Skip to Main content Skip to Navigation
Conference papers

Improved MEG/EEG source localization with reweighted mixed-norms

Abstract : MEG/EEG source imaging allows for the non- invasive analysis of brain activity with high temporal and good spatial resolution. As the bioelectromagnetic inverse problem is ill-posed, a priori information is required to find a unique source estimate. For the analysis of evoked brain activity, spatial sparsity of the neuronal activation can be assumed. Due to the convexity, l1-norm based constraints are often used for this, which however lead to source estimates biased in amplitude and often suboptimal in terms of source selection. As an alternative, non-convex regularization functionals such as lp-quasinorms with 0 < p < 1 can be used. In this work, we present a MEG/EEG inverse solver based on a l2,0.5-quasinorm penalty promoting spatial sparsity as well as temporal stationarity of the brain activity. For solving the resulting non-convex optimization problem, we propose the iterative reweighted Mixed Norm Estimate, which is based on reweighted convex optimization and combines a block coordinate descent scheme and an active set strategy to solve each surrogate problem efficiently. We provide empirical evidence based on simulations and analysis of MEG data that the proposed method outperforms the standard Mixed Norm Estimate in terms of active source identification and amplitude bias
Complete list of metadatas

Cited literature [9 references]  Display  Hide  Download
Contributor : Alexandre Gramfort <>
Submitted on : Monday, August 4, 2014 - 9:16:46 PM
Last modification on : Friday, July 31, 2020 - 10:44:08 AM
Long-term archiving on: : Tuesday, November 25, 2014 - 3:51:16 PM


Files produced by the author(s)



Daniel Strohmeier, Jens Haueisen, Alexandre Gramfort. Improved MEG/EEG source localization with reweighted mixed-norms. Pattern Recognition in Neuroimaging, 2014 International Workshop on, Jun 2014, Tubingen, Germany. pp.1-4, ⟨10.1109/PRNI.2014.6858545⟩. ⟨hal-01044748⟩



Record views


Files downloads