thermodynamic limit 2

provided that M remains≫ Nm. 3

The goal of the present work is to extend the calculations of reference [13] to the case of a finite mass M. There

is a very strong experimental motivation: the Landau prediction for the critical velocity of an atomic impurity in a

Bose-Einstein condensate was confirmed at MIT [16], and may be measured soon in a Fermi superfluid thanks to the

Bose-Fermi mixture of superfluids recently obtained at ENS [17]. The calculation of vL
c for a particle of mass M is

performed here in three steps: one determines the critical velocity vL
c, f

due to the BCS fermionic excitation branch in

section 2, then the one vL
c,b

due to the RPA bosonic branch in section 3, then one takes the smallest of the two velocities

to get vL
c in section 4. In reference [17] the object moving inside the Fermi superfluid is a Bose-Einstein condensate

rather than a single impurity, so that we modify Landau’s formula (4) in section 5 to take into account the interaction

among impurities. We conclude in section 6.

2. Critical velocity on the fermionic branch

One might naively believe that the critical velocity vL
c, f

associated with the fermionic superfluid excitation branch

is derived from the general expression (4) by taking for k 7→ ǫk the corresponding dispersion relation k 7→ ǫ f ,k of

the fermionic quasiparticles. However, this would be wrong because it would ignore the constraints imposed by the

conservation of the total number of fermions. In reality, the impurity of mass M, interacting with the superfluid initially

in the vacuum of quasiparticles, can produce only an even number of fermionic excitations. This is particularly clear

in the context of BCS theory: in second quantized form, the two-body interaction Hamiltonian between the impurity

and the fermions involves the fermionic fields ψ̂σ(r), σ = ±1/2 only through quadratic terms of the form ψ̂
†
σψ̂σ′ ;

but each ψ̂σ(r) is a linear combination of quasi-particle annihilation b̂kσ and creation b̂
†

k−σ
operators that change the

parity of their number. In Landau’s reasoning, it must then be assumed that the impurity creates at least two fermionic

quasiparticles, of wavevectors k1 and k2. The impurity then experiences a momentum change of −~(k1 + k2) and

acquires a recoil energy of ~2(k1 + k2)2/(2M), which leads to the critical velocity 4

vL
c, f = inf

k1 ,k2

~
2(k1+k2)2

2M
+ ǫ f ,k1

+ ǫ f ,k2

~|k1 + k2|
(7)

In practice we shall first minimise over k1 for a fixed q = k1 + k2, and then minimise over q. We are thus led to the

more operational writing, also formally equivalent to the one of equation (4):

vL
c, f = inf

q
v f ,q with v f ,q =

~
2q2

2M
+ ǫeff

f ,q

~q
, (8)

where ǫeff
f ,q

is the lower border of the two fermionic quasi-particle continuum at fixed total wavevector q:

ǫeff
f ,q ≡ inf

k1

(ǫ f ,k1
+ ǫ f ,k2=q−k1

) (9)

2. One more commonly invokes the vortex ring as the macroscopic excitation created by the moving object in the gas. As a function of its

radius R, it has an energy scaling as R ln R and a momentum scaling as R2 [14]. When R reaches the gas diameter, one is led to the same N and

L-scaling laws for q, ǫq et vq, up to a factor ln L in ǫq. If the object is a pointlike particle weakly coupled to the superfluid, the emission of a vortex

ring remains anyway improbable at velocities below vL
c [12].

3. For a finite mass M and a sufficiently weak repulsive coupling between the impurity and the superfluid, it was recently shown that there

exists a genuine critical velocity vc that does not vanish in the thermodynamic limit, that does not rely on metastability considerations and holds for

an arbitrarily long interaction time between the impurity and the superfluid [15]. When the coupling tends to zero, vc is obtained by including in (4)

all the possible superfluid excitations, and not only the elementary excitations as it will be done here. For the vortex ring of the previous footnote

and after minimisation of vq over the ring radius, one finds that vc vanishes as (ln M)2/3/M1/3 when M → +∞.

4. In the case of a moving object of infinite mass, one finds however in the literature the usual formula vhab
c, f
= infq ǫ f (q)/(~q) [13], with

ǫ f (q) = ǫ f ,q, which seems to correspond to the naive error mentioned above. In reality, our equation (7) correctly reproduces vhab
c, f

when M → +∞.

First, limM→+∞vL
c, f
≤ vhab

c, f
since equation (7) contains k1 = k2 as particular configurations. Second, minimisation over the directions of k1 and

k2 for fixed moduli is straightforwardly achieved when M = +∞ for parallel wavevectors, so that limM→+∞vL
c, f
= infk1 ,k2

ǫ f (k1)+ǫ f (k2)

~(k1+k2)
; this last

expression is ≥ vhab
c, f

because ǫ f (ki) ≥ ~kiv
hab
c, f

for all ki.
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The dispersion relation k 7→ ǫ f ,k is a smooth function of the wavevector and diverges at infinity, so that the infimum

in equation (9) is reached in a stationary (of zero gradient with respect k1) point of the function to minimise. Due to

the isotropy of the dispersion relation,

ǫ f ,k = ǫ f (k), (10)

the gradient is zero if and only if

ǫ′f (k1)k̂1 = ǫ
′
f (k2)k̂2 (11)

where k̂i is the direction ki/ki of the vector ki, ǫ
′
f
(k) is the derivative of the function ǫ f (k), and where one still has

k2 = q − k1. In general this thus leads to four possible branches of stationarity:

(i) : k1 = k2 = q/2, (ii) : k̂1 = k̂2, k1 , k2, (iii) : k̂1 = −k̂2, (iv) : ǫ′f (k1) = ǫ′f (k2) = 0 (12)

In the two intermediate cases, the derivatives ǫ′
f
(k1) and ǫ′

f
(k2) are, of course, respectively equal and opposite.

Let us particularize this discussion to the case of BCS theory, with the dispersion relation

ǫ f ,k = ǫ f (k) =















(

~
2k2

2m
− µ

)2

+ ∆
2















1/2

(13)

For a chemical potential µ > 0, it exhibits a Mexican hat shape, corresponding to a clear fermionic character, with a

gap ∆. In this case, ǫ f (k) is a concave decreasing function up to the inflexion point kinflex, then it is a convex decreasing

function up to its minimum location kmin,

kmin =
(2mµ)1/2

~
(14)

and beyond that point it is a convex increasing function. The four branches of stationarity may then be realised.

Contrarily to branch (i), the other branches only exist for low values of q = |k1 + k2|. One can fully explore branch

(ii) with k1 ∈ [0, kinflex] and k2 ∈ [kinflex, kmin], and one finds that q = k1 + k2 spans [kmin, 2kinflex]; similarly, for branch

(iii), one can take 0 ≤ k1 ≤ kmin ≤ k2, and one finds that q = k2 − k1 spans [0, kmin]. 5 Finally, branch (iv) simply

corresponds to k1 = k2 = kmin, and to q varying from 0 to 2kmin. On its existence domain, branch (iv) is clearly the

minimal energy branch, since the two quasi-particle wavevectors k1 and k2 are at the bottom of the Mexican hat.

Beyond this existence domain, the branches (ii) and (iii) no longer exist so that the minimal energy is reached on

branch (i). This is illustrated in figure 1. For µ > 0, we thus keep

ǫeff
f (q)

q≤2kmin
=

branch (iv)
2∆, ǫeff

f (q)
q≥2kmin
=

branch (i)
2ǫ f (q/2) (15)

in agreement with reference [13]. For µ < 0, the Cooper pairs of atoms tend to acquire a bosonic character, and the

dispersion relation (13) is convex, with a forbidden energy interval of width (∆2
+µ2)1/2. ǫ f (k) is then a monotonically

increasing function for k > 0, and only branch (i) is realized.

To obtain the contribution of the BCS fermionic branch to Landau critical velocity, it remains to minimise the

function v f ,q = v f (q) in equation (8). This differentiable function diverges at q = 0 and q = ∞, so that it reaches its

minimum with a vanishing derivative at some point q0, v′
f
(q0) = 0. One switches to dimensionless variables by taking

the wavenumbers q and q0 in units of (2m|µ|)1/2/~ (which is kmin for µ > 0), the energies ǫeff
f

and ∆ in units of |µ|

and the velocities v f (q) and vL
c, f

in units of [|µ|/(2m)]1/2, which leads to v̌ f (q̌) = αq̌ +
ǫ̌eff

f
(q̌)

q̌
and to the elegant implicit

equation

α = Ff (q̌0) with Ff (q̌) =
d

dq̌















−
ǫ̌eff

f
(q̌)

q̌















and v̌L
c, f = αq̌0 +

ǫ̌eff
f

(q̌0)

q̌0

(16)

5. This is due to the fact that k1 + k2 for (ii) and k1 − k2 for (iii) are increasing functions of k1 . Branches (ii) and (iii) smoothly (C∞) reconnect

in q = kmin; to show it, one can introduce the algebraic quantity k̄1 ∈ [ − kmin, kinflex] and the corresponding extension φ(k̄1) = ǫ f ,k̄1 k̂1
of ǫ f (k1) to

negative arguments. The unique solution k2≥kinflex of φ′(k2) = φ′(k̄1) then leads to a smooth parameterisation q = k̄1 + k2(k̄1) of (ii) plus (iii) as a

whole. On the contrary, (i) and (ii), as well as (iv) et (i), have only a C1 reconnection: at q = 2kinflex , the second order derivative is zero for (i)

and is equal to −3[ǫ
(3)

f
(kinflex)]2/[2ǫ

(4)

f
(kinflex)] < 0 for (ii); at q = 2kmin, the second order derivative is zero for (iv) and is equal to ǫ′′

f
(kmin)/2 > 0

for (i).
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ε f(k
)

∆

0

0ε f’(
k

)

kk
inflex

k
min

(a)

0
0

ε fef
f (q

)

2∆

k
min

2k
min

2k
inflex

(i)

(i)

(iii) (ii)

(iv)

(b)

q 0

0

F
f(q

)

∆/2

k
min

2k
min

2k
inflex

(i)

(i)

(iii)

(ii)

(iv)

(c)

q

Figure 1: For the fermionic excitation branch of BCS theory at positive chemical potential µ > 0, (a) dispersion relation ǫ f (k) and its first order

derivative ǫ′
f
(k), used in the discussion of the stationarity branches (12); (b) the stationarity branches as functions of q: solid line for the ground

branch, dashed line for the other branches; (c) function Ff (q̌) used to minimise v f (q) through a graphical discussion, see equation (16). The

quantities on the vertical axis of (c) are adimensioned as explained in the text.

The check symbol is used to indicate the resulting dimensionless variables, and the mass ratio α is given by equation

(6). A graphical discussion of equation (16) is readily done. In the non trivial case µ > 0, the various branches of the

function Ff , that correspond to the branches (12) of the function ǫeff
f

, are shown in figure 1c; only the solid lines, that

correspond to minimal energy branches, are relevant. For α > ∆̌/2, the critical velocity is realised on branch (iv), with

q̌0 = (2∆̌/α)1/2 and

v̌L
c, f

α>∆̌/2
=

branch (iv)
2(2∆̌α)1/2 (17)

For α < ∆̌/2, it is realised on branch (i), and corresponds to the largest real root of the polynomial equation of degree

four in v̌2, that can in principle be expressed in radicals 6:

v̌8
+ 8(1 − α2)v̌6

+ v̌4[∆̌2(16α4 − 80α2 − 8) + 16α4 − 128α2
+ 16]

+ v̌2[32∆̌2(4α2 − 1)(5α2
+ 1) + 128α2(5α2 − 1)] − 16(4α2 − 1)[4α2(1 + ∆̌2) − ∆̌2]2

= 0 (18)

In the limit α → 0 of an infinite mass impurity, one recovers the first term of the right-hand side of equation (5), that

indeed originates from the fermionic excitation branch [13]. It remains to determine the nature of the transition on

the critical velocity when it passes from branch (iv) to branch (i), due to a continuous variation of the mass ratio α or

of the dimensionless gap ∆̌ (resulting from a variation of the Fermi gas interaction strength). As it is apparent on the

graphical discussion, q̌0 is continuous at the transition, so is v̌L
c, f

. Taking the derivative of the third equation of (16)

with respect to α at fixed ∆̌, and using the first equation of (16), one finds that the first order derivative of v̌L
c, f

is also

continuous:
d

dα
v̌L

c, f = q̌0 (19)

The second order derivative of v̌L
c, f

is discontinuous: taking the derivative of (19) and of the first equation of (16) with

respect to α, and also taking the derivative of the function F f on the branches (iv) and (i), one obtains

[

d2

dα2
v̌L

c, f

(

α =
∆̌
+

2

)]−1

−

[

d2

dα2
v̌L

c, f

(

α =
∆̌
−

2

)]−1

=
1

4
ǫ̌′′f (ǩ = 1)=

1

∆̌
(20)

so that the critical velocity v̌L
c, f

exhibits a second order transition on the line α = ∆̌/2, see figure 3a. In the more

straightforward case of a negative chemical potential, vL
c, f

is always realised on branch (i) and cannot exhibit any

transition.

6. One squares cleverly collected terms in the first and the last equations of (16), so as to get two polynomial equations for q̌0. v̌ must be a root

of their resultant, and equation (18) is a divisor of that resultant.
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1/(kFa) ∆/µ D form of ǫb(q)

> 0.161 > 1.729 or < 0 [0,+∞[ convex

∈]0; 0.161[ ∈]1.162; 1.729[ [0, qsup] ∪ [qinf ,+∞[ convex if ∆/µ > 1.71

< 0 ∈]0; 1.162[ [0, qsup] concave if ∆/µ < 0.88

Table 1: Existence domain D of the superfluid bosonic excitation branch, more precisely ensemble of its accessible wavenumbers q, according to

the RPA of reference [13], and (from our own study) convexity of the dispersion relation q 7→ ǫb(q). The loss of convexity (of concavity) is due to

the emergence of a concave (convex) part at large (low) wavenumbers q. There is always convexity on the component [qinf ,+∞[ when it exists. At

q = qsup and q = qinf , the bosonic branch meets the two fermionic excitation continuum at the considered total wavenumber, that is ǫb(q) = ǫeff
f

(q).

An important result of reference [13] is that one always has qsup > 2kmin defined in equation (14). The parameter 1/(kFa) is more usually used

than ∆/µ to measure the interaction strength, see text, and it is deduced here from the BCS equation of state [13]. 1/(kFa) = 0 is the unitary limit,

reached for ∆/µ = 1.162 . . ., and µ < 0 if and only if 1/(kFa) > 0.553 . . .. Note the notation paradox qsup < qinf .

3. Critical velocity on the bosonic branch

Conservation of the number of fermions of course does not prevent the impurity, when it moves in the superfluid,

from creating a single quantum on the superfluid bosonic excitation branch: this indeed corresponds to excitation of a

collective motion of the Cooper pairs of atoms, similar to a sound wave. The critical velocity attached to the bosonic

branch is then simply given as in equation (4) by

vL
c,b = inf

q∈D
vb,q with vb,q =

~
2q2

2M
+ ǫb,q

~q
(21)

The bosonic quasi-particle dispersion relation q 7→ ǫb,q = ǫb(q) is however more difficult to describe than the one

of the fermionic quasi-particles. Its existence domain D in the wavevector space, over which one must minimise

vb,q = vb(q) in equation (21), is in itself not so easy to determine. As shown in reference [13], it is not always a

compact or even connected set. What is very generally known, thanks to superfluid hydrodynamics, is that the branch

does reach the low wavenumbers q→ 0, in a way that is linear with q:

ǫb(q) ∼
q→0

~cq, (22)

where the coefficient c is simply the sound velocity in the Fermi superfluid, that can be deduced from the gas equation

of state through the well-known expression mc2
= ρ

dµ

dρ
. It is also known that ǫb(q) must be less than the border ǫeff

f
(q)

of the two fermionic excitation continuum at fixed total wavevector q. Otherwise the collective motion of the pairs

would damp because its energy, defined as a pole of the dynamic structure factor, would become complex [18].

One can obtain ǫb(q) numerically at a level of approximation consistent with the BCS theory used in section 2

thanks to the RPA [19], that was implemented in great details in reference [13] not only in the weakly interacting

regime [18] but even for arbitrarily strong interactions in the superfluid 7 8. The results on the existence domain are

summarized in table 1; the interactions are parameterized both by ∆/µ and by the more usual quantity 1/(kFa), where

a is the s-wave scattering length of opposite spin fermions and kF = (3π2ρ)1/3 is the Fermi wavenumber of the spin

1/2 unpolarised ideal Fermi gas with the same density ρ as the superfluid. It remains to minimise the function vb(q)

over the existence domainD, according to the various forms that it takes.

When the bosonic branch exists at all wavenumber, for example for µ < 0, it turns out that the dispersion relation

q 7→ ǫb(q) is convex and always above its tangent at the origin. Then ǫb(q) ≥ ~cq for all q, the absolute minimum of

vb(q) is reached in q = 0 and vL
c,b
= c. We go on in the discussion assuming that µ > 0.

7. In practice, we use dichotomy to solve for ω = ǫb(q)/~ the equation f (ω, q) = 1, where, at fixed q, f = I11I22/(ω
2I2

12
) is a decreasing

function of ω that tends to +∞ at ω = 0. The double integrals I12, I11 et I22 are given by equations (15), (16) and (17) of reference [13]. For all

q ≤ 2kmin , f (ω, q) → −∞ logarithmically when ω→ ǫeff
f

(q)−/~ = 2∆−/~, because I11 → +∞ [13] and I22 < 0 ∀ω ∈ [0, 2∆/~], which ensures the

existence of a root ω ∈ [0, 2∆/~[. As a consequence D contains at least all the wavevectors of modulus q ≤ 2kmin [13].

8. Similarly to BCS theory, the RPA is only qualitatively correct in the strongly interacting regime, and deviations from the RPA spectrum can

be measured on the collective excitation modes [20].
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Minimisation of vb(q) on the second connected component ofD, that is q ∈ [qinf ,+∞[, when it exists, is also rather

simple. One finds that the energy ǫb(q) is extremely close to its “ceiling" ǫeff
f

(q); since qinf is always larger than the

root of Ff (q̌) [see figure 1c], the three functions q 7→ ǫeff
f

(q)/q, q 7→ ǫb(q)/q and q 7→ vb(q) are increasing functions

for q ≥ qinf . One then numerically checks that the minimum vb(qinf) of vb(q) over that second connected component

is always larger than the sound velocity, and is thus irrelevant.

It remains to minimise vb(q) over the existence interval [0, qsup], and this can in general lead to three different

cases: the absolute minimum is (a) at q = 0, (b) at q = qsup or (c) at a point q0 inside the interval. First one studies the

local minima of vb(q) according to these three cases, then one sorts them.

The local minima : We introduce the same dimensionless variables, auxiliary function F(q) and graphical discussion

as for the fermionic branch:

v̌b(q̌) = αq̌ +
ǫ̌b(q̌)

q̌
and Fb(q̌) =

d

dq̌

(

−
ǫ̌b(q̌)

q̌

)

, so that
d

dq̌
v̌b(q̌) = α − Fb(q̌) (23)

A first remark is that Fb(0) = 0 and d
dq̌

v̌b(0) = α > 0, so that vb(q) always has a minimum at q = 0, because the

first correction to the linear term in equation (22) is cubic (the Taylor expansion of [ǫb(q)]2 according to the RPA only

contains even powers of q). A second remark is that the function vb(q) has a minimum at q = qsup if d
dq̌

v̌b(q̌sup) < 0, that

is if α < Fb(q̌sup). A last remark is that vb(q) has a local minimum at q0 ∈]0, qsup[ if its first order derivative vanishes

at q0 and if its second order derivative is positive. Graphically this means that q̌ 7→ Fb(q̌) crosses the horizontal line

of ordinate α inside the interval with a negative derivative, that is from top to bottom. This may be realised for some

value of α if and only if the continuous function Fb(q̌) has a strictly positive maximum in ]0, qsup[, as in figure 2.

The global minimum vL
c,b

: The values vb(0) = c and vb(qsup) can be directly compared, after a numerical calculation of

c and qsup, since ǫb(q) and the analytically known ǫeff
f

(q) coincide at qsup. When it exists, the local minimum of vb(q)

at q0 ∈]0, qsup[ is actually smaller than vb(qsup), since Fb(q̌) remains below the horizontal line of ordinate α over the

interval [q̌0, q̌sup] so that vb(q) is an increasing function over that interval. It can also easily be compared to the sound

velocity: after integration of the third equation of (23), one finds that

v̌b(q̌0) − č =

∫ q̌0

0

dq̌ [α − Fb(q̌)] = A+ − A− (24)

where A+ and A− are the (positive) areas of the zones delimited by the graph of Fb(q̌) and by the horizontal straight

line of ordinate α, respectively below and above that straight line, for q̌ spanning [0, q̌0]. They are the hatched zones

in figure 2b, plotted in the particular case A+ = A−, that is for the value qmin
0

of q0 below which vb(q0) ceases to be

strictly less than c.

The result of the global minimisation is shown in figure 3b. The boundary between the zones vL
c,b
= vb(qsup) and

vL
c,b
= vb(q0) corresponds to the limiting case q0 → qsup, that is to the equation α = Fb(q̌sup); it leads, as shown by

generalisation of the property (19) of vL
c, f

[see (29) and footnote 9], to a second order transition for vL
c,b

, that is to a

discontinuity of its second order derivative in the direction orthogonal to the boundary. The other boundaries, where

c = vb(q0) or c = vb(qsup), lead to first order transitions for vL
c,b

, that is to a discontinuity of its first order derivative,

since the location of the minimum of vb(q) jumps from 0 to qmin
0

> 0 or qsup. Note the existence of a triple point at the

confluence of the three zones.

4. Synthesis: global critical velocity of the particle

The global Landau critical velocity for a moving particle in the superfluid is given by the smallest of the two

velocities vL
c, f

and vL
c,b

of the previous sections. For µ < 0 or ∆/µ > 1.729, one always has vL
c,b
= c < vL

c, f
, so that vL

c

is identically equal to the sound velocity and has a bosonic origin. As shown in table 1 indeed, the bosonic excitation

branch then exists for all q with an energy ǫb(q) everywhere < ǫeff
f

(q), so that vb(q) < v f (q) and vL
c,b
< vL

c, f
in equations

(8) and (21); furthermore, the convexity of q 7→ ǫb(q) implies vL
c,b
= c, see section 3. For µ > 0 and ∆/µ < 1.729, the

diagram in the plane (∆/µ, α = m/M) in figure 4a shows that the critical velocity has a fermionic origin (vL
c, f
< vL

c,b
) in

a sort of triangle with one curved side and with a basis lying on the α = 0 axis where the impurity has an infinite mass;
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Figure 2: For the value ∆/µ = 0.31 taken as an example: (a) dimensionless dispersion relation ǫ̌b(q̌) of the bosonic branch (solid line), that has

a phononic start (dotted line) and is bounded by the border of the two fermionic excitation continuum ǫ̌eff
f

(q̌) at the considered total wavevector

(dashed line), and (b) auxiliary function Fb(q̌) for the graphical discussion of the minimisation of vb(q). Here the bosonic branch only exists over

the compact interval [0, qsup], and vb(q) has a local minimum at q0 in the interior of that interval if and only if the mass ratio α is in between Fb(q̌sup)

and supq̌ Fb(q̌). The dashed line in (b) corresponds to the approximation Fb(q̌) ≃ F
(iv)

f
(q̌) = 2∆̌/q̌2; this is a legitimate approximation close enough

to q = qsup and for a small enough value of ∆̌. This is indeed the case here, even for the minimal value q̌min
0

of q̌0 (that is for the maximal value

αmax of α) that can be accessed in the zone Bq0
of figure 3b for a fixed ∆̌, such that A+ = A− in equation (24).

its maximal extension on that axis agrees with the crossing point ∆/µ ≃ 1.38 of the two terms in the right-hand side

of (5). Everywhere else, the critical velocity has a bosonic origin. One can explain in simple terms why this property

necessarily holds to the right of this crossing point: v f (q) and thus vL
c, f

in equation (8) are increasing functions of

1/M, and the corresponding dimensionless quantities are increasing functions of α; according to (5), vL
c, f

(α = 0) > c

as soon as ∆/µ > 1.38, so that one also has vL
c, f

(α) > c for all α > 0.

It remains to be seen to which extent the transition line(s) predicted for vL
c, f

and vL
c,b

[see figure 3] subsist on the

global critical velocity vL
c , or on the contrary are masked because the critical velocity from the competing excitation

branch is smaller. We have plotted the transition line for vL
c, f

[among the stationarity branches (i) and (iv)], α = ∆̌/2,

as a dashed green line in figure 4a. The portion corresponding to ∆̌ > 0.55 is entirely masked by the bosonic critical

velocity and is omitted; remarkably, and may be unexpectedly, the portion corresponding to ∆̌ < 0.55 cannot be

distinguished, at the scale of the figure, from the boundary between the bosonic domain and the fermionic domain!

Similarly, we have plotted the transition lines of vL
c,b

[depending on the location of the minimum of vb(q) at q = 0,

q = qsup or in between] as a black solid (dashed) line for a first (second) order transition. Two additional remarkable

facts arise. First, the black dashed line is in practice indistinguishable from the green dashed line, and therefore from

the boundary between the bosonic and fermionic domains. Second, the portion of solid line with ∆̌ > 0.55 seems

to coincide quite well with another piece of that boundary. Last, the portion of solid line with abscissas ∆̌ < 0.55 is

immersed in the bosonic domain, and splits it in two subdomains B1 and B2 separated by a first order transition for

vL
c . We shall now give some simple facts allowing one to understand part of those observations.

Some zones of predictable origin: The domain Bqsup
such that vL

c,b
= vb(qsup) necessary corresponds to vL

c,b
≥ vL

c, f

so it is, in the final diagram for vL
c , entirely masked by the critical velocity induced by the fermionic excitation

branch. At q = qsup, the bosonic excitation branch indeed meets the two fermionic excitation “ceiling" ǫeff
f

(q) so that

vb(qsup) = v f (qsup) ≥ infq v f (q) = vL
c, f

. As a consequence, the B1 − F boundary is above the transition line between

the zones Bq0
[where vL

c,b
= vb(q0)] and Bqsup

[where vL
c,b
= vb(qsup)], that is above the black dashed line in figure 4a.

In a symmetric manner, the domain F(iv) of vL
c, f

corresponding to the stationarity branch (iv), that is to α > ∆̌/2,

is entirely masked by the contribution of the bosonic excitation branch. On branch (iv), indeed, v f (q) reaches its

minimum over the interval q ∈ [0, 2kmin], see figure 1c. Over this interval, the bosonic excitation branch does exist,

since qsup > 2kmin as shown by reference [13], and leads to a velocity vb(q) everywhere smaller than the velocity v f (q),

since one has everywhere ǫb(q) ≤ ǫeff
f

(q). As a consequence, vL
c,b

is less than v
(iv)

c, f
= infq∈[0,2kmin] v f (q), and the boundary
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between B1 and F is below the F(iv) − F(i) transition line for vL
c, f

, that is below the green dashed line in figure 4a.

To summarise, the B1 − F boundary is bracketed by the green dashed ceiling α = Ff (2) = ∆̌/2 (see section 2),

and the black dashed floor α = limq̌0→q̌sup
Fb(q̌0) = Fb(q̌sup) (see section 3). But, as the numerics show, the quantity

Fb(q̌sup) considered as a function of ∆̌ is extremely close to ∆̌/2 up to ∆̌ ≈ 0.6 (beyond that value, it starts bending

down). More precisely, for ∆̌ < 0.55, the deviation is less than four per mil and, also, qsup differs from 2kmin by less

than one per mil. This is why the B1 − F boundary, the green dashed line and the black dashed line almost coincide

in figure 4a. We shall be more precise at the end of this section: we shall show analytically that the B1 − F boundary

lies exactly on top of the black dashed line and that two zones of the plane (∆̌, α) exactly coincide:

Bq0
=B1 (25)

Explaining why the dashed lines almost coincide at the B1 − F boundary: In the limit ∆̌ = ∆/µ ≪ 1, one can

physically understand why the green and black dashed lines almost coincide: The low q linear part of ǫb(q), when

linearly extrapolated, reaches the two fermionic excitation ceiling ǫeff
f

(q) ≃ 2∆ at a point qextra ≈ 2∆/(~c) ≪ 2kmin

since c ≃ (2µ/3m)1/2 in that limit. The bosonic excitation branch actually bends at q = qextra then closely follows the

ceiling until it reaches it at the point qsup, which is very close to 2kmin (q̌sup ≃ 2). As a consequence, the functions

ǫb(q) and ǫeff
f

(q), or the functions Ff (q̌) and Fb(q̌) may be in practice identified on a broad neighbourhood of qsup, or

of q̌sup far enough to the right of qextra or of q̌extra = 31/2
∆̌; at this stage, one can also assimilate the function Ff (q̌) to

its expression d
dq̌

(−2∆̌/q̌) = 2∆̌/q̌2 on the stationarity branch (iv), see equations (15) and (16). In short:

Fb(q̌) ≃
2∆̌

q̌2
for ∆̌≪ q̌ and ∆̌ ≪ 1 (26)

These ideas are successfully illustrated in figure 2. This explains why Fb(q̌sup) ≃ ∆̌/2 at low ∆̌. What is fortunate here

is that ∆̌ = 0.55 is already small enough from that perspective.

vL
c, f

and vL
c,b

almost coincide in the zone B1 : One may wonder if the previous approximation (26) applies not only to

q̌ = q̌sup but also to the location q0 of the absolute minimum of vb(q), within the zone Bq0
of figure 3b. For a fixed

∆̌, this suffices to be checked for the minimal reachable value qmin
0

of q0, corresponding to the maximal value of α

reached in that zone, that satisfies A+ = A− in equation (24). This is confirmed by the numerics, which means that

q̌min
0

is always in practice far enough to the right of the location of the maximum of Fb(q̌), since that maximum cannot

be predicted by (26). As a remarkable consequence, we obtain that in the zone Bq0
, that is in the zone B1:

∀(∆̌, α) ∈ B1, v
L
c = vL

c,b ≃ vL
c, f (27)

where equation (17) can be used to get vL
c, f

.

Line vL
c, f
= c is remarkable : Now that we have understood the bosonic-fermionic nature of zone B1, that is the validity

of the approximation (27), we can approximate in a simple way the location of the B1 − B2 boundary, that is of the

Bq0
− B0 boundary, where the zone B0 is such that vL

c,b
= c. One just needs to solve the equation

vL
c, f = c (28)

The corresponding black dotted line in figure 4a is indeed very close to the black solid line for ∆̌ < 0.55. Even better,

it reproduces exactly the B2 − F boundary for ∆̌ > 0.55, where α < ∆̌/2 and vL
c, f

now originates from the stationarity

branch (i). One has indeed vb(qsup) = v f (qsup) ≥ vL
c, f

as we have already seen, so that the zone Bqsup
cannot compete

and the F − B2 transition is a F − B0 transition given by equation (28).
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Figure 3: Diagram in the plane (∆̌ = ∆/µ, α = m/M), µ > 0, indicating (a) for the fermionic excitation branch of the superfluid, on which

stationarity branch of equation (12) the critical velocity vL
c, f

is realised (with the self-explanatory notations F(i) and F(iv)), and (b) for the bosonic

excitation branch, if the critical velocity vL
c,b

is reached at the lower endpoint q = 0 (zone B0), at the upper endpoint q = qsup (zone Bqsup ) or in the

interior of its existence interval, q = q0 ∈]0, qsup[ (zone Bq0
). The solid (dashed) lines indicate a first order (second order) transition for vL

c, f
or vL

c,b
,

that is with a discontinuous first order (second order) differential.
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Figure 4: (a) Diagram in the plane (∆̌ = ∆/µ, α = m/M), µ > 0, showing in which zone the global critical velocity vL
c of the impurity of mass M has

a bosonic origin (case vL
c,b

< vL
c, f

, indicated by the letter B and a uniform white background) or a fermionic origin (case vL
c, f

< vL
c,b

, indicated by the

letter F and a yellow hatched background). The bosonic domain is split in two sub-domains B1 and B2 by the first order transition line between the

zones Bqsup and Bq0
[black solid line with abscissas ∆̌ < 0.55] of figure 3b. Unexpectedly, the B2 − F boundary is close to the first order transition

line between the zones Bqsup and B0 [black solid line with abscissas ∆̌ > 0.55] of figure 3b. Remarkably also, the unmasked part of the second order

transition line for vL
c, f

[green dashed line] and the second order transition line between the zones Bq0
and Bqsup [black dashed line], that bracket the

B1 − F boundary, are in practice indistinguishable; an analytical study shows that the B1 − F and Bq0
− Bqsup boundaries actually exactly coincide,

and that vb(q) and v f (q) on that boundary have their minimum in q = qsup , and that vL
c exhibits a second order transition. Last, the line vL

c, f
= c

[black dotted line] reproduces exactly the B2 − F boundary (as it should be) and also quite well the B2 − B1 boundary. (b) Generalisation of the

previous diagram to the case of a superfluid of bosonic impurities moving in the Fermi superfluid, for a fixed ratio µB/EF = 0.1 of the rest frame

Bose chemical potential and the Fermi energy of the fermions. The new critical velocity vL
c also exhibits a partition in three zones, separated as in

the previous case by a discontinuity of its second order (F − B1 boundary) or first order (F − B2 and B1 − B2 boundaries) differential: the zone F

(yellow hatched) where vL
c = vL

c, f
, and the zones B1 and B2, where vL

c = vL
c,b

. The F − B1 boundary, where vb(q) and v f (q) have their minimum at

q = qsup , is very close to the F(i) − F(iv) boundary at the considered value of µB [green dashed line, interrupted as it reaches zone B2]. The F − B2

boundary is given exactly (as it should be) by the black dotted line vL
c, f
= c + cB, where c (cB) is the son velocity in the Fermi (Bose) superfluid at

rest, to the right of the triple point. The B1 − B2 boundary, which is simply the Bq0
− B0 boundary at the considered value of µB [black solid line]

on the contrary deviates from the dotted line away from and to the left of the triple point.
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A quasi-coincidence at the B2 − F boundary: What ultimately remains to be explained is the quasi-coincidence of the

F −B2 and Bqsup
−B0 boundaries, that is of the black dotted line and the black solid line for ∆̌ > 0.55 in figure 4a. This

quasi-coincidence is however more approximate than the previous ones, not to say accidental. It turns out that at the

point of the F − B2 boundary with abscissa ∆̌ = 0.55, qsup is very close to the location q = 2kmin of the minimum of

v f (q); also, at the endpoint of that boundary with abscissa ∆̌ ≃ 1.38, q̌sup ≃ 2.59 is very close to the location q̌ ≃ 2.61

of the minimum of v̌ f (q̌), which is unexplained. As a consequence, the F − B2 and Bqsup
− B0 boundaries almost

touch in their endpoints. In the intermediate region 0.55 < ∆̌ < 1.38, however, they appreciably deviate in figure 4a;

numerics confirm that qsup can significantly deviate from the location of the minimum of v f (q), at least by 5%, but this

only leads to a weak deviation of vb(qsup) = v f (qsup) from infq v f (q) because v f (q) varies only quadratically around its

minimum.

Order of the transitions and summary: We finally give the minimal order of the differentials of vL
c that are discontinuous

at the boundaries between the zones B1, B2 and F. Since no boundary has any vertical portion in the plane (∆̌, α),

we can limit ourselves to the derivatives of vL
c with respect to α at fixed ∆̌, taking advantage within each zone of the

general property:
d

dα
vL

c = qabs
0 (29)

where qabs
0

, a function of α, is the location of the absolute minimum q0,b of q 7→ vb(q) or q0, f of q 7→ v f (q), depending

on whether vL
c originates from the bosonic or fermionic excitation branch 9.

Another remarkable, may be even surprising property is that the bosonic excitation branch q 7→ ǫb(q) is exactly

tangential to the two fermionic excitation ceiling q 7→ ǫeff
f

(q) at the point of abscissa q = qsup where they meet 10 :

d

dq
ǫb(qsup) =

d

dq
ǫeff

f (qsup), so that Fb(q̌sup) = Ff (q̌sup). (30)

On the contrary, for q < qsup, the (negative) energy deviation ǫb(q) − ǫeff
f

(q) has a positive derivative so that Fb(q̌) <

Ff (q̌). Then, close to the B1 − F boundary, the functions Fb(q̌) et Ff (q̌) decrease and converge to a common limit

Ff (q̌sup) when q→ q−sup, the former being less than the latter that goes one decreasing beyond q̌sup, see figure 1c. One

can then show graphically that the F − B1 boundary is reached at α = Ff (q̌sup), with q0,b = q0, f = qsup, and with

vb(q0,b) = v f (q0, f ) as it should be: this is a second order transition for vL
c according to (29); as a consequence, the

F − B1 and Bq0
− Bqsup

boundaries exactly coincide and so do the zones in (25) 11.

The remaining part is more straightforward. At the B1 − B2 boundary, q0,b jumps from to positive value qmin
0

(to

the right of the Fb(q̌) maximum, see figure 2b) to the value zero, so that vL
c exhibits a first order transition. There is a

similar scenario at the F − B2 boundary, where v
(i)

f
(q0, f ) = c ≡ vb(q0,b = 0), and the absolute minimum location qabs

0

jumps from the value q0, f ≥ 2kmin to the value zero.

5. Critical relative velocity of Bose and Fermi superfluids

It is likely that experimental verification of the Landau critical velocity predicted here will be for many impurities,

rather than one. Since it is desirable to send into the Fermi superfluid a homokinetic ensemble of impurities, one

9. When vL
c = vL

c, f
, this is a tautology of equation (19). When vL

c = vL
c,b

, one has either 0 < q0,b < qsup , in which case α = Fb(q̌0,b) and one

simply takes the derivative of v̌b(q̌0,b(α)) with respect to α in equation (23), or q0,b = 0 or qsup , in which case q̌0,b is locally constant and the result

is trivial.

10. We use the footnote 7 and the explicit expressions of the integrals I11, I12 and I22 of reference [13]. Taking the derivative of the implicit

equation f (ωb(q), q) = 1 with respect to q, we obtain d
dq
ωb(q) = −∂q f /∂ω f . Taking the partial derivatives ∂ω and ∂q of each integral under the

integral sign, we get in the integrand a factor 1/[ǫ f ,k+q/2 + ǫ f ,k−q/2 − ǫb(q)]2 , whose tridimensional integral over k is infrared divergent when

q → q−sup, that is when ǫeff
f

(q) − ǫb(q) → 0+, since ǫ̌ f ,k+q/2 + ǫ̌ f ,k−q/2 =
k→0

ǫ̌eff
f

(q̌) + ǩ2(q̌2 − 4)/ǫ̌eff
f

(q̌) + (ǩ · q̌)2
∆̌

2/(ǫ̌eff
f

(q̌)/2)3/2
+ O(k4). Then

∂ω̌ Ǐ11 = ω̌
2J + O(1), ∂ω̌ Ǐ12 = (q̌2 − 4)J/2 + O(1), ∂ω̌ Ǐ22 = [ω̌2 − (2∆̌)2]J + O(1), where the O(1) remain bounded when (ω̌, q̌) → (ǫ̌eff

f
(q̌sup), q̌sup)

whereas J =
∫

d3 ǩ
4π

[(ǫ̌ f ,k+q/2 + ǫ̌ f ,k−q/2 − ω̌) ǫ̌eff
f

(q̌)]−2 diverges. Similarly, ∂q̌ Ǐ11 = [− d
dq̌
ǫ̌eff

f
(q̌)]ω̌2 J +O(1), ∂q̌ Ǐ12 = [− d

dq̌
ǫ̌eff

f
(q̌)](q̌2 − 4)J/2 +O(1)

and ∂q̌ Ǐ22 = [− d
dq̌
ǫ̌eff

f
(q̌)][ω̌2 − (2∆̌)2]J + O(1). Since ω̌2

Ǐ11
+

ω̌2−(2∆̌)2

Ǐ22
−

q̌2−4

Ǐ12
does not tend to zero, one obtains the property (30).

11. For α < Fb(q̌sup) = Ff (q̌sup), the minimum of vb(q), reached at qsup , is larger than the one of v f (q), reached at q0, f > qsup , since v f (q0, f ) <

v f (qsup) = vb(qsup). For α > Ff (q̌sup) = Fb(q̌sup), the minimum of v f (q), reached at q0, f < qsup , is larger than the one of vb(q), reached at

q0,b < qsup , since vb(q0,b) < vb(q0, f ) < v f (q0, f ).

11



is naturally led to use a Bose-Einstein condensate of such impurities. Interactions among impurities will then be in

general significant, as is the case in the reference [17]. Landau’s reasoning must therefore be generalised to the case

of a Bose superfluid moving at velocity v inside the Fermi superfluid.

The Bose superfluid is initially at zero temperature in its center-of-mass frame. The arbitrarily weak density-density

interaction between the bosons and the fermions, see section 1, creates at least one elementary excitation in the Bose

superfluid, of momentum ~q and energy ǫB,q+~q · v, q 7→ ǫB,q = ǫB(q) being the dispersion relation for a superfluid

at rest 12. Concomitantly, a pair of fermionic excitations of wavevectors k1 and k2 and of energy ǫ f ,k1
+ ǫ f ,k2

, with

q = −(k1 + k2), or a bosonic excitation of wavevector −q and energy ǫb,−q appears in the Fermi superfluid. This

minimal excitation process cannot conserve energy if the relative velocity v of the two superfluids is below the critical

Landau velocities

vL
c, f = inf

q
v f (q) with v f (q) =

ǫB(q) + ǫeff
f

(q)

~q
(31)

vL
c,b = inf

q
vb(q) with vb(q) =

ǫB(q) + ǫb(q)

~q
, (32)

that is below vL
c , which is the smallest of the two velocities. In what follows, we shall use the Bogoliubov form

ǫB(q) =

[

~
2q2

2M

(

~
2q2

2M
+ 2µB

)]1/2

(33)

where µB is the (positive) chemical potential of the Bose superfluid at rest and M is the mass of a boson. The previous

expressions (8) and (21) correspond, as it should be, to the limiting case µB → 0.

The analysis of the critical velocity vL
c, f

on the fermionic branch can be done analytically, introducing dimensionless

variables as in equation (16) and the width Q̌B of ǫ̌B(q̌)/q̌, given by

Q̌2
B =

2M

m

µB

|µ|
=

2µ̌B

α
(34)

One finds identifies the local minima, of zero derivative:

v̌ f (q̌) = α(q̌2
+ Q̌2

B)1/2
+

ǫ̌eff
f

(q̌)

q̌
, so that

d

dq̌
v̌ f (q̌) =

αq̌

(q̌2 + Q̌2
B
)1/2
− Ff (q̌) (35)

The root of that expression lies on the stationarity branch (iv) [rather than on branch (i)] if and only if the increasing

function q̌ 7→ αq̌/(q̌2
+ Q̌2

B
)1/2 reaches the value ∆̌/2 for q̌ ∈ [0, 2], that is if and only if

2α

(4 + Q̌2
B
)1/2
≥
∆̌

2
, (36)

as can be shown graphically with the help of figure 1 c. The plane (∆̌, α) is thus again split in two domains F(i) and

F(iv), and v̌c, f exhibits a second order transition at their boundary.

The analysis of the critical velocity vL
c,b

on the bosonic branch is performed numerically. Similarly to the case with

one impurity, one finds that the plane (∆̌, α) is split in three domains B0, Bqsup
and Bq0

, depending on where the absolute

minimum of vb(q) is located, at the lower endpoint, at the upper endpoint or in the interior of the existence interval

[0, qsup] of the bosonic branch. The boundaries only weakly differ from the one for the single impurity, since the Bose

12. This results from the following properties of the unitary transform Tt(v) setting the gas into motion as a whole at velocity v, that is a Galilean

boost at velocity −v, Tt(v) = exp[−i
∑

j tv · p j/~] exp[i
∑

j mBv · r j/~]exp[itNBmBv2/2], where the sum is over the NB bosons, of mass mB = M,

position operators r j and momentum operators p j: T
†
t (v)HBTt(v) = HB + v · PB + NBmBv2/2 and T

†
t (v)PBTt(v) = PB + NBmBv, where HB is

the Hamiltonian of the bosons and PB is their total momentum operator. It then remains to compare the energies and momenta of Tt(v)|Ψ0〉 and

Tt(v)|Ψk
1
〉, where the state vectors |Ψ0〉 and |Ψk

1
〉 represent the superfluid at rest in its ground state or in presence of an elementary excitation of

wavevector k.

12



chemical potential was taken to be small as compared to the Fermi energy of the fermions. Note that vL
c,b
= c + cB in

the whole zone B0, c and cB being the sound velocities in the Fermi and Bose superfluids at rest.

The diagram in the plane (∆̌, α) for the global critical velocity vL
c is shown in figure 4b and is described in detail

in the caption. The results and their discussion are close to the single impurity case, see the previous section. We just

report a noticeable difference: the dotted line obeying the equation vL
c, f
= c+ cB no longer gives a good approximation

to the B1 − B2 boundary, except close to the triple point.

6. Conclusion

We have extended Landau’s calculation of the critical velocity in a non-polarized Fermi superfluid to the case

where the moving object is (a) an impurity of finite mass M, and (b) a superfluid of such bosonic impurities, taking

into account the BCS pair breaking excitations of the Fermi superfluid (fermionic excitation branch) and the RPA

excitation of the pair center-of-mass motion (bosonic excitation branch) as in reference [13].

When the chemical potential of the fermions is negative, µ < 0, we find that the critical velocity is determined

by the phononic part of the bosonic excitation branch and is therefore simply (a) the sound velocity c in the Fermi

superfluid, or (b) the sum c + cB, where cB is the sound velocity in the Bose superfluid at rest.

When the chemical potential of the fermions is positive, µ > 0, these results only apply to some zone B2 in the

plane (∆/µ,m/M), where ∆ is the gap and m the mass of a particle in the Fermi superfluid. For (a) as well as for (b),

at least when the chemical potential µB of the bosons at rest is small as compared to the Fermi energy of the fermions,

there exist two other zones, a zone B1 where the critical velocity is determined by the intermediate (non phononic) part

of the bosonic excitation branch, and a zone F where the critical velocity is the one vL
c, f

on the fermionic excitation

branch. The critical velocity has a discontinuous second order differential at the F −B1 boundary, and a discontinuous

first order differential at the F − B2 and B1 − B2 boundaries. The three boundaries merge at a triple point. The F − B2

boundary exactly obeys the equation vL
c, f
= c [case (a)] or vL

c, f
= c+ cB [case (b)]. Similarly, on the B1 − B2 boundary,

the critical velocities coming from the phononic part and the intermediate part of the bosonic excitation branch are

exactly equal; in the case (a), one gets a good approximation by solving the simpler equation vL
c, f
= c, because the

critical velocity in B1 is actually very close to vL
c, f

; in the case (b), this is not an as good approximation, except in the

vicinity of the triple point. Last, the F − B1 boundary is exactly on the line vL
c, f
= v f (qsup), where the function v f (q) is

minimal at the maximal wavenumber qsup of the bosonic excitation excitation branch, and it can be well approximated

both for (a) and (b) by a portion of the line of discontinuity of the second order differential of vL
c, f

; this line is given by

the equation m/M = ∆/(2µ) for the case (a), and by assuming equality rather than inequality in (36), for the case (b).

These predictions may be verified experimentally with the mixture of superfluids of bosonic 7Li and fermionic
6Li isotopes of lithium that was recently prepared at ENS [17]. For example, the predicted first order transition at the

B1 − B2 boundary may be revealed through a variation of the scattering length of the opposite spin fermions (this will

change ∆̌) with a Feshbach resonance; it remains to measure the corresponding critical velocity and to check that it

has a kink as a function of the interaction strength, at the crossing point of the B1 − B2 boundary. The fixed value

m/M ≃ 6/7 of the mass ratio does not allow, however, to cross the other boundaries.

It may be possible to extend our theoretical study to what was directly measured in reference [17], that is the

damping rate of the Bose superfluid oscillations within the harmonically trapped Fermi superfluid, including possible

non-zero temperature effects. It also remains to see if the boson-fermion interaction is indeed so weak that one can

make an analysis à la Landau, restricting to the minimal number of elementary excitations, and obtain the same energy

barrier (preventing damping of the motion of the impurities in the Fermi superfluid) as in the experiment. We hope

that these questions will provide some inspiration for future works, theoretical or experimental.

Acknowledgements

Our group is also affiliated to IFRAF. We acknowledge financial support from the Nano-K DIM (ATOMIX project)

and from the Institut de France (Louis D. prize). We thank the members of the “cold fermions" group, as well as

Claude Cohen-Tannoudji, Franck Laloë and Xavier Leyronas for useful discussions.

13



References

[1] M. Inguscio, W. Ketterle, C. Salomon, 〈〈 Ultracold Fermi Gases 〉〉 (Società italiana di fisica, Bologna, Italy, 2007) ; S. Giorgini, L.P. Pitaevskii,

S. Stringari, 〈〈 Theory of ultracold atomic Fermi gases 〉〉, Rev. Mod. Phys. 80, 1215 (2008) ; W. Zwerger, 〈〈 The BCS-BEC Crossover and the

Unitary Fermi Gas 〉〉 (Springer, Berlin, 2012).

[2] A.J. Leggett, 〈〈 Quantum Liquids 〉〉, section 2.4 (Oxford University Press, Oxford, 2006).

[3] I. Carusotto, Y. Castin, 〈〈 Atom interferometric detection of the pairing order parameter in a Fermi gas 〉〉, Phys. Rev. Lett. 94, 223202 (2005).

[4] M. Zwierlein, C. Stan, C. Schunck, S. Raupach, A. Kerman, W. Ketterle, 〈〈 Condensation of Pairs of Fermionic Atoms near a Feshbach

Resonance 〉〉, Phys. Rev. Lett. 92, 120403 (2004) ; S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, Cheng Chin, J. Hecker Denschlag, R.

Grimm, 〈〈 Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms 〉〉, Phys. Rev. Lett. 91, 240402 (2003).

[5] M. Zwierlein, J.R. Abo-Shaeer, A. Schirotzek, C.H. Schunck, W. Ketterle, 〈〈 Vortices and superfluidity in a strongly interacting Fermi gas 〉〉,

Nature 435, 1047 (2005).

[6] I. Carusotto, Y. Castin, 〈〈 Superfluidity of the 1D Bose gas 〉〉, Comptes Rendus Physique 5, 107 (2004).

[7] L.A. Sidorenkov, Meng Khoon Tey, R. Grimm, Yan-Hua Hou, L. Pitaevskii, S. Stringari, 〈〈 Second sound and the superfluid fraction in a

Fermi gas with resonant interactions 〉〉, Nature 498, 78 (2013).

[8] S. Nascimbène, N. Navon, K.J. Jiang, F. Chevy, C. Salomon, 〈〈 Exploring the thermodynamics of a universal Fermi gas 〉〉, Nature 463, 1057

(2010) ; Mark J.H. Ku, A.T. Sommer, Lawrence W. Cheuk, M. Zwierlein, 〈〈 Revealing the Superfluid Lambda Transition in the Universal

Thermodynamics of a Unitary Fermi Gas 〉〉, Science 335, 563 (2012).

[9] D. Miller, J. Chin, C. Stan, Y. Liu, W. Setiawan, C. Sanner, W. Ketterle, 〈〈 Critical Velocity for Superfluid Flow across the BEC-BCS

Crossover 〉〉, Phys. Rev. Lett. 99, 070402 (2007).

[10] T. Frisch, Y. Pomeau, S. Rica, 〈〈 Transition to dissipation in a model of superflow 〉〉, Phys. Rev. Lett. 69, 1644 (1992).

[11] L. Landau, 〈〈 The theory of superfluidity of helium II 〉〉, J. Phys. (URSS) 5, 71 (1941).

[12] G.E. Astrakharchik, L.P. Pitaevskii, 〈〈 Motion of a heavy impurity through a Bose-Einstein condensate 〉〉, Phys. Rev. A 70, 013608 (2004).

[13] R. Combescot, M. Yu. Kagan, S. Stringari, 〈〈 Collective mode of homogeneous superfluid Fermi gases in the BEC-BCS crossover 〉〉, Phys.

Rev. A 74, 042717 (2006).

[14] B. Svistunov, E. Babaev, N. Prokof’ev, 〈〈 Superfluid States of Matter 〉〉, chapter 1, p. 42 (CRC Press, London, 2014).

[15] O. Lychkovskiy, 〈〈 Perpetual motion and backscattering oscillations of a mobile impurity in a quantum fluid 〉〉, arXiv:1403.7408v2.

[16] A.P. Chikkatur, A. Görlitz, D.M. Stamper-Kurn, S. Inouye, S. Gupta, W. Ketterle, 〈〈 Suppression and enhancement of impurity scattering in a

Bose-Einstein condensate 〉〉, Phys. Rev. Lett. 85, 483 (2000).

[17] I. Ferrier-Barbut, M. Delehaye, S. Laurent, A.T. Grier, M. Pierce, B.S. Rem, F. Chevy, C. Salomon, 〈〈 A mixture of Bose and Fermi

superfluids 〉〉, Science 345, 1035 (2014).

[18] A. Minguzzi, G. Ferrari, Y. Castin, 〈〈 Dynamic structure factor of a superfluid Fermi gas 〉〉, Eur. Phys. J. D 17, 49 (2001).

[19] P.W. Anderson, 〈〈 Random-Phase Approximation in the Theory of Superconductivity 〉〉, Phys. Rev. 112, 1900 (1958).

[20] A. Altmeyer, S. Riedl, C. Kohstall, M.J. Wright, R. Geursen, M. Bartenstein, C. Chin, J. Hecker Denschlag, R. Grimm, 〈〈 Precision

Measurements of Collective Oscillations in the BEC-BCS Crossover 〉〉, Phys. Rev. Lett. 98, 040401 (2007).

14


