D. Hicks and M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Physical Review B, vol.47, issue.24, p.16631, 1993.
DOI : 10.1103/PhysRevB.47.16631

M. Curtin, E. W. Fang, and J. E. Bowers, Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices, Journal of Electronic Materials, vol.39, issue.5, p.887, 2012.
DOI : 10.1007/s11664-012-1904-1

A. Blanc, S. Rajapbour, T. Volz, O. Fournier, and . Bourgeois, Phonon heat conduction in corrugated silicon nanowires below the Casimir limit, Applied Physics Letters, vol.103, issue.4, p.43109, 2013.
DOI : 10.1063/1.4816590

URL : https://hal.archives-ouvertes.fr/hal-00789770

M. Brovman, J. P. Small, Y. Hu, Y. Fang, C. M. Lieber et al., Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires, Journal of Applied Physics, vol.119, issue.23, 2013.
DOI : 10.1063/1.4953818

A. Stranz, E. Waag, and . Peiner, High-Temperature Performance of Stacked Silicon Nanowires for Thermoelectric Power Generation, Journal of Electronic Materials, vol.83, issue.7, p.2233, 2013.
DOI : 10.1007/s11664-013-2590-3

S. Karg, P. Mensch, B. Gotsmann, H. Schmid, P. Das-kanungo et al., Measurement of Thermoelectric Properties of Single Semiconductor Nanowires, Journal of Electronic Materials, vol.2007, issue.7, p.2409, 2013.
DOI : 10.1007/s11664-012-2409-7

D. Roddaro, M. A. Ercolani, S. Safeen, F. Suomalainen, F. Rossella et al., Giant Thermovoltage in Single InAs Nanowire Field-Effect Transistors, Nano Letters, vol.13, issue.8, p.3638, 2013.
DOI : 10.1021/nl401482p

URL : http://arxiv.org/abs/1312.2835

J. Moon, Z. C. Kim, J. Chen, R. Xiang, and . Chen, Gate-Modulated Thermoelectric Power Factor of Hole Gas in Ge???Si Core???Shell Nanowires, Nano Letters, vol.13, issue.3, p.1196, 2013.
DOI : 10.1021/nl304619u

M. R. Tian, J. M. Sakr, D. Kinder, M. J. Liang, R. L. Mac-donald et al., One-Dimensional Quantum Confinement Effect Modulated Thermoelectric Properties in InAs Nanowires, Nano Letters, vol.12, issue.12, p.6492, 2012.
DOI : 10.1021/nl304194c

URL : http://arxiv.org/abs/1303.3838

I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett et al., Enhanced thermoelectric performance of rough silicon nanowires, Nature, vol.3, issue.7175, p.163, 2008.
DOI : 10.1038/nature06381

D. Z. Atashbar, S. Banerji, V. Singamaneni, and . Bliznyuk, Deposition of parallel arrays of palladium and A. Javey Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing, Appl. Phys. Lett, vol.91, p.203104, 2007.

C. P. Wang and B. D. Gates, Directed assembly of nanowires, Materials Today, vol.12, issue.5, p.34, 2009.
DOI : 10.1016/S1369-7021(09)70158-0

K. Zhang, H. Tateno, H. Gotoh, and . Nakano, Parallel-aligned GaAs nanowires with ???110??? orientation laterally grown on [311]B substrates via the gold-catalyzed vapor???liquid???solid mode, Nanotechnology, vol.21, issue.9, p.95607, 2010.
DOI : 10.1088/0957-4484/21/9/095607

A. Davila, M. Tarancon, C. Fernandez-regulez, M. Calaza, A. Salleras et al., Silicon nanowire arrays as thermoelectric material for a power microgenerator, Journal of Micromechanics and Microengineering, vol.21, issue.10, p.104007, 2011.
DOI : 10.1088/0960-1317/21/10/104007

M. M. Kim, T. Kole´snikkole´snik, C. P. Lutz, J. D. Murray, P. F. Holmes et al., Large-scale parallel arrays of silicon nanowires via block copolymer directed self-assembly, Nanoscale, vol.4, p.3228, 2012.

W. M. Pregl, D. Weber, J. Nozaki, L. Kunstmann, J. Baraban et al., Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output, Nano Research, vol.55, issue.6, p.381, 2013.
DOI : 10.1007/s12274-013-0315-9

I. Persson, L. E. Fröberg, L. Samuelson, and H. Linke, The fabrication of dense and uniform InAs nanowire arrays, Nanotechnology, vol.20, issue.22, p.225304, 2009.
DOI : 10.1088/0957-4484/20/22/225304

R. Abramson, W. C. Kim, S. T. Huxtable, H. Yan, Y. Wu et al., Fabrication and Characterization of a Nanowire/Polymer-Based Nanocomposite for a Prototype Thermoelectric Device, Journal of Microelectromechanical Systems, vol.13, issue.3, p.505, 2004.
DOI : 10.1109/JMEMS.2004.828742

A. M. Keyani, J. Stacy, and . Sharp, Assembly and measurement of a hybrid nanowire-bulk thermoelectric device, Applied Physics Letters, vol.89, issue.23, p.233106, 2006.
DOI : 10.1063/1.2400199

F. O. Dwyer, T. E. Humphrey, and H. Linke, Concept study for a high-efficiency nanowire based thermoelectric, Nanotechnology, vol.17, p.338, 2006.

A. Markussen, M. Jauho, and . Brandbyge, Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties, Physical Review B, vol.79, issue.3, p.35415, 2009.
DOI : 10.1103/PhysRevB.79.035415

URL : http://arxiv.org/abs/0810.5462

W. Liang, C. S. Huang, J. Koong, J. Wang, and . Lan, Geometry effects on thermoelectric properties of silicon nanowires based on electronic band structures, Journal of Applied Physics, vol.107, issue.1, p.14317, 2010.
DOI : 10.1063/1.3273485

A. Gumbs, D. Balassis, and . Huang, Energy bands, conductance, and thermoelectric power for ballistic electrons in a nanowire with spin-orbit interaction, Journal of Applied Physics, vol.108, issue.9
DOI : 10.1063/1.3493113

N. Neophytou, M. Wagner, H. Kosina, and S. Selberherr, Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight-Binding Model, Journal of Electronic Materials, vol.101, issue.9, p.1902, 2010.
DOI : 10.1007/s11664-009-1035-5

J. Wang, R. Zhou, B. Yang, and . Li, Ballistic thermoelectric transport in structured nanowires, New Journal of Physics, vol.16, issue.6, p.65018, 2014.
DOI : 10.1088/1367-2630/16/6/065018

URL : http://doi.org/10.1088/1367-2630/16/6/065018

.. Lin, X. Sun, and M. S. Dresselhaus, Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires, Physical Review B, vol.62, issue.7, p.4610, 2000.
DOI : 10.1103/PhysRevB.62.4610

E. Humphrey and H. Linke, Reversible Thermoelectric Nanomaterials, Physical Review Letters, vol.94, issue.9, p.96601, 2005.
DOI : 10.1103/PhysRevLett.94.096601

URL : http://arxiv.org/abs/cond-mat/0407509

V. Bejenari and . Kantser, Thermoelectric properties of bismuth telluride nanowires in the constant relaxation-time approximation, Physical Review B, vol.78, issue.11, p.115322, 2008.
DOI : 10.1103/PhysRevB.78.115322

T. M. Vo, A. J. Williamson, V. Lordi, and G. Galli, Atomistic Design of Thermoelectric Properties of Silicon Nanowires, Nano Letters, vol.8, issue.4, p.1111, 2008.
DOI : 10.1021/nl073231d

D. Shi, G. Yao, B. Zhang, and . Li, Size dependent thermoelectric properties of silicon nanowires, Applied Physics Letters, vol.95, issue.6, p.63102, 2009.
DOI : 10.1063/1.3204005

V. Bejenari, A. A. Kantser, and . Balandin, Thermoelectric properties of electrically gated bismuth telluride nanowires, Physical Review B, vol.81, issue.7, p.75316, 2010.
DOI : 10.1103/PhysRevB.81.075316

H. Neophytou and . Kosina, Numerical study of the thermoelectric power factor in ultra-thin Si nanowires, Journal of Computational Electronics, vol.128, issue.11, p.29, 2012.
DOI : 10.1007/s10825-012-0383-1

B. Ramayya, L. N. Maurer, A. H. Davoody, and I. Knezevic, Thermoelectric properties of ultrathin silicon nanowires, Physical Review B, vol.86, issue.11, p.115328, 2012.
DOI : 10.1103/PhysRevB.86.115328

H. Neophytou and . Kosina, Gated Si nanowires for large thermoelectric power factors, Applied Physics Letters, vol.105, issue.7, p.73119, 2014.
DOI : 10.1063/1.4893977

URL : http://arxiv.org/abs/1409.7045

P. Bejenari and . Kratzer, Atomistic calculation of the thermoelectric properties of Si nanowires, Physical Review B, vol.90, issue.4, p.45429, 2014.
DOI : 10.1103/PhysRevB.90.045429

M. Curtin and J. E. Bowers, Thermoelectric power factor enhancement with gate-all-around silicon nanowires, Journal of Applied Physics, vol.115, issue.14, p.143704, 2014.
DOI : 10.1063/1.4870962

H. Davoody, E. B. Ramayya, L. N. Maurer, and I. Knezevic, Ultrathin GaN nanowires: Electronic, thermal, and thermoelectric properties, Physical Review B, vol.89, issue.11, p.115313, 2014.
DOI : 10.1103/PhysRevB.89.115313

URL : http://arxiv.org/abs/1405.4942

G. Bosisio, J. Fleury, and . Pichard, Gate-modulated thermopower in disordered nanowires: I. Low temperature coherent regime, New Journal of Physics, vol.16, issue.3, p.35004, 2014.
DOI : 10.1088/1367-2630/16/3/035004

URL : https://hal.archives-ouvertes.fr/hal-00874430

C. Bosisio, G. Gorini, J. Fleury, and . Pichard, Gate-modulated thermopower of disordered nanowires: II. Variable-range hopping regime, New Journal of Physics, vol.16, issue.9, p.95005, 2014.
DOI : 10.1088/1367-2630/16/9/095005

URL : https://hal.archives-ouvertes.fr/cea-01138312

P. Zvyagin, On the Theory of Hopping Transport in Disordered Semiconductors, Physica Status Solidi (b), vol.22, issue.2, p.443, 1973.
DOI : 10.1002/pssb.2220580203

W. Movaghar and . Schirmacher, On the theory of hopping conductivity in disordered systems C:Solid State Phys, J. Phys, vol.14, p.859, 1981.

I. Wysokinski and W. Brenig, On thermopower in hopping transport, Zeitschrift f??r Physik B Condensed Matter, vol.41, issue.2, p.127, 1985.
DOI : 10.1007/BF01725528

J. Jiang, O. Entin-wohlman, and Y. Imry, Thermoelectric three-terminal hopping transport through one-dimensional nanosystems, Physical Review B, vol.85, issue.7, p.75412, 2012.
DOI : 10.1103/PhysRevB.85.075412

URL : http://arxiv.org/abs/1201.4031

-. Jiang, O. Entin-wohlman, and Y. Imry, Hopping thermoelectric transport in finite systems: Boundary effects, Physical Review B, vol.87, issue.20, p.205420, 2013.
DOI : 10.1103/PhysRevB.87.205420

D. Mahan, Figure of merit for thermoelectrics, Journal of Applied Physics, vol.65, issue.4, p.1578, 1989.
DOI : 10.1063/1.342976

. Shakouri, Recent Developments in Semiconductor Thermoelectric Physics and Materials, Annual Review of Materials Research, vol.41, issue.1, p.399, 2011.
DOI : 10.1146/annurev-matsci-062910-100445

A. Shklovskii and . Efros, Electronic Properties of Doped Semiconductors, 1984.
DOI : 10.1007/978-3-662-02403-4

E. Miller and . Abrahams, Impurity Conduction at Low Concentrations, Physical Review, vol.120, issue.3, p.745, 1960.
DOI : 10.1103/PhysRev.120.745

M. Vassighi and . Sachdev, Thermal and Power Management of Integrated Circuits, 2006.

P. Pekola and F. W. Hekking, Normal-Metal-Superconductor Tunnel Junction as a Brownian Refrigerator, Physical Review Letters, vol.98, issue.21, p.210604, 2007.
DOI : 10.1103/PhysRevLett.98.210604

M. Rutten, B. Esposito, and . Cleuren, Reaching optimal efficiencies using nanosized photoelectric devices, Physical Review B, vol.80, issue.23, p.235122, 2009.
DOI : 10.1103/PhysRevB.80.235122

R. Levy and . Kosloff, Quantum Absorption Refrigerator, Physical Review Letters, vol.108, issue.7, p.70604, 2012.
DOI : 10.1103/PhysRevLett.108.070604

M. and J. Eisert, Cooling by heating: Very hot thermal light can significantly cool quantum systems, Phys. Rev. Lett, vol.108, p.120602, 2012.

B. Cleuren, C. Rutten, and . Van-den-broeck, Cooling by Heating: Refrigeration Powered by Photons, Physical Review Letters, vol.108, issue.12, p.120603, 2012.
DOI : 10.1103/PhysRevLett.108.120603

B. I. Ambegaokar, J. S. Halperin, and . Langer, Hopping Conductivity in Disordered Systems, Physical Review B, vol.4, issue.8, p.2612, 1971.
DOI : 10.1103/PhysRevB.4.2612

B. Callen, Thermodynamics and an Introduction to Thermostatics, 1985.

G. Benenti, T. Casati, K. Prosen, and . Saito, Fundamental aspects of steady state heat to work conversion, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01391258

Y. Li, P. Wu, L. Kim, P. Shi, A. Yang et al., Thermal conductivity of individual silicon nanowires, Applied Physics Letters, vol.83, issue.14, p.2934, 2003.
DOI : 10.1063/1.1616981

.. Hung, C. Wang, J. Hsu, J. Chiou, S. Lee et al., system, Applied Physics Letters, vol.101, issue.25, p.251913, 2012.
DOI : 10.1063/1.4773204

B. Hopkins, L. M. Kaehr, T. P. Phinney, A. M. Koehler, D. Grillet et al., Measuring the Thermal Conductivity of Porous, Transparent SiO[sub 2] Films With Time Domain Thermoreflectance, Journal of Heat Transfer, vol.133, issue.6, p.61601, 2011.
DOI : 10.1115/1.4003548

M. Scheuerpflug, J. Hauck, and . Fricke, Thermal properties of silica aerogels between 1.4 and 330 K, Journal of Non-Crystalline Solids, vol.145, p.196, 1992.
DOI : 10.1016/S0022-3093(05)80455-7