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1. Introduction

Polyethylene materials have a wide range of applications in
orthopaedics due to their mechanical properties as well as
their biocompatibility (Ramakrishna et al., 2001; Mano et al.,
2004; Atkins et al., 2009; Albano et al., 2011; Fouad and
Elleithy, 2011). Polyethylene-based systems (homopolymers,
blends and composites), as biomedical materials, are used,
for example, in hip and knee joints, as bulk space fillers, and
in total disc replacement.

The mechanical behaviour of polyethylene materials is
strongly nonlinear and depends on many factors: strain rate
(Ayoub et al., 2010), temperature (Aour et al., 2008), loading
mode (Hachour et al., 2014), cross-linking, entanglement and,
as semi-crystalline systems, on: crystal fraction, crystalline
lamellae size and lamellae distribution (Mano et al., 2004;
Simis et al., 2006; Seguela, 2007). It is widely known that the
true stress–strain curves provide useful information about
the deformation mechanisms and yielding behaviour of
polymers. Thus, it is important to identify, analyse, and
predict with precision their mechanical behaviour
(Bergström et al., 2002; Zaïri et al., 2005, 2011; Ponçot et al.,
2013).

As a result, the constitutive modelling of semi-crystalline
polymers has been widely investigated over the decades. The
constitutive models relied on two main approaches. The first
approach is based on phenomenological considerations in
which the constitutive models are defined by purely mathe-
matical functions, to take into account external factors such
as strain rate and temperature, without linking to deforma-
tion mechanisms (G’Sell et al., 1999; Zaïri et al., 2006; Ben
Hadj Hamouda et al., 2007; Drozdov, 2009; Aour et al., 2008;
Dusunceli and Colak, 2008; Regrain et al., 2009; Uchida and
Tada, 2011). The alternative approach is physically based; it
consists of introducing features of the microstructure in the
mathematical development of the constitutive model; to
name a few (Nikolov et al., 2002; Ahzi et al., 2003; Ayoub et
al., 2011; Hachour et al., 2014). A more exhaustive list can be
found in (Abdul-Hameed et al., 2014). Nikolov et al. (2002) and
Hachour et al. (2014) presented micromechanical models to
predict the small deformation behaviour of high density
polyethylene. Ahzi et al. (2003) extended the constitutive
model initially developed by Boyce et al. (2000) in order to
capture the finite deformation stress–strain behaviour of
polyethylene terephthalate above the glass transition tem-
perature by taking into account strain-induced crystallisa-
tion. Later, Ayoub et al. (2011) further modified the
constitutive model in order to capture the finite deformation
stress–strain response of polyethylene materials with differ-
ent crystal rates. However, the deterministic identification
procedure proposed by the authors did not allow optimizing
the number of model parameters.

In this contribution, a two-phase constitutive model is
proposed to describe the crystal rate influence on the
mechanical response of semi-crystalline polymers. We pro-
pose to identify the corresponding model parameters by
means of a numerical identification procedure based on a
genetic algorithm. In this way, we try to reduce the number
of model parameters. The applications are achieved by
2

examining an experimental database obtained for semi-
crystalline polyethylene materials, stretched at different
strain rates and above the glass transition temperature, with
three crystallinity degrees: a high density polyethylene
(HDPE), a low density polyethylene (LDPE) and an ultra-low
density polyethylene (ULDPE).

HDPE is a linear (non-branching) semi-crystalline polymer
which can be described as having two phases: crystalline and
amorphous phases. The crystalline phase is one in which
chains fold and orient themselves into highly ordered thick
lamellae (Fig. 1a). The HDPE is used as an additive material to
ultra-high molecular weight polyethylene to improve its
creep resistance and processability (Ramakrishna et al.,
2001; Mano et al., 2004; Fouad and Elleithy, 2011). LDPE is a
nonlinear (branching) semi-crystalline polymer in which the
concentration of branches hinders the crystallisation process,
and the crystalline lamellae are less ordered (Fig. 1b), thinner
and shorter than in HDPE. LDPE is proposed for the manu-
facturing of catheters (tubes) due to its flexibility, ease of
fabrication while ensuring blood compatibility, non-throm-
bogenicity and inhibition of infection (Ramakrishna et al.,
2001). ULDPE is a two-phase material with non-crystalline
predominance (Fig. 1c) and a high level of disordered short-
chain branches; the concentrations of short-chain branches
are much higher than in LDPE. It restrains the crystallisation
process very effectively, resulting in a material with very low
density. Due to its mechanical property and biocompatibility,
ULDPE is used for food and pharmaceutical packaging films.

The stress–strain response of any semi-crystalline poly-
mer can be related to the microstructure evolution involved
in plastic deformation. Four main stages take place during
the deformation of semi-crystalline polymers (Schultz, 1984):
(i) first, there is a stretching of chains in the amorphous
phase, (ii) followed by rotation and (iii) plastic deformation of
the lamellae, and (iv) fragmentation of the crystallites leading
to the formation of a fibrillar microstructure and to the
significant strain hardening observed in the stress–strain
response. The resistance to deformation in the semi-
crystalline polymer can be therefore seen as the sum of an
intermolecular resistance related to the first three stages
(providing the initial stiffness and the viscoplastic yield)
and a microstructure alignment resistance related to the last
step. Both resistances are thus the result of a coupling
between crystalline and amorphous resistances.
2. Hyperelastic–viscoplastic constitutive
model for semi-crystalline polymers

Considering semi-crystalline polymers as heterogeneous
media, a two-phase constitutive model is developed in this
section. The Ayoub et al. (2011) constitutive model has been
recently revised by Abdul-Hameed et al. (2014) in the main
aim to reduce the number of model parameters. The con-
stitutive model considers basically the stress-strain beha-
viour as the result of resistances acting in parallel: (A) two
(amorphous/crystalline) intermolecular resistances and (B)
one alignment/fragmentation resistance. Considering that
plastic flow as well as microstructure alignment in semi-
crystalline polymers can be attributed to overcoming
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Fig. 2 – Rheological representation of the two-phase model.

Fig. 1 – Atomic force microscopy images: (a) HDPE, (b) LDPE, and (c) ULDPE. Taken from (Ayoub et al., 2011).
resistances in both the amorphous and crystalline phases, we
propose in this contribution a further extension of the
constitutive model. As shown in Fig. 2, a coupling between
crystalline and amorphous phases is explicitly considered in
both resistances, which makes a valuable difference with our
previous works (Ayoub et al., 2011; Abdul-Hameed et al.,
2014).

The intermolecular resistances are represented by linear
springs in series with nonlinear dashpots. The linear springs
depict the initial elastic response of amorphous and crystal-
line phases whereas the viscoplastic behaviour is described
by the viscous elements. The amorphous network resistance
is represented by a Langevin spring in series with a nonlinear
dashpot. The Langevin spring corresponds to the amorphous
network resistance whereas the viscous element reproduces
the amorphous relaxation processes. The crystalline phase
contribution in the microstructure alignment resistance is
introduced by using a high stiff spring.
2.1. Kinematics

As shown by the rheological representation given in Fig. 2,
the intermolecular deformation gradient FA and the network
deformation gradient FB are equal to the total deformation
gradient F. The corresponding crystal and amorphous defor-
mation gradients are also identical for each branch:

FA ¼ FAc ¼ FAa and FB ¼ FBc ¼ FBa ð1Þ
3

where the subscripts (c) and (a) denote the crystalline and
amorphous phases, respectively. The deformation gradient
tensors can be decomposed multiplicatively into elastic
(network) and plastic (flow) deformation gradients for both
resistances A and B:

FAc ¼ Fe
AcF

p
Ac and FAa ¼ Fe

AaF
p
Aa ð2Þ

FBc ¼ FN
BcF

F
Bc and FBa ¼ FN

BaF
F
Ba ð3Þ

According to the polar decomposition theorem, both
elastic Fe

A and plastic Fp
A deformation gradients of resistance

A can be further decomposed into stretch and rotation
movements:

Fe
Ac ¼Ve

AcR
e
Ac and Fe

Aa ¼Ve
AaR

e
Aa ð4Þ

Fp
Ac ¼Vp

AcR
p
Ac and Fp

Aa ¼Vp
AaR

p
Aa ð5Þ

In the same manner, both network FN
B and flow FF

B deforma-
tion gradients of resistance B can be decomposed into stretch
and rotation movements:

FN
Ba ¼VN

BaR
N
Ba ð6Þ

FF
Ba ¼VF

BaR
F
Ba ð7Þ

Because only a spring acts in the crystalline branch of the
resistance B, the flow deformation gradient in the crystalline
phase is equal to unity, i.e. FF

Bc ¼ I. The velocity gradient
tensor of resistance A is LAc ¼ _FAcF�1

Ac for the crystalline phase
and LAa ¼ _FAaF�1

Aa for the amorphous phase. They can be
decomposed into elastic and plastic parts:

LAc ¼ Le
Ac þ Lp

Ac ¼ _F
e
AcF

e�1
Ac þ Fe

Ac
_F
p
AcF

p�1
Ac Fe�1

Ac ð8Þ

LAa ¼ Le
Aa þ Lp

Aa ¼ _F
e
AaF

e�1
Aa þ Fe

Aa
_F
p
AaF

p�1
Aa Fe�1

Aa ð9Þ

Lp
Ac ¼Dp

Ac þWp
Ac and Lp

Aa ¼Dp
Aa þWp

Aa ð10Þ

where Dp
Ac and Dp

Aa are the plastic deformation rates, and Wp
Ac

and Wp
Aa are the plastic spins. The inelastic flow is assumed

to be irrotational and the associated spins are taken equal to
zero (Wp

Ac ¼Wp
Aa ¼ 0). The inelastic flow is assumed to be

incompressible, i.e. det Fp
Ac ¼ det Fp

Aa ¼ 1.
The velocity gradient tensor of resistance B is LBa ¼ _FBaF�1

Ba

and can be decomposed into network and flow parts:

LBa ¼ LN
Ba þ LF

Ba ¼ _F
N
BaF

N�1
Ba þ FN

Ba
_F
F
BaF

F�1
Ba FN�1

Ba ð11Þ

LF
Ba ¼DF

Ba þWF
Ba ð12Þ



where DF
Ba is the molecular relaxation rate and WF

Ba is the flow
spin. Again, without loss of generality, the inelastic spin in
the amorphous phase is assumed to be null (WF

Ba ¼ 0). The
inelastic flow in the amorphous phase is assumed to be
incompressible, i.e. det FF

Ba ¼ 1.
The Cauchy stress tensor is deducted from the summation

of the intermolecular Cauchy stress tensor TA and the net-
work Cauchy stress tensor TB:

T¼TA þ TB ð13Þ

2.2. Model formulation

2.2.1. Resistance A
The structure of resistance A is divided into crystalline and
amorphous branches. The crystalline and amorphous Cauchy
stresses are expressed as:

TAc ¼ J�1
Ac C

e
c ln Ve

Ac

� � ð14Þ

TAa ¼ J�1
Aa C

e
a ln Ve

Aa

� � ð15Þ

where JAc and JAa are the elastic volume changes, Ce
c and Ce

a

are the isotropic elasticity tensors (depending on the elastic
moduli Ec and Ea, and on the Poisson’s ratios vc and va), and In
ðVe

AcÞ and In ðVe
AaÞ are the Hencky strains. The plastic strain

rate tensors for the crystalline and amorphous phases are:

DP
Ac ¼ _γpAcT

0
Ac=

ffiffiffi
2

p
τAc ð16Þ

DP
Aa ¼ _γpAaT

0
Aa=

ffiffiffi
2

p
τAa ð17Þ

in which T0
Ac and T0

Aa are the deviatoric parts of the Cauchy
stress tensors TAc and TAa, τAc and τAa are the effective
stresses, and _γpAc and _γpAa are the plastic shear strain rates
written as:

_γPAc ¼ _γcoAexp½�ΔGcð1�τAc=scÞ=kθ� ð18Þ

_γPAa ¼ _γaoAexp½�ΔGað1�τAa=saÞ=kθ� ð19Þ
where _γcoA and _γaoA are pre-exponential factors, ΔGc and ΔGa

are the activation energies, sc and sa are the shear resis-
tances, k is the Boltzmann constant and θ is the absolute
temperature. Both activation energies and shear resistances
capture barriers to deformation in the respective phases: ΔGc

and sc capture barrier to crystallographic shear in the crystal-
line phase, and ΔGa and sa capture barrier to molecular chain
segment rotation in the amorphous phase. The effects of both
phases are summed to determine the intermolecular Cauchy
stress TA:

TA ¼ ðχcvÞβITAc þ ð1�χcvÞβITAa ð20Þ
where χcv is the crystal volume fraction, and βI is introduced
to take into account the intermolecular mechanical interac-
tions between the two phases.

2.2.2. Resistance B
The strain hardening response may be attributed to both
molecular and crystallographic orientations; thus we propose
to treat the effect of crystalline and amorphous phases
separately. (1) The amorphous phase in the resistance B.
The stress–strain relationship in the amorphous phase dur-
ing the strain hardening stage can be described using a
4

limiting chain extensibility model (Arruda and Boyce, 1993):

TBa ¼ J�1
Ba Ca=3

ffiffiffiffi
N

p
=λNaℓ

�1 λNa=
ffiffiffiffi
N

p� �
BN
a �λ2NaI

� � ð21Þ

in which JBa is the amorphous network volume change, Ca is
the rubbery modulus of the amorphous phase,

ffiffiffiffi
N

p
is the

limiting chain extensibility parameter (N being the number of
amorphous molecular units between entanglements and
cross-links), ℓ�1 is the inverse Langevin function given
by ℓðxÞ ¼ cothðxÞ�1=x, BN

a is the amorphous network left
Cauchy-Green tensor (BN

a ¼ FN
BaF

N_T
Ba ), and λNa is given by:

λNa ¼ trace FN
BaF

N_T
Ba

� �
=3

� �1=2 ð22Þ

The molecular relaxation rate is written as:

DF
Ba ¼ _γFBaT

0
Ba=

ffiffiffi
2

p
τBa ð23Þ

where T
0
Ba is the deviatoric part of the Cauchy stress tensor

TBa, τBa represents the effective stress, and _γFBa is the rate of
relaxation:

_γFBa ¼ Cð1=ðλFBa�1ÞÞτBa ð24Þ

where C is a temperature-dependent relaxation parameter.
The term λFBa is given by:

λFBa ¼ trace FF
BaF

F_T
Ba

� �
=3

� �1=2 ð25Þ

(2) The crystalline phase in the resistance B. During the
strain hardening stage, the crystalline domains involve sev-
eral elementary microstructural deformation mechanisms,
which are complex to model. Considering the crystalline
phase stiffness as a first-order factor in the microstructure
alignment resistance, a simple Neo-Hookean formulation is
used to represent the Cauchy stress in the crystalline phase:

TBc ¼ J�1
Bc 2CcBc ð26Þ

in which JBc is the crystal network volume change, Cc is a
constant and Bc is the crystal left Cauchy-Green tensor:
Bc ¼ FBcFT

Bc. The fragmentation process having an effect on
the crystalline domain perfection, the crystal stiffness is
expected to be degraded and the Cc value to be lower than
the crystal elastic modulus value in the intermolecular
resistance.

The effects of both phases are summed to determine the
network Cauchy stress TB:

TB ¼ χcv
� �βNTBc þ 1�χcv

� �βNTBa ð27Þ

where χcv is again the crystal volume fraction and βN is
introduced to take into account the network mechanical
interactions between the two phases.
3. Numerical identification of parameters

This section details the curve fitting problem computation. The
experiment-based identification of model parameters can be
expressed as an optimization search: minimizing the discrepan-
cies between the experimental and numerical stress–strain
results. This class of optimization problems, of mixed variables,
appears to be non-convex. Its reasonable numerical solving then
requires the use of global robust search approaches.



Fig. 3 – Numerical parameter identification flowchart.
3.1. Formulation of the optimization problem

The curve fitting problem under consideration tends to
minimize the gaps between experimental and numerical
stress–strain curves. In other words, the objective consists
of finding the best set and matching the experimental
material behaviour of numerical model parameters of the
following form:

X¼ Ea;Ec;ΔGa;ΔGc; sa; sc;C;N;Ca;Ccf g ð28Þ
Considering the experimental database available for a parti-
cular tested material, this curve fitting task has to be
performed for NV stress–strain curves, NV being the number
of applied strain rates. Moreover, each curve induces NP;L

experimental points (noticed TExp
L;K ) for the Lth velocity, with

1rLrNV and 1rKrNP;L. The corresponding numerical
stress values are then denoted by TNum

L;K ¼ TNum
L;K ðXÞ. By this

means, the formulation of the optimization problem can be
expressed as follows: find the best parameter set X, minimiz-
ing the discrepancies between the experimental TExp

L;K and
numerical TNum

L;K ¼ TNum
L;K ðXÞ points, these discrepancies being

evaluated using the following objective function:

f Xð Þ ¼ ∑
NV

L ¼ 1
∑
NP;L

K ¼ 1
‖TNum

L;K �TExp
L;K ‖=NP;L

!
=NV ð29Þ

This reasonable objective function f , being normalised by the
terms 1=NV and 1=NP;L, is then not sensitive to the numbers of
strain rates and to the corresponding numbers of experi-
mental points TExp

L;K under consideration as pointed out by Pyrz
and Zaïri (2007).

As underlined in the literature (Pyrz and Zaïri, 2007;
Chaparro et al., 2008; Mahmoudi et al., 2011), the computational
solving of such an optimization problem involves several
difficulties:
�
 The mechanical behaviours of the studied materials are
strongly non-linear.
�
 The experimental databases considered induce a large
number of experimental points.
�
 The model parameter set X¼ Ea;Ec;ΔGa;ΔGc; sa; sc;f
C;N;Ca;Ccg implies mixed design variables, both real and
integers.

By this means, such mixed optimization problems exhibit
local optima in non-convex design spaces of large cardinality.
The corresponding numerical approach to identify the model
parameters therefore requires specific global search proce-
dures. For the present work, a genetic algorithm (GA) strategy,
detailed in the next subsection, has been computed.

3.2. Numerical identification tool

The GA belongs to the general class of evolutionary algorithms
(EA): they are general purpose, stochastic search methods
inspired by the natural evolution process (Michalewicz, 1999).
They are naturally suited to solve multi-modal search problems
of high cardinality, exhibiting both real and integer design
variables. They are thus widely used to solve a large variety of
optimization tasks in engineering sciences; numerous works of
5

the literature have demonstrated the usefulness and efficiency of
such procedures (Miettinen et al., 1999; Gen and Cheng, 2000).

As can be reminded, the main idea of this class of search
methods consists in processing at a time a fixed number of
potential solutions called population of individual X. The perfor-
mance of each of these potential solutions X is characterized by
its fitness value. For the present work, this fitness has been
chosen to be equal to 1=f , see. Eq. (29). According to evolutionary
theories, the fittest individuals (i.e. leading to the greatest fitness)
are likely to be selected to be “parents”, to engender a new
generation of solutions by recombining their features. This
simulated process of evolution operates using a set of biologi-
cally inspired stochastic operators. First, the crossover procedure
recombines the genetic characteristics (i.e. the optimization
parameters) of some selected parents, thus producing “children”
individuals expected to improve the optimization search. Some
of the children are next arbitrarily changed by the mutation
operator, avoiding a population focused on a local optimum. This
simulated reproduction is renewed for a fixed number of gen-
erations. At last, the GA yields the best individual found during
the evolution process.

Due to themixed nature of the design variables of the present
identification problem, the GA developed for this study is
canonical, directly manipulating the design parameters X, with-
out any binary encoding, as recommended by the literature
(Michalewicz, 1999). Typical corresponding genetic operators
have been used: starting from a randomly created population,
the selection of parents for mating is based on tournament
ranking using random pairs. Moreover, the elitist procedure
automatically duplicates the best individual in the new genera-
tion. The new solutions are produced by recombining the
individuals of the selected individuals using the whole arithme-
tical crossover (applied with the probability 75%) and the
random mutation (using a probability of 5%). The details of
these genetic operators can be found in (Michalewicz, 1999;
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Fig. 4 – Experimental vs simulated stress–strain response of HDPE: (a) at strain rate of 0.01 s�1, (b) at strain rate of 0.005 s�1, (c)
at strain rate of 0.001 s�1, (d) at strain rate of 0.0005 s�1, and (e) at strain rate of 0.0001 s�1.
Gen and Cheng, 2000). The corresponding computed numerical
identification tool is illustrated in Fig. 3. At last, it should be
underlined that, due to the stochastic nature of the GA, each
identification problem studied thereafter was analysed using 10
successive runs of optimization.
4. Experimental data and constitutive model
results

In this section, the two-phase constitutive model parameters
are identified to represent the mechanical behaviour of semi-
crystalline materials stretched under large deformation.
6

4.1. Materials and experiments

Semi-crystalline polyethylene materials with three different
grades were considered for the present study: a high density
polyethylene (HDPE) with crystal volume fraction χcv ¼ 0:724,
a low density polyethylene (LDPE) with χcv ¼ 0:3, and an ultra-
low density polyethylene (ULDPE) with χcv ¼ 0:15. The mono-
tonic stress–strain response was obtained under uniaxial
tension by means of a universal testing machine Instron-
5800 connected to a video-controlled system able to maintain
a constant local true axial strain rate. The tests were achieved
at room temperature and for five true axial strain rates:
0.01, 0.005, 0.001, 0.0005, and 0.0001 s–1. The details on the
experimental procedure and results are given elsewhere
(Ayoub et al., 2011).
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(c) at strain rate of 0.001 s�1, (d) at strain rate of 0.0005 s�1, and (e) at strain rate of 0.0001 s�1.
Figs. 4–6 present the experimental stress–strain curves of
the three polyethylene grades. As can be seen, a decrease in
crystal content leads to a transition from the typical thermo-
plastic behaviour to the characteristic elastomer behaviour.
Such notable behaviour differences enable one to identify
next the respective influence of amorphous and crystal
rheological parameters.

4.2. Experimental data vs. constitutive model results

The sensitivity to the crystallinity effects of the constitutive
model proposed in this paper has been evaluated. In that
way, the identification of the model parameters has been
treated considering the mechanical behaviour dominated
either by the crystalline or by the amorphous phase: HDPE
and ULDPE materials, respectively. This optimization
7

problem, achieved using the numerical tool illustrated in
Fig. 3, is thus based on the ten experimental stress–strain
curves depicted in Figs. 4 and 6. The elastic properties of the
crystalline and amorphous phases are prescribed; the values
are those given in Ayoub et al. (2011) and Abdul-Hameed
et al. (2014). In addition, the interaction parameters βI and βN
have been identified for the HDPE and ULDPE materials
using the same numerical optimization tool.

The model parameter values obtained by identification are
listed in Table 1, and the corresponding interaction para-
meters are detailed in Table 2.

The corresponding stress–strain curves deduced from the
proposed constitutive model are depicted in Figs. 4 and 6 for
the five true axial strain rates. It is interesting to note that the
proposed two-phase model is able to accurately reproduce
the ULDPE and HDPE mechanical responses using the
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Fig. 6 – Experimental vs simulated stress–strain response of ULDPE: (a) at strain rate of 0.01 s�1, (b) at strain rate of 0.005 s�1,
(c) at strain rate of 0.001 s�1, (d) at strain rate of 0.0005 s�1, and (e) at strain rate of 0.0001 s�1.

0

4

8

12

16

0 20 40 60 80
Crystal volume fraction (%)

N
et

w
or

k 
in

te
ra

ct
io

n 
fa

ct
or

 

2.21exp(2.5 )vcNβ χ= 2.21exp(2.5 )vcNβ χ= 2.21exp(2.5 )vcN =

0

2

4

6

8

0 20 40 60 80
Crystal volume fraction (%)

In
te

rm
ol

ec
ul

ar
in

te
ra

ct
io

n 
fa

ct
or

2.12exp(1.36 )vcIβ χ= 2.12exp(1.36 )vcIβ χ= 2.12exp(1.36 )vcI = �� ��

Fig. 7 – Evolution of mechanical interaction parameters according to crystal rate.

8



Table 1 – Identified crystalline and amorphous model 

parameters.

ΔGa (J) sa (MPa) Ca (MPa) C(MPa.s)�1 N

2.62� 10�19 6.88 1.7 1.2996� 10�7 202
ΔGc (J) sc (MPa) Cc (MPa)

1.29� 10�19 190.73 239.13

Table 2 – Identified intermolecular (βI) and network (βN) 
mechanical interaction parameters.

Parameter HDPE LDPE ULDPE

βI 5.8 2.9 2.8
βN 14.1 3.9 3.7
parameter set reported in Table 1 and the interaction para-
meters detailed in Table 2. As can be seen in Figs. 4 and 6, the
numerical and experimental curves are in good agreement.
Such results confirm the relevance of both the proposed two-
phase model and the identification approach.

Next, the optimized parameters depicted in Table 1 have
been used as input data in the proposed two-phase model to
predict the LDPE stress–strain response. For this material, the
interaction parameters were the outcome of a standard fitting
procedure based on the minimization of differences between
model results and experimental data. The obtained values are
given in Table 2. The numerical corresponding stress–strain
curves are shown in Fig. 5 in comparison with the experimental
data for the five true axial strain rates. As can be seen, the
numerical results match the experimental data in a reasonable
extent. As shown in Fig. 7, the evolution of both interaction
parameters βI and βN is monotonic. The key assumption of the
adopted micromechanical approach is to consider that the
crystalline and amorphous domains mechanically behave in
the same manner whatever the crystal content; only the
interactions between the two phases change. It is found that
the mechanical interaction parameters, in the plastic yielding
(intermolecular) and molecular stretching/orientation (network)
regions, follow an exponential law with the crystal content. The
proposed constitutive model can be used to estimate the large-
strain mechanical response of any semi-crystalline polyethy-
lenematerial with a crystal fraction included in the investigated
range. In a forthcoming paper, the constitutive model will be
used to predict the response of multi-layered polyethylene
specimens with different crystal fractions, in the aim to design
orthopaedics implants involving graded mechanical properties.
5. Conclusion

In this investigation, a two-phase hyperelastic–viscoplastic
constitutive model developed to simulate the finite deformation
mechanical response of semi-crystalline polymers is proposed.
This model is basically decomposed into intermolecular resis-
tances and microstructure alignment resistances, by consider-
ing explicitly the contribution of the crystalline phase. The
model parameters have been deduced using a numerical
9

identification tool. This approach has been applied to the study
of three grades of polyethylene exhibiting a wide variety of
crystal rates. The results obtained have demonstrated the
significance and the accuracy of the developed two-phase
model and the identification procedure. It could be underlined
that a reduced set of model parameters enables the simulation
of the totality of the studied polyethylene grades.
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Ayoub, G., Zaı̈ri, F., Fréderix, C., Gloaguen, J.M., Naı̈t-Abdelaziz, M.,
Seguela, R., Lefebvre, J.M., 2011. Effects of crystal content on
the mechanical behaviour of polyethylene under finite strains:
experiments and constitutive modelling. Int. J. Plasticity 27,
492–511.

Ben Hadj Hamouda, H., Laiarinandrasana, L., Piques, R., 2007.
Viscoplastic behaviour of a medium density polyethylene
(MDPE): constitutive equations based on double nonlinear
deformation model. Int. J. Plasticity 23, 1307–1327.

Bergström, J.S, Kurtz, S.M., Rimnac, C.M., Edidin, A.A., 2002.
Constitutive modeling of ultra-high molecular weight
polyethylene under large-deformation and cyclic loading
conditions. Biomaterials 23, 2329–2343.

Boyce, M.C., Socrate, S., Llana, P.G., 2000. Constitutive model for
the finite deformation stress–strain behavior of poly(ethylene
terephthalate) above the glass transition. Polymer 41,
2183–2201.

Chaparro, B.M., Thuillier, S., Menezes, L.F., Manach, P.Y.,
Fernandes, J.V., 2008. Material parameters identification:
gradient-based, genetic and hybrid optimization algorithms.
Comput. Mater. Sci. 44, 339–346.

Drozdov, A.D., 2009. Mullins’ effect in semicrystalline polymers.
Int. J. Solids Struct. 46, 3336–3345.

Dusunceli, N., Colak, O.U., 2008. Modelling effects of degree of
crystallinity on mechanical behavior of semicrystalline
polymers. Int. J. Plasticity 24, 1224–1242.

Fouad, H., Elleithy, R., 2011. High density polyethylene/graphite
nano-composites for total hip joint replacements: processing



and in vitro characterization. J. Mech. Behav. Biomater. 4,
1376–1386.

Gen, M., Cheng, R., 2000. Genetic Algorithms and Engineering
Optimization. John Wiley.

G’Sell, C., Dahoun, A., Royer, F.X., Philippe, M.J., 1999. The
influence of the amorphous matrix on the plastic hardening at
large strain of semicrystalline polymers. Model. Simul. Mater.
Sci. Eng. 7, 817–828.

Hachour, K., Zaı̈ri, F., Naı̈t-Abdelaziz, M., Gloaguen, J.M.,
Aberkane, M., Lefebvre, J.M., 2014. Experiments and modeling
of high-crystalline polyethylene yielding under different
stress states. Inter. J. Plasticity 54, 1–18.

Mahmoudi, A.H., Pezeshki-Najafabadi, S.M., Badnava, H., 2011.
Parameter determination of Chaboche kinematic hardening
model using a multi objective Genetic Algorithm. Comput.
Mater. Sci. 50, 1114–1122.

Mano, J.F., Sousa, R.A., Boesel, L.F., Neves, N.M., Reis, R.L., 2004.
Bioinert, biodegradable and injectable polymeric matrix
composites for hard tissue replacement: state of the art and
recent developments. Compos. Sci. Technol. 64, 789–817.

Michalewicz, Z., 1999. Genetic AlgorithmsþData Structures¼
Evolution Programs. Springer.
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