Quelques remarques à propos d'un théorème de Checcoli

Hugues Bauchère 1
1 Théorie des nombres et géométrie arithmétique
LMNO - Laboratoire de Mathématiques Nicolas Oresme
Abstract : In his thesis, S. Checcoli shows that, among other results, if $K$ is a number field and if $L/K$ is an infinite Galois extension with Galois group $G$ of finite exponent, then $L$ has uniformly bounded local degrees at every prime of $K$. In this article we gather two remarks about the generalisation of S. Checcoli's result to function fields of positive characteristic. We first show an analogue of her theorem $2.2.2$ in this context, under the hypothesis that the Galois group exponent is prime to $p$. Using an example, we then show that this hypothesis is in fact necesary.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [5 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01052528
Contributor : Hugues Bauchère <>
Submitted on : Thursday, August 14, 2014 - 7:41:17 PM
Last modification on : Tuesday, February 5, 2019 - 12:12:42 PM
Document(s) archivé(s) le : Tuesday, November 25, 2014 - 7:05:33 PM

Files

QqRqaproposd1ThdeCheccoli_v3.p...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01052528, version 1
  • ARXIV : 1408.3422

Collections

Citation

Hugues Bauchère. Quelques remarques à propos d'un théorème de Checcoli. 2014. ⟨hal-01052528⟩

Share

Metrics

Record views

242

Files downloads

96