[. Bakry, D. Bolley, and F. , Gentil, I. Dimension dependent hypercontractivity for Gaussian kernels, Probab. Theory Related Fields, vol.154, pp.3-4, 2012.

[. Bakry, D. Emery, and M. , Diffusions hypercontractives. Seminaire de probabilites, XIX, Lecture Notes in Math, vol.84, pp.177-206, 1123.

D. Bakry and M. Ledoux, A logarithmic Sobolev form of the Li-Yau parabolic inequality, Revista Matem??tica Iberoamericana, vol.22, issue.2, pp.683-702, 2006.
DOI : 10.4171/RMI/470

URL : https://hal.archives-ouvertes.fr/hal-00353946

[. Barthe, F. Kolesnikov, and A. V. , Mass Transport and Variants of the Logarithmic Sobolev Inequality, Journal of Geometric Analysis, vol.22, issue.1, pp.921-979, 2008.
DOI : 10.1007/s12220-008-9039-6

URL : https://hal.archives-ouvertes.fr/hal-00634530

N. M. Blachman and S. G. Bobkov, The convolution inequality for entropy powers, IEEE Transactions on Information Theory, vol.11, issue.2, pp.267-271, 1965.
DOI : 10.1109/TIT.1965.1053768

S. G. Bobkov, I. Gentil, and M. Ledoux, Hypercontractivity of Hamilton???Jacobi equations, Journal de Math??matiques Pures et Appliqu??es, vol.80, issue.7, pp.669-696, 2001.
DOI : 10.1016/S0021-7824(01)01208-9

[. Bobkov, S. G. Gotze, and F. , Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities, Journal of Functional Analysis, vol.163, issue.1, pp.1-28, 1999.
DOI : 10.1006/jfan.1998.3326

URL : http://doi.org/10.1006/jfan.1998.3326

S. G. Bobkov, C. Houdré, and E. A. Carlen, Isoperimetric constants for product probability measures Superadditivity of Fisher's information and logarithmic Sobolev inequalities, Ann. Probab. J. Funct. Anal, vol.25, issue.101 1, pp.184-205, 1991.

E. Carlen and A. Figalli, Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller-Segel equation. Duke Math, J, vol.162, issue.3, pp.579-625, 2013.

[. Cianchi, A. Fusco, N. Maggi, F. Pratelli, and A. , On the isoperimetric deficit in Gauss space, American Journal of Mathematics, vol.133, issue.1, pp.131-186, 2011.
DOI : 10.1353/ajm.2011.0005

D. Cordero-erausquin, Some Applications of Mass Transport to Gaussian-Type Inequalities, Archive for Rational Mechanics and Analysis, vol.161, issue.3, pp.257-269, 2002.
DOI : 10.1007/s002050100185

URL : https://hal.archives-ouvertes.fr/hal-00693655

A. Dembo, T. M. Cover, and J. A. Thomas, Information theoretic inequalities, IEEE Transactions on Information Theory, vol.37, issue.6, pp.1501-1518, 1991.
DOI : 10.1109/18.104312

[. Dolbeault, J. Toscani, and G. , Improved interpolation inequalities, relative entropy and fast diffusion equations. To appear in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2013). [E] Eldan, R. A two-sided estimate for the Gaussian noise stability deficit, p.13072781, 2013.
DOI : 10.1016/j.anihpc.2012.12.004

URL : https://hal.archives-ouvertes.fr/hal-00634852

M. Erbar, K. Kuwada, and K. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner???s inequality on metric measure spaces, Inventiones mathematicae, vol.91, issue.3, p.13034382, 2013.
DOI : 10.1007/s00222-014-0563-7

A. Figalli, F. Maggi, and A. Pratelli, A refined Brunn???Minkowski inequality for convex sets, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.6, pp.2511-2519, 2009.
DOI : 10.1016/j.anihpc.2009.07.004

[. Fusco, N. Maggi, F. Pratelli, and A. , The sharp quantitative Sobolev inequality for functions of bounded variation, Journal of Functional Analysis, vol.244, issue.1, p.315341, 2007.
DOI : 10.1016/j.jfa.2006.10.015

N. Gozlan and C. Léonard, Transport inequalities -A survey, Markov Processes and Related Fields, vol.16, pp.635-736, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00515419

L. Gross, Logarithmic Sobolev Inequalities, American Journal of Mathematics, vol.97, issue.4, pp.1061-1083, 1975.
DOI : 10.2307/2373688

E. Indrei and D. Marcon, A quantitative log-Sobolev inequality for a two parameter family of functions. To appear in Int, Math. Res. Not, 2013.

M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, Lecture Notes in Math, vol.27, issue.12, pp.120-216, 1999.
DOI : 10.1007/s004400050137

M. Ledoux, The concentration of measure phenomenon, Math. Surveys and monographs, vol.89, 2001.
DOI : 10.1090/surv/089

L. Leindler, On a certain converse of Hölder's inequality II, stochastic programming, Acta Sci. Math. Szeged, vol.33, pp.217-223, 1972.

E. H. Lieb, Proof of an entropy conjecture of Wehrl, Communications in Mathematical Physics, vol.31, issue.1, pp.35-41, 1978.
DOI : 10.1007/BF01940328

E. Mossel and J. Neeman, Robust dimension free isoperimetry in Gaussian space Preprint (2012) To appear in Information and information stability of random variables and processes, 1964.

A. Prékopa, Logarithmic concave measures with applications to stochastic programming, Acta Sci. Math. Szeged, vol.32, pp.301-316, 1971.

A. Prékopa, On logarithmic concave measures and functions, Acta Sci. Math. Szeged, vol.34, pp.335-343, 1973.

[. Otto, F. Villani, and C. , Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality, Journal of Functional Analysis, vol.173, issue.2, pp.361-400, 2000.
DOI : 10.1006/jfan.1999.3557

M. Raginsky and I. Sason, Concentration of Measure Inequalities in Information Theory, Communications, and Coding, issues 1 and 2, pp.1-246, 2013.
DOI : 10.1561/0100000064

A. Segal, Remark on Stability of Brunn???Minkowski and Isoperimetric Inequalities for Convex Bodies, Lecture Notes in Mathematics, vol.2050, pp.381-391, 2012.
DOI : 10.1007/978-3-642-29849-3_24

. St and A. J. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon Transportation cost for Gaussian and other product measures, Information and Control Geom. Funct. Anal, vol.2, issue.6, pp.101-112, 1959.

C. Villani, Optimal transport: Old and new, 2009.
DOI : 10.1007/978-3-540-71050-9

F. Wang, Generalized transportation-cost inequalities and applications. Potential Anal, pp.321-334, 2008.

Y. Wu, A Simple Transportation-Information Inequality, with Applications to HWI Inequalities and Predictive Density Estimation, 2011.