Comment on "Particle Diffusion in a Quasi-Two-Dimensional Bacterial Bath"

Guillaume Grégoire, Hugues Chaté, Yuhai Tu

To cite this version:

HAL Id: hal-01053525
https://hal.archives-ouvertes.fr/hal-01053525
Submitted on 31 Jul 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Comment on “Particle Diffusion in a Quasi-Two-Dimensional Bacterial Bath”

Recently, Wu and Libchaber (WL) reported on a fascinating experiment in which bacteria move freely within a fluid film seeded with polystyrene beads [1]. They studied the dynamics of these beads as they are moved around by the bacteria, and found superdiffusive motion ($\langle r^2 \rangle \sim t^\alpha$ with $\alpha = 1.5$) below some crossover scales t_c, ℓ_c, beyond which normal diffusion ($\alpha = 1$) is recovered. WL interpret these scales as characteristic of the structures (swirls, jets) that emerge from the collective motion of the bacteria. A simple Langevin equation with a force term correlated in time over the crossover scale t_c was used to fit the experimental data. Two problems arise from this description: First, the Langevin framework predicts ballistic behavior ($\alpha = 2$) at short scales, at odds with the nontrivial exponents recorded in the experiment. Second, no attempt is made to explain the origin of the collective motion and how or why the crossover scales change with the bacteria density ρ.

Here we show that a coherent and robust theoretical framework for this experiment is that provided by the “self-propelled XY spin” models studied recently [2] complemented by a collection of passive beads. Let us describe briefly the model used here (details will appear elsewhere). A simple Langevin equation with a force term conferring them a finite size r and diffusion constant D is added. They interact with bacteria via hard-core repulsion plus some level of entrainment within range r_0 (i.e., they take part of the neighboring bacteria velocity).

Increasing ρ, ordered collective motion appears at a value ρ^* [2]. For $\rho < \rho^*$, bacteria motion is characterized by scales which diverge as $\rho \rightarrow \rho^*$ (Fig. 1). Bead motion is directly related to bacteria behavior, as evidenced by their respective diffusive properties which both reveal superdiffusion crossing over at the same time scale t_c to normal diffusion (Figs. 1b and 1c). The characteristic scales of bead motion are thus given by the collective scales of bacteria motion, as foreseen by WL, but the short-time behavior of the beads in our model is superdiffusive, which is more consistent with the experimental data than the simple Langevin ansatz.

The density dependence of the crossover scales is also naturally explained by our model: as ρ increases, the system is closer to the critical point ρ^*, and the superdiffusive behavior persists longer. The range of variation of crossover scales recorded by WL is small (e.g., the maximum value of ℓ_c is of the order of r_0). This explains why a linear variation was found to be a good approx-

\begin{figure}[h]
\centering
\includegraphics[width=\columnwidth]{fig1}
\caption{Minimal model for bacterial bath with passive beads with $v_0 = 0.3$, $r_0 = 1.0$, $r_b = 0.13$, $r_a = 0.38$ (for other details, see [3]). \(a\) Short-time (30 time steps) trajectories of bacteria (thin lines) and beads (thick lines) for $\rho = 2.3, 3, 3.5 < \rho^* = 4.2$; \(b\) ρ variation of t_c (\(\square\)) and ℓ_c (\(\triangle\)) and diffusion constant $D = \lim_{t\rightarrow \infty} d\langle r^2 \rangle/dt$ (\(\bigcirc\)); \(d\) superdiffusion at $\rho = \rho^*$ with exponent $\alpha = 1.65(15)$.}
\end{figure}