Using Activated Transport in Parallel Nanowires for Energy Harvesting and Hot Spot Cooling
Riccardo Bosisio, Cosimo Gorini, Geneviève Fleury, Jean-Louis Pichard

To cite this version:

HAL Id: hal-01051644
https://hal.archives-ouvertes.fr/hal-01051644v3
Submitted on 11 May 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Using Activated Transport in Parallel Nanowires for Energy Harvesting and Hot Spot Cooling

Riccardo Bosisio, Cosimo Gorini, Geneviève Fleury, and Jean-Louis Pichard
Service de Physique de l’État Condensé, DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

We study arrays of parallel doped semiconductor nanowires in a temperature range where the electrons propagate through the nanowires by phonon assisted hops between localized states. By solving the Random Resistor Network problem, we compute the thermopower S, the electrical conductance G, and the electronic thermal conductance K^e of the device. We investigate how those quantities depend on the position – which can be tuned with a back gate – of the nanowire impurity band with respect to the equilibrium electrochemical potential. We show that large power factors can be reached near the band edges, when S self-averages to large values while G is small but scales with the number of wires. Calculating the amount of heat exchanged locally between the electrons inside the nanowires and the phonons of the environment, we show that phonons are mainly absorbed near one electrode and emitted near the other when a charge current is driven through the nanowires near their band edges. This phenomenon could be exploited for a field control of the heat exchange between the phonons and the electrons at submicron scales in electronic circuits. It could be also used for cooling hot spots.

PACS numbers: 72.20.Ee 72.20.Pa 84.60.Rb 73.63.Nm

I. INTRODUCTION

A good thermoelectric machine must be efficient at converting heat into electricity and also must provide a substantial electric output power for practical applications. In the linear response regime, this requires optimizing simultaneously the figure of merit $ZT = S^2GT/(K^e + K^{ph})$ and the power factor $Q = S^2G$, T being the operating temperature, S the device thermopower, G its electrical conductance, and K^e and K^{ph} its electronic and phononic thermal conductances. In the quest for high performance thermoelectrics, semiconductor nanowires (NWs) are playing a front role, apparently offering the best of three worlds. First, an enhanced S due to strongly broken and gate-tunable particle-hole symmetry. Second, a suppressed K^{ph} by virtue of reduced dimensionality. Finally, a high power output thanks to scalability, i.e. parallel stacking.

The perspective of developing competitive thermoelectric devices with the standard building blocks of the semiconductor industry has raised a great interest in the scientific community over the last decade. On a technological standpoint, much effort has been put into the synthesis of dense NWs arrays with controlled NW diameter, length, doping, and crystal orientation. Arrays made out of various semiconductor materials including e.g. Silicon, Silicon Germanium, Indium Arsenide, or Bismuth Telluride have thus been investigated. Versatile measurement platforms have been developed to access the set of thermoelectric coefficients and the feasibility of NW-based thermoelectric modules have been assessed. On the theory side, numerous calculations of S, G, K^e and K^{ph} of various single NWs have been carried out in the ballistic regime of electronic transport or in the diffusive regime, where a semiclassical Boltzmann approach can be used. In two recent works, we took a different approach by considering the presence of electronic localized states randomly distributed along the NWs and making up an impurity band in the semiconductor band gap. Such states are known to play a leading role in thin nanowires, where localization effects are enhanced by low dimensionality and the system size rapidly exceeds the electron localization length. After a first study devoted to the low temperature coherent regime, we investigated the phonon-assisted hopping regime taking place at higher temperatures and usually referred to as Mott activated regime. For a long time, thermoelectric transport in this regime has been somewhat overlooked in the theoretical literature (with the exception of a few older works on bulk semiconductors). In fact, the problem of thermally-activated thermoelectric transport in NWs has been revisited only recently by Jiang et al. in Refs. However the case of gated NWs where band edges are approached has not been considered though band-edge transport, where particle-hole asymmetry is maximal, is acknowledged to be the critical one for thermoelectric conversion.

In our previous paper, we studied the behavior of the thermopower S and of the electrical conductance G of single disordered and gated NWs in the activated regime. We obtained near the band edges a substantial enhancement of the typical thermopower S_0 but also, unsurprisingly, a decrease of the typical conductance G_0 and large sample-to-sample fluctuations of both G and S. This is unsatisfactory if a reliable and efficient thermoelectric device is to be realized.

In the present paper, we circumvent the latter shortcomings by considering a large set of NWs stacked in parallel in the field effect transistor (FET) device configuration. Besides assessing the opportunities offered by band edge activated transport for energy harvesting, we show that activated transport through such a device can be
used for an electrostatic control of the heat exchange between the phonons and the electrons at sub-micron scales: Injecting the carriers through the NWs gives rise to a local cooling [heating] effect near the source [drain] electrode when the chemical potential of the device probes the lower NWs band edge (and conversely when it probes the upper edge). This opens promising perspectives for a local management of heat and for cooling hot-spots in microelectronics.

Hereafter, we study arrays of doped semiconductor NWs, arranged in parallel and attached to two electrodes. The NWs can be either suspended or deposited onto an electrically and thermally insulating substrate. A metallic gate beneath the sample is used to vary the carrier density inside the NWs. This corresponds to a setup in the FET configuration, as sketched in Fig. 1. If the thermopower or the thermal conductance are to be investigated, a heater (not shown in Fig. 1) is added on one side of the sample to induce a temperature gradient between the electrodes. We focus on a temperature range where the activated regime proposed by Mott [Variable Range Hopping (VRH) regime] takes place, assuming (i) that phonon-assisted transport occurs between localized states of the NWs impurity band only and (ii) that the substrate, or the NWs themselves if they are suspended, act as a phonon bath to which NWs charge carriers are well coupled. We thus consider intermediate temperatures, where the thermal energy $k_B T$ is high enough to allow inelastic hopping between Anderson localized states of different energies (typically a few Kelvin degrees), yet low enough to keep localization effects. Such VRH regime is observed up to room temperatures in three-dimensional low density amorphous semiconductors,[20] and very likely up to higher temperatures in the one-dimensional limit. Following Refs. [21–24], we solve numerically the Miller-Abrahams Random Resistor Network problem[25] for obtaining S, G, and K^e. This allows us to identify the regions where heat exchanges between the electrons and the phonons dominate and take place in the activated regime, notably when the chemical potential probes the edges of the NWs impurity band.

The model used throughout the paper is presented in Sec. I together with a summary of the method. We find in Sec. I that once a large set of NWs is stacked in parallel, the strong G, S and K^e fluctuations are suppressed. Denoting by G_0, S_0 and K^e_0 the typical values for a single NW, we observe more precisely that the thermopower of a large NW array self-averages ($S \to S_0$) while its electrical and electronic thermal conductance $G \to MG_0$, $K^e \to MK^e_0$ as the number M of wires in parallel increases (see Fig. 2). Taking full advantage of the gate, we move close to the impurity band edges, where we recently obtained a drastic S_0 enhancement.[11] We show in Sec. IV that in this regime a large S_0 partly compensates an exponentially small G_0, so that substantial values of the power factor $Q \approx MS_0^2G_0$ can be reached upon stacking plenty of NWs in parallel [see Fig. 3(a)]. Remarkably, the electronic figure of merit $Z_e T = S^2 GT/K^e$ is also found to reach promising values $Z_e T \approx 3$ when Q is maximal [see Fig. 3(b)]. Furthermore, we discuss how the phononic thermal conductance K^{ph} will inevitably reduce the full figure of merit ZT and argue that, even if record high ZT is probably not to be sought in such setups, the latter have the great advantage of offering at once high power and reasonable efficiency with standard nanotechnology building blocks. The most important result of this paper is given in Sec. V. We study how deposited NWs in the FET configuration can be used to manage heat in the substrate, generating hot/cold spots “on demand”. The idea is simple to grasp and relies on the calculation of the local heat exchanges between the NWs electrons and the substrate phonons: When the gate voltage is adjusted such that the equilibrium chemical potential μ (defined in the electronic reservoirs) roughly coincides with one (say the lower) impurity band edge, basically all energy states in the NWs lie above μ. Therefore, if charge carriers injected into the system around μ are to gain the other end, they need to (on the average) absorb phonons at the entrance so as to jump to available states, and then to release phonons when tunneling out (again at μ). This generates in the nearby substrate regions cold strips near the injecting electrode and hot strips near the drain electrode [see Figs. 1(b) and 4]. These strips get scrambled along the nanowires if μ does not probe the edges of the NWs impurity band. Such reliable and tunable cold spots may be exploited in devising thermal management tools for high-density circuitry, where ever increasing power densities have become a critical issue.[21] Moreover, the creation/annihilation of the cold/hot strips can be controlled by the back gate voltage. Note that the underlying mechanism governing the physics of VRH transport at the NWs band edges is somewhat reminiscent of the mechanism of ”cooling by heating” put forward in Refs. [26,27] and which also exploits the presence of a third bosonic bath in addition to the
two electronic reservoirs. In our case, bosons are phonons provided mainly by the substrate; in other setups, bosons are photons provided by laser illumination (or more simply by the sun for a photovoltaic cell). All those studies fall into the growing category of works dealing with boson-assisted electronic transport that have been shown to open promising perspectives for heat management.

II. MODEL AND METHOD

Architecture and/or material specific predictions, though very important for practical engineering purposes, are however not our concern at present. On the contrary, our goal is to reach conclusions which are as general as possible, relying on a bare-bone but widely applicable Anderson model devised to capture the essentials of the physics we are interested in. We consider a set of M NWs in parallel. Each NW is modeled as a chain of length L described by a one-dimensional (1D) Anderson tight-binding Hamiltonian with on-site disorder:

$$\mathcal{H} = -t \sum_{i=1}^{N-1} (c_i^\dagger c_{i+1} + \text{h.c.}) + \sum_{i=1}^{N} (\epsilon_i + V_g) c_i^\dagger c_i.$$

Here N is the number of sites in the chain ($L = Na$ with a lattice spacing), c_i^\dagger and c_i are the electron creation and annihilation operators on site i and t is the hopping energy (inter-wire hopping is neglected). We assume that no site can be doubly occupied due to Coulomb repulsion, but otherwise neglect interactions. The site energies ϵ_i are uncorrelated random numbers uniformly distributed in the interval $[-W/2, W/2]$, while V_g is a constant (tunable) potential due to the back gate. The electronic states are localized at certain positions x_i with localization lengths ξ_i and eigenenergies E_i. The E_i’s lie within the NW impurity band whose center can be shifted with the gate voltage V_g. For simplicity’s sake, we generate randomly the positions x_i along the chain (with a uniform distribution) and assume $\xi_i = \xi(E_i)$, where $\xi(E)$ characterizes the exponential decay of the typical conductance $G_0 \sim \exp(-2L/\xi)$ of the 1D Anderson model at zero temperature and energy E. Analytical expressions giving $\xi(E)$ in the weak disorder limit of the Anderson model are given in Ref.\[39\]

The NWs are attached to two electronic reservoirs L and R, and to a phonon bath, i.e. the system is in a three-terminal configuration. Particles and heat energy can be exchanged with the electrodes, but only heat (energy) with the phonon bath. At equilibrium the whole system is thermalized at a temperature T and both L and R are at electrochemical potential μ (set to $\mu = 0$, at the band center when $V_g = 0$). A voltage and/or temperature bias between the electrodes drives an electron current through the NWs. Hereafter we consider the linear response regime, valid when small biases $\delta \mu = \mu_L - \mu_R$ and $\delta T = T_L - T_R$ are applied.

We study the inelastic activated regime. Following ref.\[40\] we assume that the charge carriers (say electrons of charge e) tunnel elastically from reservoir $\alpha = L, R$ into some localized states i whose energies E_i are located in a window of order $k_B T_\alpha$ around μ_α. They then proceed via phonon-assisted hops to the other end, finally tunneling out. The maximal carriers hop along the NWs is of the order of Mott length L_M in space (or Mott energy Δ in energy). At the lowest temperatures considered in this work, $\xi(\mu) \ll L_M \ll T$ and transport is of Variable Range Hopping (VRH) type. An increasing temperature shortens L_M until $L_M \approx \xi(\mu)$, when the Nearest Neighbors Hopping (NNH) regime is reached. The crossover VRH→NNH takes place roughly at Mott temperature T_M whose dependence on V_g can be found in Ref.\[41\].

The total electron and heat currents flowing through the whole array are calculated by solving the Random Resistor Network problem.\[42,43\] The method is summarized in Appendix A. It takes as input parameters the rate γ_e quantifying the coupling between the NWs (localized) and the reservoirs (extended) states, and the rate γ_α, measuring the coupling to the NWs and/or substrate phonons. We point out that we go beyond the usual approximation\[44,45,46\] neglecting the ξ_i’s variations from state to state $[\xi_i \approx \xi(\mu)]$, the latter being inappropriate close to the band edges, where ξ_i varies strongly with the energy. Following Ref.\[47\] the random resistor network is then solved for $\xi_i \neq \xi_j$. The particle and heat currents thus obtained are related to the small imposed biases $\delta \mu, \delta T$ via the Onsager matrix\[48\] which gives access to G, K^e and S.

III. SCALING OF THE THERMEOLECTRIC COEFFICIENTS WITH THE NUMBER OF NANOWIRES

The typical conductance G_0 and thermopower S_0 of a single NW were studied in Ref.\[49\]. They are defined as the median of the distribution of $\ln G$ and S, obtained when considering a large statistical ensemble of disorder configurations. In Fig. 2 we show that, if the system is made of a sufficiently large number M of parallel NWs, the overall electrical conductance scales as the number of wires times the typical NW value ($G \approx M G_0$), while the thermopower averages out to the typical value of a single wire ($S \approx S_0$). For completeness, mean values are also shown and seen to be a less accurate estimate. As expected, convergence is faster at higher temperatures. Identical results have been obtained for the electronic thermal conductance $K^e \approx MK_0^e$ (not shown).

IV. POWER FACTOR AND FIGURE OF MERIT

By stacking a large number M of NWs in parallel, the device power factor can be enhanced $Q \approx MS_0^2G_0$ without affecting its electronic figure of merit $Z_eT \approx$
$S_0^2G_0T/K_0^2$. Fig. 3 shows how the asymptotical Q/M and Z_eT values (reached when $M \gtrsim 100$) depend on the gate voltage V_g and on the temperature T. We observe in panel (a) that the power factor is maximum for μ close to the impurity band edge (black solid line) and for VRH temperatures. This parameter range represents the best compromise between two opposite requirements: maximizing the thermopower (hence favoring low T and large V_g) while keeping a reasonable electrical conductance (favoring instead higher T and $V_g \approx 0$). Formulas previously reported[10] giving the T- and V_g-dependence of G_0 and S_0, let us predict that Q is maximal when $|S_0| = 2k_B/|e| \approx 0.2 \text{mV K}^{-1}$ (black dashed line). A comparison between panels (a) and (b) of Fig. 3 reveals that, in the parameter range corresponding to the best power factor ($V_g \sim 2.5t$, $k_B T \sim 0.6t$), $Z_eT \sim 3$, a remarkably large value. Much larger values of Z_eT could be obtained at lower temperatures or far outside the band, but they are not of interest for practical purposes since in those regions Q is vanishing. In Appendix B, Q and Z_eT are shown to be roughly independent of the NWs length L (for $L \gtrsim L_M$) in the temperature and gate voltage ranges explored in Fig. 3. Moreover Q/γ_e and Z_eT are almost independent of the choice of the parameters γ_e and γ_{ep}, provided $\gamma_{ep} \gtrsim \gamma_e$ (see Appendix C). When $\gamma_{ep} < \gamma_e$, both quantities are found to be (slightly) reduced.

Let us now estimate the order-of-magnitude of the device performance. The substrate (or the NWs themselves if they are suspended) is assumed to supply enough phonons to the NWs charge carriers for the condition $\gamma_{ep} \gtrsim \gamma_e$ to hold. Besides, we keep explicit the γ_e-linear dependence of Q (and of K_0^2 that will soon be needed). γ_e depends on the quality of the metal/NW contact. We estimate it to be within the range $0.01 - 1$ in units of t/h, where $t/k_B \approx 150 \text{K}$ throughout. This yields $\gamma_e \approx 0.02 - 2 \times 10^{13} \text{ s}^{-1}$. For the sake of brevity, we introduce the dimensionless number $\gamma_e = t/h$, focusing on the region of Fig. 3(a) where the power factor is maximal, we evaluate the typical output power and figure of merit than can be expected. We first notice that power factor $Q/M \approx 4k_B^2/h$ maximum values in Fig. 3(a), obtained with $\gamma_e = 1$, would yield $Q \approx 7\gamma_e \times 10^{-6} \text{ W K}^{-2}$ for a chip with $M \approx 10^5$ parallel NWs. Since Q controls the maximal output power P_{max} that can be extracted from the setup as $P_{\text{max}} = Q(\delta T)^2/4$ one expects $P_{\text{max}} \approx 20\gamma_e \mu\text{W}$ for a small temperature bias $\delta T \approx 10 \text{K}$. In this region a large value $Z_eT \approx 3$ is obtained, but to estimate the full figure of merit $ZT = \gamma_e/9$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{Convergence of G/M (left, in units of e^2/h) and S (right) with the number M of parallel NWs. Symbols correspond to $V_g = 1.9t$ (⊗), $2.1t$ (♠) and $2.3t$ (◇) at $k_B T = 0.1t$, and $V_g = 1.9t$ at $k_B T = 0.5t$ (△). The horizontal lines indicate the corresponding mean values (dashed lines) and typical values (solid lines) of $\ln G$ and S of a single wire ($M = 1$). Parameters: $W = t$, $\gamma_e = \gamma_{ep} = t/h$ and $L = 450a$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3}
\caption{(Color online) Q/M in units of k_B^2/h (a) and Z_eT (b) as a function of T and V_g. Data are shown in the large M limit ($M = 150$) where there is self-averaging. The horizontal lines give V_g’s value at which the band edge is probed at μ (below [above] it, one probes the inside [outside] of the impurity band). The red dashed lines $T = T_M$ separate the VRH ($T \lesssim T_M$) and the NNH ($T \gtrsim T_M$) regimes. The black dashed line in (a) is the contour along which $S_0 = 2k_B/e$. Parameters: $W = t$, $\gamma_e = \gamma_{ep} = t/h$ and $L = 450a$.}
\end{figure}
$Z_e T/(1+K^{ph}/K^c)$, the phononic part K^{ph} of the thermal conductance must also be taken into account. To limit the reduction of $Z T$ by phonons, the setup configuration with suspended nanowires is preferable [Fig. 1(a)]. In this case $K^{ph} \approx MK^0_{nw}$, K^c_{nw} being the typical phononic thermal conductance of a single NW, and has to be compared to $K^c \approx MK^0_0$. Introducing the corresponding conductivities κ's, the ratio $K^{ph}/K^c \approx \kappa^{nw}_{0}/\kappa^c_0$ is to be estimated. Our numerical results obtained for 1D NWs show $K^c_0 \approx 1.5\gamma_c k_B T/h$ in the range of interest where \mathcal{Q} is maximal and $Z_e T \approx 3$ (at $V_g = 2.5t$ and $k_B T = 0.6t$, keeping other parameters in Fig. 3 unchanged). To deduce the corresponding conductivity κ^c_0, the NW aspect ratio must be specified. We consider for instance the case of 1 μm-long NWs with a diameter of 20 nm, for which our pure 1D model is expected to hold$^{[2]}$ at least semiquantitatively. Thereby we get $\kappa^c_0 \approx 1.5\gamma_c W/(K.m)$, while the measured thermal conductivity of Si NWs of similar geometry is $\kappa^{nw}_{0} \approx 2W/(K.m)$ at $T \approx 100 K$.$^{[22]}$ We thus evaluate for suspended NWs $Z T \approx Z_e T/(1+2/\gamma_c)$, i.e. $Z T \approx 0.01 - 1$ for $Z_e T \approx 3$ and $\gamma_c = 0.01 - 1$. Those estimations though rough are extremely encouraging as they show us that such a simple and Si-based device shall generate high electrical power from wasted heat (scalable with M, for M large enough) with a fair efficiency (independent of M, for M large enough).

Let us note that maximizing γ_c is important for achieving high \mathcal{Q} and $Z T$. However at the same time $\gamma_{cp} \gtrsim \gamma_c$ should preferably hold. If the NWs themselves do not ensure a large enough γ_{cp}, the use of a substrate providing phonons is to be envisaged. Yet, this will add a detrimental contribution K^{sub}_0 to K^{ph}. In general the substrate cross-section (Σ^{sub}) will be substantially larger than the NWs one ($M\Sigma^{nw}$). Thus, even for a good thermal insulator such as SiO$_2$, with thermal conductivity $K^{sub}_0 \approx 0.7 W/(K.m)$ at $T \approx 100 K$.$^{[22]}$ $Z/\mathcal{Z}_e = [1 + (\kappa^{sub} \Sigma^{sub} + M\kappa^{nw}\Sigma^{nw})/M\kappa^{nw}\Sigma^{nw}]^{-1} \leq 1$. Better ratios Z/\mathcal{Z}_e could be obtained for substrates with lower K^{sub} (Silica aerogels$^{[21]}$ porous silica$^{[23]}$ very thin substrate layer) but they will not necessarily guarantee a good value of γ_{cp} (and hence of γ_c). Clearly, finding a balance between a large γ_{cp} and a low K^{ph} is a material engineering optimization problem. The presence of a substrate appears detrimental for efficiently harvesting electrical energy from the wasted heat, we shall now see how it could be used for heat management at the nanoscale.

V. GATE-CONTROLLED CREATION/ANNIHILATION OF COLD/HOT STRIPS

Hereafter, we consider the deposited setup sketched in Fig. 1(b) and assume a constant temperature T everywhere. An intriguing feature of this three-terminal setup is the possibility to generate/control hot/cold strips close to the substrate boundaries by applying a bias $\delta \mu/e$, if one tunes V_g for probing the NWs band edges. This effect is a direct consequence of the heat exchange mechanism between electrons in the NWs and phonons in the substrate. Indeed, given a pair of localized states i and j inside a NW, with energies E_i and E_j respectively, the heat current absorbed from (or released to) the phonon bath by an electron in the transition $i \rightarrow j$ is $I_{ij}^{Q} = (E_j - E_i) I_{ij}^{N}$, I_{ij}^{N} being the hopping particle current between i and j.$^{[25]}$ The overall hopping heat current through each localized state i is then found by summing over all but the i-th states:

$$I_{i}^{Q} = \sum_{j \neq i} I_{ij}^{Q} = \sum_{j} (E_j - E_i) I_{ij}^{N}$$

with the convention that I_{ij}^{Q} is positive (negative) when it enters (leaves) the NWs at site i. Since the energy levels E_i are randomly distributed, the I_{ij}^{Q}'s (and in particular their sign) fluctuate from site to site (see Fig. 6 in Appendix D for an illustration). The physically relevant quantities are however not the I_{ij}^{Q}'s, rather their sum within an area $\Lambda_{ph} \times \Lambda_{ph}$, where Λ_{ph} is the phonon thermalization length in the substrate (i.e. the length over which a local substrate temperature can be defined, see Appendix D for an estimation). Given a point (x,y) and a $\Lambda_{ph} \times \Lambda_{ph}$ area centered around it, such sum is denoted $I_{x,y}^{Q}$. If $I_{x,y}^{Q} > 0 \ [< 0]$, a volume Λ_{3}^{ph} of the substrate beneath (x,y) is cooled [heated] more than Λ_{ph} away from the surface, the equilibrium temperature T is reached.

Fig. 4 shows how $T_{x,y}^{Q}$ depends on the coordinates x,y in the two-dimensional parallel NW array. Left and right panels show respectively the situation in the absence of a gate voltage, when charge carriers tunnel into/out of NWs at the impurity band center, and the opposite situation when a large gate voltage is applied in order to inject/extract carriers at the band bottom. In both cases, two values of the temperature are considered (top/bottom panels). All other parameters are fixed. Note that data are plotted for the model introduced in Sec. II, having estimated $a \approx 3 \times 2.4 nm$, $t/k_B \approx 150 K$, and $\Lambda_{ph} \approx 480[240] nm \approx 150[75] \mu m$ for SiO$_2$ substrate at the temperatures considered, $T = 0.25[0.5]t/k_B \approx 37.5[75] K$. Those estimates are discussed in Appendix D.

In the left panels of Fig. 4, the heat maps show puddles of positive and negative $I_{x,y}^{Q}$, corresponding respectively to cooled and heated regions in the substrate below the NW array. They are the signature of random absorption and emission of substrate phonons by the charge carriers, all along their propagation through the NWs around the band center. In the right panels, the regions of positive and negative $I_{x,y}^{Q}$ are respectively confined to the NWs entrance and exit. This is due to the fact that charge carriers entering the NWs at μ around the band bottom find available states to jump to (at a maximal distance L_{ji} in space or Δ in energy$^{[27]}$) only above μ. Therefore, they need to absorb phonons to reach higher energies states (blue region). After a few hops, having climbed
at higher energies, they continue propagating with equal probabilities of having upward/downward energy hops (white region). On reaching the other end they progressively climb down, i.e., release heat to the substrate (red region), until they reach μ and tunnel out into the right reservoir. As a consequence, the substrate regions below the NWs extremities are cooled on the source side and heated on the drain side [see Fig. 4(b)]. A comparison between top and bottom panels of Fig. 4 shows us that the heat maps are not much modified when the temperature is doubled [from $k_B T = 0.25t$ (top) to $k_B T = 0.5t$ (bottom)]. The fact that the surface $\Lambda_{ph} \times \Lambda_{ph}$ inside which the heat currents are summed up is smaller at larger temperature ($\Lambda_{ph} = 75a$ at $k_B T = 0.5t$ instead of $\Lambda_{ph} = 150a$ at $k_B T = 0.25t$) is compensated by a smoothing of the $I^{Q}_{x,y}$'s fluctuations. This makes the hot and cold strips still clearly visible and well-defined in the bottom right panel of Fig. 4.

We point out that the maximum values of $I^{Q}_{x,y}$ are roughly of the same order of magnitude with or without the gate (see scale bars in Fig. 4). The advantage of using a gate is the ability to split the positive and negative $I^{Q}_{x,y}$ regions into two well separated strips in the vicinity of the injection and drain electrodes. One can then imagine to exploit the cold strip in the substrate to cool down a hot part of an electronic circuit put in close proximity. Let us also stress that the assumption of elastic tunneling processes between the electrodes and the NWs is not necessary to observe the gate-induced hot/cold strips. The latter arise from the “climbing” up/down in energy that charge carriers, at μ far into the electrodes, must undergo in order to hop through the NWs (hopping transport being favored around the impurity band center in the NWs). Though in our model heat exchanges take place only inside the NWs, phonon emission/absorption will actually take place also at the electrodes extremi-

FIG. 4. (Color online) Map of the local heat exchanges $I^{Q}_{x,y}$ between the NWs and the phonon bath (substrate), in units of $10^{-3}t^2/h$, at the band center ($V_g = 0$, left) and near the lower band edge ($V_g = 2.25t$, right), for $k_B T = 0.25t$ (top) and $k_B T = 0.5t$ (bottom). When phonons are absorbed by NWs charge carriers in the small area of size Λ_{ph} around (x, y), $I^{Q}_{x,y} > 0$ and the substrate below is locally cooled down (blue). When phonons are released, $I^{Q}_{x,y} < 0$ and the substrate is locally heated up (red). As explained in the text, we took $\Lambda_{ph} = 75a$ for $k_B T = 0.5t$ and $\Lambda_{ph} = 150a$ for $k_B T = 0.25t$. Note that the formation of hot and cold spots at the boundaries of the NWs is clearly visible for both temperatures when V_g is tuned in order to probe their band edges (right), while no net effect is evident in absence of any gate voltage (left). In all panels, data have been plotted for $M = 150$ NWs of length $L = 1500a$ with interspacing 15a. Other parameters are $W = t$, $\gamma_e = \gamma_{ep} = t/h$ and $\delta \mu = 10^{-3}t$.

Let us also stress that the assumption of elastic tunneling processes between the electrodes and the NWs is not necessary to observe the gate-induced hot/cold strips. The latter arise from the “climbing” up/down in energy that charge carriers, at μ far into the electrodes, must undergo in order to hop through the NWs (hopping transport being favored around the impurity band center in the NWs). Though in our model heat exchanges take place only inside the NWs, phonon emission/absorption will actually take place also at the electrodes extremi-
ties, roughly within an inelastic relaxation length from the contacts. This has clearly no qualitative impact, as it only amounts to a slight shift/smearing of the hot/cold strips.

Finally, let us estimate the cooling powers associated to the data shown in Fig. 4. Assuming again $t/k_B \approx 150 \, \text{K}$ and $\alpha \approx 3.2 \, \text{nm}$, we find that a value of $T_{x,y}^Q = 10^{-3} (t^2 / \hbar)$ in Fig. 4(bottom) corresponds to a cooling power density of the order of $8.10^{-10} \, \text{W} \cdot \text{m}^{-2}$ at the temperature considered $T = 0.5t/k_B \approx 77 \, \text{K}$ (the boiling temperature of liquid nitrogen at atmospheric pressure), for which $\Lambda_{ph} \approx 240 \, \text{nm}$ in SiO$_2$. We underline that this order of magnitude is obtained for a given set of parameters, in particular for an infinitesimal bias $\delta \mu = 10^{-3} t \approx 13 \, \text{mV}$ that guarantees to remain in the linear response regime. It should not be taken in the strict sense but only as a benchmark value to fix ideas. For instance, according to this estimation, one should be able to reach cooling power densities $\approx 6.10^{-8} \, \text{W} \cdot \text{m}^{-2}$ by applying a larger bias $\delta \mu / e \approx 1 \, \text{mV}$. To be more specific, we note that the geometry considered in Fig. 4 is realized with a bidimensional array of 150, 5-μm-long NWs, covered by two 7.2-μm-long (or longer) metallic electrodes. For this geometry and at $T \approx 77 \, \text{K}$, the areas of the cooled and heated regions are approximately $7.2 \times 0.25 \approx 2 \mu \text{m}^2$ (see the lower right panel of Fig. 4) but if one considered 1 cm electrodes covering 2.10^4 NWs, those areas would naturally extend. Thus, for a bias $\delta \mu / e \approx 1 \, \text{mV}$ and a temperature $T \approx 77 \, \text{K}$, our setup would allow to take $\approx 0.15 \, \text{mW}$ in a strip of $1 \times 0.25 \mu \text{m}$ area and 0.25 μm thickness located in the SiO$_2$ substrate below the source electrode and to transfer it in another strip of similar size located at 5 μm away below the drain electrode. Obviously, the longer the NWs, the longer would be the scale of the heat transfer. The larger the bias and the number of used NWs, the larger would be the heat transfer.

VI. CONCLUSION

The low carrier density of a doped semiconductor can be varied by applying a voltage on a (back, side or front) metallic gate. This led us to study thin and weakly doped semiconductor NWs, where electron transport is activated, instead of thick metallic NWs (with much larger electrical and thermal conductances) where the field effects are negligible. Considering arrays of these NWs in the FET configuration, we have focused our attention on the activated regime which characterizes a very broad temperature domain in amorphous semiconductors. When charge transport between localized states is thermally assisted by phonons, we have shown that the absorption or the emission of phonons in strips located near the source and drain electrodes can be controlled with a back gate. This opens new perspectives for managing heat at submicron scales. By tuning the electrochemical potential μ near the band edges of the NWs impurity band, we have studied how to take advantage of electron-phonon coupling for energy harvesting and hot spot cooling. Our estimates indicate that large power factors are reachable in these arrays, with good thermoelectric figures of merit.

ACKNOWLEDGMENTS

This work was supported by CEA within the DSM-Energy Program (project E112-7-Meso-Therm-DSM). We thank O. Bourgeois, Y. Imry and F. Ladieu for stimulating discussions.

Appendix A: Resolution of the Random Resistor Network problem

Hereafter, we summarize the numerical method used to solve the random-resistor network problem with emphasis on the hopping transport mechanism taking place in the NWs. Starting from a set of states i localized at positions x_i inside the NWs, with energies E_i and localization lengths ξ_i, we first evaluate the transition rates $\Gamma_{i,i}$ from the localized state i to the reservoir $\alpha = L$ or R, and Γ_{ij} from states i to j within the

FIG. 5. (Color online) Phonon-assisted hopping transport through the localized states (dots) of a disordered NW connected to two electrodes L and R, and to a phonon bath. The electronic reservoirs L and R are thermalized at temperatures $T_{L[R]}$ and held at electrochemical potentials $\mu_{L[R]}$ (their Fermi functions are sketched by the black curves on both sides). A metallic gate (shaded grey plate drawn on top) allows to shift the NW impurity band (blue central region). Here, the gate potential V_g is adjusted such that electrons tunnel in and out of the electronic reservoirs near the lower edge of the impurity band. Therefore, electrons tend to absorb phonons at the entrance in order to reach available states of higher energies, and to emit phonons on the way out. The two wavy arrows indicate the local heat flows between the NW electrons and the phonon bath. They give rise to a pair of cold (blue) and hot (red) spots in the substrate beneath the NW (in the deposited setup configuration).
same wire (inter-wire hopping being neglected). They are given by the Fermi Golden rule as

\[\Gamma_{\alpha i} = \gamma _{\alpha i} f_i [1 - f_\alpha (E_i)] \]
\[\Gamma_{ij} = \gamma _{ij} f_i f_j [N_{ij} + \theta (E_i - E_j)] \] (A1) (A2)

where \(f_i \) is the occupation probability of state \(i \), \(f_\alpha (E) = [\exp((E - \mu_\alpha)/k_BT_\alpha) + 1]^{-1} \) is the Fermi distribution of reservoir \(\alpha \), \(N_{ij} = [\exp((E_j - E_i)/k_BT) - 1]^{-1} \) is the probability of having a phonon with energy \(|E_j - E_i| \) assisting the hop, and \(\theta \) is the Heaviside function. In Eq. (A1), \(\gamma _{\alpha i} = \gamma _e \exp(-2x_{\alpha i}/\xi _i), \) \(x_{\alpha i} \) denoting the distance of state \(i \) from reservoir \(\alpha \), and \(\gamma _e \) being a constant quantifying the coupling from the localized states in the NW to the extended states in the reservoirs. Usually, \(\xi _i \approx \xi (\mu) \) is assumed and the rate \(\gamma _{ij} \) in Eq. (A2) is simply given by \(\gamma _{ij} = \gamma _{ep} \exp(-2x_{ij}/\xi (\mu)), \) with \(x_{ij} = |x_i - x_j| \) and \(\gamma _{ep} \) measuring the electron-phonon coupling. Since this approximation does not hold in the vicinity of the impurity band edges, where the localization lengths vary strongly with the energy, we use a generalized expression for \(\gamma _{ij} \) that accounts for the different localization lengths \(\xi _i \neq \xi _j \) (see Ref. [20]).

By using Eqs. (A1)-(A2) and imposing charge conservation at each network node \(i \), we deduce the \(N f_i \)'s of the \(M \) independent NWs. The charge and heat currents flowing from reservoir \(\alpha \) to the system can then be calculated as \(I^e_i = e \sum _{\alpha} I_{\alpha i} \) and \(I^Q_i = \sum _{\alpha} I_{\alpha i} (E_i - \mu_\alpha) \), where \(I_{\alpha i} = \Gamma_{\alpha i} - \Gamma_{i\alpha} \) and \(\epsilon \) is the electron charge. In principle, the heat current \(I^Q_i = (1/2) \sum _{ij} I^Q_{ij} \) coming from the phonon bath can be calculated as well but in this work, we only investigated the behavior of the local heat currents \(I^Q_i = \sum _j (E_j - E_i) I^N_{ij} \) with \(I^N_{ij} = \Gamma_{ij} - \Gamma_{ji} \).

Without loss of generality, we choose the right terminal \(R \) as the reference, i.e. we set \(\mu_R = \mu, \ T_R = T \) and we impose on the left side \(\mu_L = \mu + \delta \mu, \ T_L = T + \delta T \). Using the Onsager formalism, we relate the particle (\(I^e_i \)) and heat (\(I^Q_i \)) currents computed in linear response to the small imposed bias \(\delta \mu \) and \(\delta T \). This allows us to deduce the thermoelectric coefficients \(G, \ K^e \) and \(S \).

Appendix B: Size Effects

We have investigated the effects on the various transport coefficients \(G, \ K^e \) and \(S \), the power factor \(Q \), and the electronic figure of merit \(Z, T \), of varying the length \(L \) of the NWs. The results are shown in Fig. 6 for three values of the temperatures \(k_BT = 0.1t, 0.5t \) and \(1.0t \), and for two configurations corresponding to bulk \((V_0 = t) \) and edge transport \((V_0 = 2.5t) \). In all cases (except the one for \(k_BT = 0.1t \) and \(V_0 = 2.5t \)), electronic transport through the NWs is thermally activated (see Fig. 3 in Ref. [20]) and the results are seen to be essentially size-independent, as expected in the activated regime. In the case identified by \(\bullet \) in Fig. 6 and corresponding to the lowest temperature and the vicinity of the band edge, transport turns out to be achieved by elastic tunneling processes: the electrical conductance becomes size-dependent, which causes the electronic figure of merit \(Z, T \) to decrease roughly as \(1/L \). However, being interested in the activated regime and in particular in the regime of temperatures where the power factor is largest \((k_BT \approx 0.5t) \), we can conclude that the size effects on the results shown in this work are completely negligible. Also, we note that the small fluctuations observed especially at the smallest sizes in Fig. 6 are a consequence of having taken a finite number of parallel NWs (\(M = 150 \)): they would diminish in the limit \(M \to \infty \) due to self-averaging.

Appendix C: On the dependence on the couplings \(\gamma _e \) and \(\gamma _{ep} \)

In this section, we investigate how the transport coefficients \(G, \ K^e \) and \(S \), the power factor \(Q \), and the electronic figure of merit \(Z, T = S^2/G \) and the electric...
tively. We introduce the notation \(\alpha \equiv \gamma_{ep}/\gamma_e \). We first notice that if \(\alpha \) is kept fixed, the electrical conductance \(G \) and the electronic thermal conductance \(K^e \) are strictly proportional to \(\gamma_e \), while the thermopower \(S \) is independent of it. This behavior is a direct consequence of the formulation of the random resistor network problem and can be seen at the stage of writing the equations (see Ref.70), before solving them numerically. Therefore, for any fixed \(\alpha, Q/\gamma_e \) and \(Z_e T \) are necessarily independent of the choice of \(\gamma_e \). We thus find that \(G/\gamma_e, K^e/\gamma_e, S, Q/\gamma_e \) and \(Z_e T \) are functions of the single parameter \(\alpha \), and not of the couple of parameters \(\gamma_e \) and \(\gamma_{ep} \) separately. Those functions are plotted in Fig.7 for two different temperatures. The conductances, the power factor and the figure of merit increase with \(\alpha \) (as long as lack of phonons is a limiting factor to transport through the NWs), while the thermopower decreases. All of them tend to saturate for \(\alpha \gtrsim 1 \). This shows us, \textit{inter alia}, that \(Q/\gamma_e \) and \(Z_e T \) are essentially independent of \(\gamma_e \) and \(\gamma_{ep} \) if \(\gamma_{ep} \gtrsim \gamma_e \) and that they only deviate slowly from this limit if \(\gamma_{ep} \ll \gamma_e \). Such a robustness of \(Q/\gamma_e \) and \(Z_e T \) to variations of \(\gamma_e \) and \(\gamma_{ep} \) reinforces the impact of the results shown in this work.

Appendix D: Estimation of the phonon thermalization length

We show in Fig.8 an example of the map of the raw heat currents \(I_{x,y}^Q \) locally exchanged between the NWs and the substrate [see Eq.2]. We see that the \(I_{x,y}^Q \)'s fluctuate between positive and negative values at random positions of the substrate, and that no net effect emerges. As discussed in Sec.V, the formation of the hot and cold strips is a process which becomes visible only upon summing in a single term \(T_{x,y}^Q \), all the contributions \(I_{i}^Q \) coming from states \(i \) located within an area \(\Lambda_{ph} \times \Lambda_{ph} \) around the point of coordinates \((x,y)\). \(\Lambda_{ph} \), which represents the thermalization length of the substrate, is given by the inelastic phonon mean free path: this quantity may be different for different phonon wavelengths, and while it does not change much around room temperatures, it can vary significantly at lower temperatures. It is possible to relate \(\Lambda_{ph} \) to the \textit{dominant} phonon wave length \(\lambda_{dom} \) as \(\Lambda_{ph} = 300 \lambda_{dom} \), where the coefficient 300 is for SiO\textsubscript{2} and may be different for other materials. This allows the calculation of the thermalization length \(\Lambda_{ph} \), once \(\lambda_{dom} \) is known. According to Refs.70,71, the latter can be estimated as

\[
\lambda_{dom} \approx \frac{h v_s}{4.25 k_B T},
\]

where \(h \) is the Planck constant. Taking \(v_s = 5300 \text{ m/s} \) the sound velocity in SiO\textsubscript{2} we can easily deduce \(\lambda_{dom} \approx 0.2 \text{ nm} \) from which \(\Lambda_{ph} \approx 60 \text{ nm} \) at room temperature \(T = 300 \text{ K} \). Values of \(\Lambda_{ph} \) at other (not vanishing) temperatures follow immediately from the temperature dependence in Eq.D1. We shall stress that the real values of \(\Lambda_{ph} \) may differ from our prediction by a small numerical factor, which however is not important within our qualitative approach. To convert these lengths in the units used in Sec.V we assume the average distance between localized states \(a \approx 3.2 \text{ nm} \) in highly doped silicon NWs, which together with \(\lambda_{dom} = 0.5 \text{ nm} \) allows us to estimate for example \(\Lambda_{ph} \approx 75a \) at \(T = 0.5t/k_B = 75 \text{ K} \).

* Present address: NEST, Istituto Nanoscienze, Piazza San Silvestro 12, 56127 Pisa, Italy
* Present address: Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
11. M. Z. Atashbar, D. Banerji, S. Singamaneni, and V. Bliznyuk, “Deposition of parallel arrays of palladium...

Practically, we map the 2D parallel NW array onto a square grid, and for each square of size A_{ph}^2, we calculate the net heat current entering the NWs. For better visibility, data are then smoothed (with a standard Gaussian interpolation) to produce the heat map shown in Fig. 4.

Here $L_M \approx 10.6a$ and $\Delta \approx 2.4t$ for $k_B T = 0.25t$, while $L_M \approx 7.5a$ and $\Delta \approx 3.3t$ for $k_B T = 0.5t$.

Data shown in Fig. 4 result from numerical simulations run for a set of 150 1D NWs (of length 1500a) separated from each other by a distance 15a. They are expected to describe the physics of realistic arrays made of 150 NWs covering an area of width $150 \times 15a \approx 7.2\mu m$ and length $1500a \approx 5\mu m$, taking again $a \approx 3.2\text{ nm}$. For instance, 150 NWs with 10 nm diameter and 20% packing density. Other configurations could be considered as well, as long as the NW diameter is small enough for the 1D model to make sense and the packing density does not exceed the typical values reachable experimentally.

