
Decentralised Evaluation of Temporal Patterns
over Component-based Systems at Runtime?

Olga Kouchnarenko1,2 and Jean-François Weber1

1 FEMTO-ST CNRS and University of Franche-Comté, Besançon, France
2 Inria/Nancy-Grand Est, France

{okouchnarenko,jfweber}@femto-st.fr

Abstract. Self-adaptation allows systems to modify their structure
and/or their behaviour depending on the environment and the system
itself. Since reconfigurations must not happen at any but in suitable cir-
cumstances, guiding and controlling dynamic reconfigurations at runtime
is an important issue. This paper contributes to two essential topics of
the self-adaptation—a runtime temporal properties evaluation, and a
decentralization of control loops. It extends the work on the adaptation of
component-based systems at runtime via policies with temporal patterns
by providing a) a specific progressive semantics of temporal patterns and
b) a decentralised method which is suitable to deal with temporal patterns
of component-based systems at runtime. The implementation with the
GROOVE tool constitutes a practical contribution.

1 Introduction

Self-adaptation—the ability of systems to modify their structure and/or their
behaviour in response to their interaction with the environment and the system
itself, and their goals—is an important and active research field with applications
in various domains [1]. Since dynamic reconfigurations that modify the archi-
tecture of component-based systems without incurring any system downtime
must not happen at any but in suitable circumstances, adaptation policies are
used to guide and control reconfigurations at runtime. For triggering adaptation
policies and specifying behaviours of component-based systems, a linear temporal
logic based on Dwyer’s work on patterns and scopes [2], called FTPL, has been
used in [3]. In this adaptation context, choosing a suitable adaptation policy in a
current component-based system configuration depends on a runtime temporal
patterns evaluation which is one of the essential topics of the self-adaptation [1].

We consider open component-based systems interacting with their environ-
ment, therefore, their behaviour depends on both external and internal events.
Since our component-based systems are modelled by infinite state transition
systems, for our pattern-based verification to remain tractable, we consider a non-
blocking environment with incomplete information about the component-based
system that enables all the external events.
? This work has been partially funded by the Labex ACTION, ANR-11-LABX-0001-01.

2 O. Kouchnarenko, J-F. Weber

In this setting, providing values for temporal patterns is a difficult task. In [3],
a centralised evaluation of temporal patterns at runtime has been proposed. In
order to contribute to decentralization of control loops—another self-adaptation
topic, this paper addresses the FTPL decentralised evaluation problem on a re-
configuration path, and presents a method that is suitable to deal with temporal
patterns of component-based systems. Indeed, as these patterns contain conjunc-
tions or disjunctions of properties over components’ parameters and relations,
the evaluation of temporal patterns in a decentralised manner makes sense, and
the sooner the better.

Inspired by the LTL decentralised evaluation [4] for closed systems, this paper
provides a progressive FTPL semantics allowing a decentralised evaluation of
FTPL formulae over open component-based systems – the first contribution. The
second contribution consists of an algorithm to answer the temporal pattern
decentralised evaluation problem in B4 and of the correctness and uniqueness
results saying that whenever an FTPL property is evaluated in the decentralised
manner, it matches the FTPL evaluation using the basic semantics in [3]. The
implementation with the GROOVE tool [5] constitutes a practical contribution.

Related work. When checking properties of open systems, the idea is to satisfy
a property no matter how the environment behaves. For non-universal temporal
logics, this problem, called module-checking, is in general much harder than
model-checking of closed systems in finite as well as in infinite settings [6,7], and
it becomes undecidable with imperfect information about the control states [8].
Fortunately, for universal temporal logics as LTL, the module checking prob-
lem with both complete or incomplete information remains decidable in finite
setting [6]; in particular, it is PSPACE-complete for LTL.

As temporal properties often cannot be evaluated to true or false during
the system execution, in addition to true and false values, potential true and
potential false values are used whenever an observed behaviour has not yet led to
an acceptance or a violation of the property under consideration, forming the B4
domain like in RV-LTL [9]. Like in [10], in our framework external events can be
seen as invocations of methods performed by (external) sensors when a change is
detected in their environment.

Let us remark that this work is motivated by applications in numerous
frameworks that support the development of components together with their
monitors/controllers, as, e.g., Fractal [11], CSP‖B [12], FraSCAti [13], etc.

More generally, this paper aims to contribute to the development of new
verification approaches for complex systems that integrate ideas of distributed
algorithms [14].

Layout of the paper. After a short overview of a component-based model and
of a linear temporal patterns logic in Section 2, Section 3 presents a specific
progressive semantics of temporal patterns. Afterwards, Section 4 addresses the
temporal pattern decentralised evaluation problem on a reconfiguration path
by providing an algorithm for such an evaluation in B4. Section 5 describes the
implementation with the GROOVE tool and details an example of a location
composite component. Finally, Section 6 presents our conclusion.

Decentralised Evaluation of Temporal Patterns 3

2 Background: Reconfiguration Model and Temporal
Patterns

In this section we recall the component-based model and the temporal patterns
introduced, respectively, in [15] and [16].

2.1 Reconfiguration Model

The reconfigurations we consider here make the component-based architecture
evolve dynamically. They are combinations of basic reconfiguration operations
such as instantiation/destruction of components; addition/removal of compo-
nents; binding/unbinding of component interfaces; starting/stopping components;
setting parameter values of components. In the remainder of the paper, we focus
on reconfigurations that are combinations of basic operations.

Components

Parameters Required
Interfaces

Provided
Interfaces

PTypes

ITypes

mandatory
optional

stopped
started

Binding

Delegate

InterfaceType

Contingency

Supplier

Parent
State

Definer

ParamTypeValue

Fig. 1: Configurations = architectural el-
ements and relations

In general, a system configuration
is the specific definition of the elements
that define or prescribe what a sys-
tem is composed of. As in [15], we
define below a configuration to be a
set of architectural elements (compo-
nents, required or provided interfaces,
and parameters) together with rela-
tions (binding, delegation, state, etc.)
to structure and to link them, as de-
picted in Fig. 1.

Definition 1 (Configuration). A configuration c is a tuple 〈Elem,Rel〉 where

– Elem = Components] Interfaces] Parameters] Types is a set of
architectural elements, such that
• Components is a non-empty set of the core entities, i.e components;
• Interfaces = ReqInterfaces] ProvInterfaces is a finite set of the
(required and provided) interfaces;
• Parameters is a finite set of component parameters;
• Types = ITypes] PTypes is a finite set of the interface types and the
parameter data types;

– Rel =
{
Container] ContainerType] Parent
] Binding] Delegate] State] V alue

is a set of architectural relations which link architectural elements, such that
• Container : Interfaces] Parameters→ Components is a total func-
tion giving the component that supplies the considered interface or the
component of a considered parameter;
• ContainerType : Interfaces] Parameters → Types is a total func-

tion that associates a type with each required/provided interface, or with
a parameter;

4 O. Kouchnarenko, J-F. Weber

• Parent ⊆ Components × Components is a relation linking a sub-
component to the corresponding composite component3;
• Binding : ProvInterfaces→ ReqInterfaces is a partial function that
binds together a provided interface and a required one;
• Delegate : Interfaces→ Interfaces is a partial function that expresses
delegation links;
• State : Components→ {started, stopped} is a total function giving the
status of instantiated components;
• Contingency : ReqInterfaces→ {mandatory, optional} is a total func-
tion to characterise the required interfaces;

• V alue : Parameters→
⋃
ptype∈PType ptype is a total function that gives

the current value of each parameter.

Given a set of configurations C = {c, c1, c2, . . .}, let CP be a set of con-
figuration properties on the architectural elements and the relations between
them specified using first-order logic formulae. The interpretation of functions,
relations, and predicates is done according to basic definitions in [17] and in [15].
A configuration interpretation function l : C → CP gives the largest conjunction
of cp ∈ CP evaluated to true on c ∈ C 4.

Among all the configuration properties, the architectural consistency cons-
traints CC express requirements on component assembly common to all the
component architectures. These constraints introduced in [18] allow the definition
of consistent configurations regarding, in particular, the following rules:

– a component supplies one provided interface, at least;
– the composite components have no parameter;
– a sub-component must not include its own parent component;
– two bound interfaces must have the same interface type and their containers

are sub-components of the same composite;
– when binding two interfaces, there is a need to ensure that they have not

been involved in a delegation yet; similarly, when establishing a delegation
link between two interfaces, the specifier must ensure that they have not yet
been involved in a binding;

– a provided (resp. required) interface of a sub-component is delegated to at
most one provided (resp. required) interface of its parent component; the
interfaces involved in the delegation must have the same interface type;

– a component is started only if its mandatory required interfaces are bound
or delegated.

Definition 2 (Consistent configuration). Let c = 〈Elem,Rel〉 be a configu-
ration and CC the architectural consistency constraints. The configuration c is
consistent, written consistent(c), if l(c)⇒ CC.

Let R be a finite set of reconfiguration operations, and run a generic running
operation. The possible evolutions of the component architecture via the recon-
figuration operations are defined as a transition system over Rrun = R∪ {run}.
3 For any (p, q) ∈ Parent, we say that q has a sub-component p, i.e. p is a child of q.
4 By definition in [17], this conjunction is in CP .

Decentralised Evaluation of Temporal Patterns 5

Definition 3 (Reconfiguration model). The operational semantics of com-
ponent systems with reconfigurations is defined by the labelled transition system
S = 〈C, C0,Rrun ,→, l〉 where C = {c, c1, c2, . . .} is a set of consistent configura-
tions, C0 ⊆ C is a set of initial configurations, R is a finite set of reconfigurations,
→ ⊆ C ×Rrun × C is the reconfiguration relation.

Let us write c ope→ c′ when c′ is reached from c by ope ∈ Rrun. An evolution
path σ (or a path for short) in S is a (possibly infinite) sequence of configurations
c0, c1, c2, . . . such that ∀i ≥ 0 . (∃ opei ∈ Rrun.(ci

opei→ ci+1)). Let σ(i) denote
the i-th configuration of a path σ, σi a suffix path starting with σ(i), and Σ the
set of paths. An execution is a path σ in Σ such that σ(0) ∈ C0.

2.2 Temporal Patterns

In this section, we also briefly recall the FTPL5 logic patterns introduced in [16].
In addition to configuration properties (cp) in CP mentioned above, the proposed
logic contains external events (ext), as well as events from reconfiguration opera-
tions, temporal properties (tpp) together with trace properties (trp) embedded
into temporal properties. Let PropFTPL denote the set of the FTPL formulae
obeying the FTPL grammar below. The FTPL semantics from [3] is summarized
in Appendix A.

<FTPL> ::=<tpp> |<events> | cp
<tpp> ::= after<events><tpp> | before<events><trp> |<trp>until<events> |<trp>
<trp> ::= always cp | eventually cp |<trp>∧<trp> |<trp>∨<trp>
<events> ::=<event>,<events> |<event>
<event> ::= openormal | ope exceptional | ope terminates | ext

In the rest of the paper, let AE be the set of atomic events composed of
atomic propositions from CP and of basic FTPL events. An event θ is an element
of Θ = 2AE . Let us suppose that each component Ci of the component-based
system has a local monitor Mi attached to it, from the setM = {M0, . . . ,Mn−1}
of monitors6. Let us introduce the projection function Πi to restrict events to
the local view of the monitor Mi. For atomic events, Πi : 2AE → 2AE , and
we write AEi = Πi(AE). We assume ∀i, j ≤ n.i 6= j ⇒ AEi ∩ AEj = ∅7.
Similarly, for events, we define Πi : 2Θ → 2Θ, with Θi = Πi(Θ), and we assume
∀i, j ≤ n.i 6= j ⇒ Θi ∩Θj = ∅.

Let ev : C → Θ be a function to associate events with configurations. Given
a configuration σ(j) of a path σ with j ≥ 0, the corresponding event is θ(j) =
ev(σ(j)). In this setting, an individual behaviour of a component Ci can be
defined as a (finite or infinite) sequence of events θi = θi(0) · θi(1) · · · θi(j) · · · s.t.
5 FTPL stands for TPL (Temporal Pattern Language) prefixed by ‘F’ to denote its
relation to Fractal-like components and to first-order integrity constraints over them.

6 Implemented as controllers in CSP‖B, Fractal, FraSCAti, etc.
7 For relations involving two components (like Delegate or Parent) we consider that
only the parent component is aware of the relation. For the Binding relation, only
the component owning the required (or client) interface is aware of the binding.

6 O. Kouchnarenko, J-F. Weber

∀j ≥ 0.θi(j) = Πi(ev(σ(j))) ∈ Θi, also called a trace. Finite (resp. infinite) traces
over Θ are elements of Θ∗ (resp. Θω); the set of all traces is Θ∞ = Θ∗ ∪Θω.

3 FTPL Progression and Urgency

This section provides the underpinnings to allow a decentralised evaluation of
FTPL formulae. Inspired by definitions in [4], our notions of progression and
urgency are adapted to the FTPL semantics: they take into account external and
internal events as well as scopes of linear temporal patterns.

For decentralised evaluation of the FTPL formulae, instead of the set B4 as
in [3], let us consider the set B5 = {⊥,⊥p,#,>p,>}, where ⊥,> stand resp. for
false and true values, ⊥p,>p for potential false and potential true values, and #
for unknown value. We consider B5 together with the truth non-strict ordering
relation v5 satisfying ⊥ v5 ⊥p v5 >p v5 > v5 #. On B5 we define two binary
symmetric operations u5, t5 resp. as the minimum and maximum interpreted
wrt. v5. Thus, (B5,v5) is a finite lattice but not a Boolean nor a de Morgan
lattice. Let ∀ϕ ∈ PropFTPL.ϕu5 # = ϕ. We write t and u instead of t5 and u5
when it is clear from the context. For any formula ϕ ∈ PropFTPL, let ϕ̂ denote
the value of ϕ in B5.

In the context of a decentralised evaluation, each monitor may not be aware
of information related to a given property and may be not able to evaluate it.
This property is then written as a formula in terms of the current configuration.
However, after the transition to the next configuration, such a formula may be
not relevant. To compensate for this, we define the progression function to rewrite
FTPL formulae in a way relevant to the next configuration of a path. Intuitively,
given an FTPL formula and a set of atomic events, the progression function
provides either the value of the property, if available, or the rewritten formula
otherwise.

Definition 4 (Progression Function for Events). Let ε, ε1, ε2 ∈ AE, e =
e1, e2 . . . em, a list of FTPL events from AE, and θ(i) an event. The progression
function P : PropFTPL ×Θ → PropFTPL is inductively defined by:
P (ε, θ(i)) = > if ε ∈ θ(i),⊥ otherwise ; P (⊥, θ(i)) = ⊥
P (ε1 ∨ ε2, θ(i)) = P (ε1, θ(i)) ∨ P (ε2, θ(i)) ; P (⊥p, θ(i)) = ⊥p
P (¬ε, θ(i)) = ¬P (ε, θ(i)) ; P (>p, θ(i)) = >p
P (e, θ(i)) =

∨
1≤j≤m

P (ej , θ(i)) ; P (>, θ(i)) = >

Let us now introduce, in order to establish progression formulae, the X-
operator that precedes an FTPL property to denote its evaluation at the confi-
guration preceding the current one, i.e., P (Xξ, θ(i)) = P (ξ, θ(i− 1)). We write
Xm

ξ to denote
m︷ ︸︸ ︷

XX . . .X ξ
. Also, when m = 0, Xm

ξ = ξ.

Because of lack of room, the progression function is not given for every type
of FTPL property. Instead, we provide a definition for the always trace property
(Def. 5), lists of events (Def. 6), and the before temporal property (Def. 7). The
reader can extrapolate these definitions for the remaining FTPL properties, using

Decentralised Evaluation of Temporal Patterns 7

the FTPL progressive semantics introduced in [3]. A whole definition for FTPL
properties is given in Appendix B.

Definition 5 (Progression of the always FTPL trace property’s evalu-
ation formulae on a (suffix) path). Let cp be a configuration property and φ
a trace property of the form φ = always cp. The progression function P for the
always property on a (suffix) path is defined by:

P (φσk , θ(i)) =
{
P (cp, θ(i)) u >p for i = k

P (cp, θ(i)) u P (Xφσk , θ(i)) for i > k
(1)

Definition 6 (Progression of FTPL list of events properties’ evaluation
formulae on a (suffix) path). Let e be a list of FTPL events, the progression
function P for FTPL lists of events on a (suffix) path is defined by:

P (eσk , θ(i)) =
{
P (e, θ(i)) for i = k

P (e, θ(i)) t (>p u P (Xeσk , θ(i))) for i > k
(2)

Definition 7 (Progression of the before FTPL temporal property’s
evaluation formulae on a (suffix) path). Let e be a list of FTPL events, trp
a trace property, and β a temporal property of the form β = before e trp. The
progression function P for the before property on a (suffix) path is defined by:

P (βσk , θ(i)) =
{
>p for i = k

FB(P (eσk , θ(i)), P (Xtrpσk , θ(i)), P (Xβσk , θ(i))) for i > k
(3)

where FB is based on the FTPL progressive semantics and defined as follows:

FB(ε, trp, tpp) =

>p if ε = ⊥
⊥ if ε = > ∧ trp ∈ {⊥,⊥p}
tpp otherwise

(4)

Example 1. Let be ϕ = before e trp where e is an FTPL list of events and trp a
trace property. To evaluate ϕ at the configuration of index i > 0 on the suffix path
σ0, let us set P (eσ0 , θ(i)) = eσ0(i) = > and P (trpσ0 , θ(i−1)) = trpσ0(i−1) = ⊥p.
Then by Equalities (12) and(9) we have:

P (ϕσ0 , θ(i)) = FB(P (eσ0 , θ(i)), P (Xtrpσ0 , θ(i)), P (Xϕσ0 , θ(i)))
= FB(P (eσ0 , θ(i)), P (trpσ0 , θ(i− 1)), P (ϕσ0 , θ(i− 1)))
= FB(>,⊥p, P (ϕσ0 , θ(i− 1)))
= ⊥

In order to perform evaluation in a decentralised manner, we define below
the Normalised Progression Form (NPF) to describe the point up to which a
formula should be developed, using the progression function.

Definition 8 (NPF). Let ϕ be an FTPL property and θ an event. A formula
P (ϕ, θ) is in NPF if the X-operator only precedes atomic events.

8 O. Kouchnarenko, J-F. Weber

Theorem 1 (Existence of NPF). Let ϕ be an FTPL property and θ an event.
Every P (ϕ, θ) can be rewritten into an equivalent 8 formula in NPF.
Proof. The proof is by induction on the indexes of the events (i.e., on the trace)
using Definitons 5 to 7 (and definitions for the remaining FTPL properties).
Example 2. Let be ϕ = before e trp, e = a, b, and trp = always cp, where a
and b are FTPL events s.t. a, b, and cp ∈ CP are atomic events. The resulting
formula in NPF is obtained using Equation 12.
P (ϕσ0 , θ(0)) = >p

P (ϕσ0 , θ(1)) = FB(P (eσ0 , θ(1)), P (Xtrpσ0 , θ(1)), P (Xϕσ0 , θ(1)))

= FB(P (e, θ(1)) t (>p u P (Xeσ0 , θ(1))), P (trpσ0 , θ(0)), P (ϕσ0 , θ(0)))

= FB(P (a, θ(1)) t P (b, θ(1)) t (>p u P (eσ0 , θ(0))), P (cp, θ(0)) u >p,>p)

= FB(P (a, θ(1)) t P (b, θ(1)) t (>p u P (e, θ(0))), P (cp, θ(0)) u >p,>p)

= FB(P (a, θ(1)) t P (b, θ(1)) t (>p u (P (a, θ(0)) t P (b, θ(0)))), P (cp, θ(0))u>p,>p)

= FB(P (a, θ(1))tP (b, θ(1))t(>pu(P (Xa, θ(1))tP (Xb, θ(1)))),P (Xcp, θ(1))u>p,>p)

As in [4] for LTL, a monitor Mj for the component Cj accepts as input an
event θ(i) and FTPL properties. Applying Def. 4 to atomic events could lead to
wrong results in a decentralised context. For example, if ε 6∈ θ(i) holds locally
for the monitor Mj it could be due to the fact that ε 6∈ AEj . The decentralised
progression rule should be adapted by taking into account a local set of atomic
events. Hence, the progression rule for atomic events preceded by the X-operator
is given below.

P (Xm
ς, θ(i), AEj) =

> if ς = ς ′ for some ς ′ ∈ AEj ∩Πj(θ(i−m)),
⊥ if ς = ς ′ for some ς ′ ∈ AEj \ Πj(θ(i−m)),
Xm+1

ς otherwise.
(5)

We complete the specification of the progression function with the special
symbol # 6∈ AE for which the progression is defined by ∀j.P (#, θ, AEj) = #.
Finally, among different formulae to be evaluated, the notion of urgency allows
determining a set of urgent formulae. In a nutshell, the urgency of a formula
in NPF is 0 if the formula does not contain any X-operator or the value of the
greatest exponent of the X-operator. Using formulae in NPF, any sub-formula ς
following an X-operator is atomic (∃j.ς ∈ AEj) and can only be evaluated by a
single monitor Mj . A formal definition of urgency is as follows.
Definition 9 (Urgency). Let ϕ be a FTPL formula, and Υ : PropFTPL → N≥0

an inductively defined function assigning a level of urgency to a FTPL formula
as follows:

Υ (ϕ) = match ϕ with ϕ1tϕ2|ϕ1uϕ2|FA(_, ϕ1, ϕ2) → max(Υ (ϕ1), Υ (ϕ2))
| FB(ϕ1, ϕ2, ϕ3) → max{Υ (ϕi)|1 ≤ i ≤ 3}
| FU ((ϕ1, ϕ2), (ϕ3, ϕ4), ϕ5) → max{Υ (ϕi)|1 ≤ i ≤ 5}
| Xϕ → 1 + Υ (ϕ)
| _ → 0

8 wrt. the semantics.

Decentralised Evaluation of Temporal Patterns 9

where FA (resp. FU) denotes the FTPL temporal property after (resp. until),
and FB stands for the before property in Def. 7.

A formula ϕ is said to be more urgent than a formula ψ if and only if
Υ (ϕ) > Υ (ψ) holds. A formula ϕ where Υ (ϕ) = 0 holds is said to be not urgent.
Furthermore, we define the set of urgent sub-formulae of ϕ by sus(ϕ), with
sus : PropFTPL → 2PropFTPL defined inductively as follows:

sus(ϕ) = match ϕ with ϕ1tϕ2|ϕ1uϕ2|FA(_, ϕ1, ϕ2) → sus(ϕ1) ∪ sus(ϕ2)
| FB(ϕ1, ϕ2, ϕ3) → ∪1≤i≤3 sus(ϕi)
| FU ((ϕ1, ϕ2), (ϕ3, ϕ4), ϕ5) → ∪1≤i≤5 sus(ϕi)
| ¬ϕ → sus(ϕ)
| Xϕ → {Xϕ}
| _ → ∅

4 Decentralised Evaluation Problem

As FTPL patterns contain conjunctions or disjunctions of properties over com-
ponents’ parameters and relations, the evaluation of temporal patterns in a
decentralised manner makes sense. Section 4.1 addresses the temporal pattern
decentralised evaluation problem on a reconfiguration path by providing an
algorithm for such an evaluation in B4. Its properties are studied in Section 4.2.

4.1 Problem Statement and Local Monitor Algorithm

Let ϕ̂σk(s) denote the value of ϕ at configuration of index s on the suffix path σk.
While considering components with their monitors, because of a decentralised
fashion, the evaluation of ϕσk(s) by a monitorMi may be delayed to configuration
σ(t) with t > s, and the progression comes into play. In this case, let iϕsσk(t)
denote the decentralised formula as progressed to the configuration σ(t) by Mi,
for the evaluation of ϕ started at configuration σ(s). Therefore, we consider the
following decision problem.
Temporal Pattern Decentralised Evaluation on a Path (TPDEP).
Input: an FTPL temporal property ϕ, a suffix path σk with k ≥ 0, a configuration
σ(s) with s ≥ k, and a number n = |M| of monitors.
Output: i, j < n, and iϕ̂

s
σk

(s+ j) ∈ B4, the value of ϕ at σ(s+ j) by Mi.
We consider as the basic TPDEP case the situation when only run opera-

tions occur after the TPDEP problem input, and until an output is returned,
communications between monitors being covered by run operations.

The idea of a decentralised evaluation is as follows. Similarly to [4], at the
configuration σ(t), if iϕs(t) cannot be evaluated in B4, a monitor Mi progresses
its current formula iϕ

s(t) to iϕ
s(t+ 1) = P (iϕs(t), θ(t), AEi) and sends it to a

monitor that can evaluate its most urgent sub-formula. After iϕs(t+ 1) is sent,

10 O. Kouchnarenko, J-F. Weber

Mi sets iϕs(t + 1) = #. When Mi receives one or more formulae from others
monitors, each of them is added to the current formula using the u operator.

Unlike [4], where LTL decentralised monitoring determines the steady value of
a property in B2, our decentralised method allows values of FTPL properties in B4
to vary at different configurations, depending notably on the property scopes and
on external events. To this end, a result in B4 obtained by a monitor is broadcast
to other monitors, allowing them to maintain a complete but bounded history
that can be used to invoke the TPDEP problem at the following configurations.

To answer the TPDEP problem, we propose the LDMon algorithm displayed in
Fig. 2. It takes as input the index i of the current monitor, its set AEi of atomic
events, the index s of the current configuration, an FTPL temporal property ϕ
to be evaluated, and the index k of the suffix path on which ϕ is supposed to be
evaluated. An integer variable t indicates the index of the current configuration as
it evolves. The algorithm broadcasts to all monitors, as soon as it is determined,
the result of the evaluation of ϕ in B4. We chose this method to transmit the
results because we prefer to focus on the feasibility of a decentralised evaluation
of temporal patterns and we consider that the transmission of result is a related
issue outside of the scope of this paper.

Three functions are used in this algorithm: a) send(ϕ), sends ϕ (as well as
its sub-formulae evaluated at the current configuration) to monitor Mj (different
from the current monitor) where ψ is the most urgent sub-formula9 such that
Prop(ψ) ⊆ AEj holds, with Prop : PropFTPL → 2AE yielding the set of events
of an FTPL formula; b) receive({ϕ, . . . }), receives formulae sent (and broadcast)
by other monitors; and c) broadcast(ϕ), broadcasts ϕ to all other monitors.

As long as an evaluation of ϕ in B4 is not obtained (line 11), the LDMon
algorithm loops in the following way: the evaluation formula is progressed to the
next configuration (line 12) and the current configuration index t is incremented
(line 13). If at least one event of the current formula belongs to the set of atomic
events AEi (Prop(ϕ) ∩ AEi 6= ∅) and if no progressed formula was sent (or if
such a formula was sent and at least one from another monitor was received)
at the previous configuration (iϕsσk(t) 6= #), the progressed formula is sent to
the monitor that can solve its most urgent sub-formula (line 15) and is set to #
(line 16). Progressed formulae (and broadcast results) from other monitors are
received (line 18) and are combined to the local formula using the u-operator
(line 19). If the result is not in B4, the loop continues, otherwise if the result
of the formula has not already been provided by another monitor (line 21), the
result is broadcast (line 22) and returned (line 24).

4.2 Correctness, Uniqueness, and Termination
In this section several properties of the LDMon algorithm are studied. Proposition 1,
below, guarantees that the LDMon algorithm provides an output within a finite
number of configurations, communications being covered by run operations.
9 In the case where there are two or more equally urgent formulae, ϕ is sent to a
monitor determined by an arbitrary order with the function Mon :M× 2AE →M.
Mon(Mi, AE

′) = Mjmin s.t jmin = min(j ∈ [1, n]\{i}|AE′ ∩AEj 6= ∅).

Decentralised Evaluation of Temporal Patterns 11

1 (*LDMon*)
2 Input
3 i (*current monitor index*)
4 AEi (*current monitor atomic events*)
5 s (*input configuration index*)
6 ϕ (*FTPL property to evaluate*)
7 σk (*suffix path*)
8 Variables
9 t := s : integer
10 Begin
11 | WHILE (iϕ̂sσk (t) 6∈ B4) DO
12 | | iϕ

s
σk

(t+ 1) := P (iϕsσk (t), θi(t), AEi)
13 | | t := t+ 1
14 | | IF (Prop(ϕ)∩AEi 6=∅ ∧ iϕsσk (t) 6=#) DO
15 | | | send(iϕsσk (t))
16 | | | iϕ

s
σk

(t) = #
17 | | FI
18 | | receive({jϕsσk (t)}j 6=i)
19 | | iϕ

s
σk

(t) := iϕ
s
σk

(t) u
d
j 6=i jϕ

s
σk

(t)
20 | ENDWHILE
21 | IF (∀j 6= i.jϕ̂

s
σk

(t) 6∈ B4) DO
22 | | broadcast(iϕsσk (t))
23 | FI
24 | RETURN iϕ̂

s
σk

(t)
25 End

Fig. 2: Algorithm LDMon

Proposition 1 (Existence). Let ϕ ∈ PropFTPL, σk a suffix path, k ≥ 0. For
a given configuration σ(s) with s ≥ k, when using a number n = |M| of monitors,
the LDMon algorithm provides an output such that ∃i, j.i, j < n∧ iϕ̂sσk(s+ j) ∈ B4.

Proof. (Sketch.) Let M0,M1, . . . ,Mn−1 be n monitors. At a given configuration
of index s, if one of the monitors Mi ∈ M is able to evaluate its formula in
B4, the proposition holds with j = 0. Otherwise, each monitor Mi (0 ≤ i < n)
progresses its formula iϕ

s
σk

(s) into iϕ
s
σk

(s+ 1) and sends it to another monitor,
according to Mon, able to answer its most urgent sub-formula.

We assume that i1ϕ
s
σk

(s + 1) is sent to the monitor Mi2 6=i1 . At the next
configuration of index s+ 1, the monitor Mi2 receives i1ϕsσk(s+ 1) and combines
it with i2ϕ

s
σk

(s+1) as well as other formulae (if any) received from other monitors
using the u-operator. If one of these formulae (or a sufficient number of sub-
formulae) can be evaluated in B4, the proposition holds with j = 1 and iϕ̂

s
σk

(s+1).
Otherwise, each monitor Mi progresses the formula iϕ

s
σk

(s+ 1) into iϕ
s
σk

(s+ 2)
and sends it to another monitor according to Mon which is able to answer its
most urgent sub-formula.

12 O. Kouchnarenko, J-F. Weber

We assume that i2ϕsσk(s+ 2) is sent to the monitor Mi3 with i3 6= i2. Also
i3 6= i1 because previously, all sub-formulae of i1ϕsσk(s+ 1) that could be solved
using the set of atomic events AEi1 were already solved. This way, the problem
is reduced from n to n− 1 monitors. Since for a single monitor the output of the
algorithm is ϕ̂σk(s) with j = 0, we can infer that for n monitors, there is at least
one monitor Mi0 such that i0 ϕ̂sσk(s+ j) ∈ B4 with j < n. ut

As explained before, when evaluating ϕσk(s), the formula iϕ
s
σk

(t) at configu-
ration of index t by Mi either has a result iϕ̂sσk(t) ∈ B4 or progresses to #. The
latter is written iϕ̂

s
σk

(t) = #. Thus iϕ̂sσk(t) ∈ B5.

Theorem 2 (Semantic Correctness). iϕ̂sσk(t) 6= #⇔ iϕ̂
s
σk

(t) = ϕ̂σk(s).

Proof. (Sketch.)

⇒ If iϕ̂sσk(t) 6= #, a result has been obtained in B4, otherwise iϕ̂sσk(t) would
equal #. Therefore, we only have to verify that the progression function of
Def. 4 to 7 (and definitions for the remaining FTPL properties) matches
the FTPL semantics in B4 as defined in [3]. It is done by induction on the
path length.

⇐ iϕ̂
s
σk

(t) = ϕ̂σk(s)⇒ iϕ̂
s
σk

(t) ∈ B4 ⇒ iϕ̂
s
σk

(t) 6= #.

Corollary 1 (Uniqueness). If iϕ̂sσk(t) 6= # and jϕ̂
s
σk

(t) 6= # for i 6= j, then
iϕ̂
s
σk

(t) = jϕ̂
s
σk

(t).

Corollary 2 (Generalised Uniqueness). Let be Sϕ
s
σk

(t) =
d

i∈S
iϕ
s
σk

(t) for

S ⊆ [1, n]. If Sϕ̂sσk(t) 6= # then for all j ∈ S, jϕ̂sσk(t) 6= # implies jϕ̂
s
σk

(t) =
Sϕ̂

s
σk

(t).

Corollary 2 allows a monitor to simplify the combination of formulae with
the operator u. For a given property, a conjunction in B4 of formulae received
from other monitors with the formula of the current monitor can be replaced by
any of these formulae provided that its value is different from #.

Example 3. Let us consider again ϕ = before e trp. Let A,B, and C be the
components with their respective monitors MA, MB , and MC such that iϕs(t) =
FB(ies(t), itrps−1(t), iϕs−1(t)) for i ∈ {A,B,C} (Def. 7). Let us assume ϕ(s) =
FB(e(s), trp(s − 1), ϕ(s − 1)), with ϕ(s), e(s), trp(s − 1), and ϕ(s − 1) being
evaluated in B4. By Corollary 2, e(s) = Ae

s(t)uBes(t)uCes(t) (resp. trp(s−1) =
Atrp

s−1(t)uBtrps−1(t)uCtrps−1(t), ϕ(s−1) = Aϕ
s−1(t)uBϕs−1(t)uCϕs−1(t)) if

it exists at least one i such that the value of iet(s) (resp. itrps−1(t), iϕs−1(t)) is in
B4; in this case, ies(t) = e(s) (resp. itrps−1(t) = trp(s− 1), iϕs−1(t) = ϕ(s− 1)).

For example, if Aϕs(t) = FB(>, φ,Aϕs−1(t)), Bϕs(t) = FB(ε,>p,Bϕs−1(t)),
and Cϕ

s(t) = FB(ε, ψ,>p), with φ, Aϕs−1(t), ε, Bϕs−1(t), ε, and ψ not being
evaluated in B4. It implies Aes(t) = e(s) = > (resp. Btrps−1(t) = trp(s−1) = >p,
Cϕ

s−1(t) = ϕ(s− 1) = >p) and ϕ(s) = FB(>,>p,>p) = >p.

Decentralised Evaluation of Temporal Patterns 13

Proposition 2 (Correctness and Uniqueness). The output provided by the
LDMon algorithm answers the TPDEP problem. For a given configuration σ(s),
this answer is unique.

Proof. (Sketch.) By Proposition 1 LDMon provides an output iϕ̂sσk(s+ j) for at
least one monitor Mi, within a finite number j of configurations. By Theorem 2
this output answers the TPDEP problem. Furthermore Corollary 1 establishes
that for any i0, if i0 ϕ̂

s
σk

(s + j) is the output of the LDMon algorithm for the
monitor Mi0 then i0 ϕ̂

s
σk

(s+ j) = iϕ̂
s
σk

(s+ j). ut

Proposition 3 (Termination). The LDMon algorithm always terminates, either
at the configuration when an output is provided or at the next one. Furthermore,
the number of configurations needed to reach a result is at most |M|.

Proof. (sketch) Propositions 1 and 2 establish that the LDMon algorithm termi-
nates and answers the TPDEP problem for at least one monitor Mi after a finite
number of reconfigurations j < |M|. Such monitor Mi broadcasts the result to
all other monitors before finishing (line 22 of the LDMon algorithm, Fig. 2). This
enables any monitor for which the LDMon algorithm did not finish at configuration
s+ j to receive the result of the broadcast and to finish its instance of the LDMon
algorithm at configuration s+ j + 1 ≤ s+ |M|. ut

In general, decentralised algorithms tend to be very hard for creating a con-
sensus and moreover they require significant communication overhead. Let us
emphasize the fact that Proposition 2 guarantees the correctness and uniqueness
of a result, which implies such a consensus. As a consequence of Propositions 2
and 3 adaptation policies relying on the decentralised evaluation of FTPL tem-
poral properties can be applied to component-based systems for their dynamic
reconfiguration at runtime.

Let us now discuss communication overhead. We consider a component-based
system of N components reporting their status in B4 to a central controller at
each configuration as described for in [3]. In the centralised context, thanks to
the progressive semantics, the evaluation of a given FTPL property ϕ would
mean that N messages should be sent to conclude in B4. With the decentralised
approach, assuming that atomic events of ϕ would be distributed among n
components (n ≤ N), we would need, at most, n2 − 1 messages to evaluate ϕ.

This means that to evaluate a formula involving n = 10 components of
a component-based system of N = 100 components, in the worst case the
decentralised fashion would need 99 messages versus 100 for the centralised
approach to evaluate ϕ which is a ratio of 99%. If, however, the total number N
of components of the system is much greater than the number n of components
involved in the evaluation of ϕ, the communication overhead ratio can be even
lower (e.g., 9.9% for N = 1000). Reciprocally, if a great proportion of the system
is involved in the property to evaluate, the centralised method would lead to
better results. Let q be such a proportion, i.e., n = qN , the communication
overhead ratio is Nq2 − 1/N .

14 O. Kouchnarenko, J-F. Weber

This is different from the result in [4] where the decentralised algorithm
outperforms its centralised counterpart by a proportion of 1 to 4 in terms of
communication overhead, to conclude in B2. Such a difference is due to the fact
that in our case, as soon as a property is evaluated in B4 for a given configuration
of the path, another evaluation is initiated for another configuration. Nevertheless,
we have better results while monitoring only components concerned with the
temporal property, that can be determined syntactically. To sum up, our approach
is suitable for systems with a large number of components when the FTPL
property to evaluate involves a small proportion of them.

5 Implementation and Experiment

This section describes how the LDMon algorithm has been implemented within
the GROOVE graph transformation tool [5]. This implementation is then used
to experiment with a case study.

5.1 Implementing with GROOVE

Fig. 3: Rule
removeOrphanMon

GROOVE uses simple graphs for modelling the structure of
object-oriented systems at design-time, compile-time, and run-
time. Graphs are made of nodes and edges that can be labelled.
Graph transformations provide a basis for model transfor-
mation or for operational semantics of systems. Graphs are
transformed by rules consisting of a) patterns that must be
present (resp. absent) for the rule to apply, b) elements (nodes
and edges) to be added (resp.deleted) from the graph, and
c) pairs of nodes to be merged. Colour and shape coding allow
these rules to be easily represented. For example, our imple-

mentation uses the graph rule removeOrphanMon represented Fig. 3 that can be
interpreted as follows: a) The red (dashed fat) “embargo” elements, representing
a node of type component and an edge defining a monitoring relation between
monitors, of type ldmon, and components, must be absent, b) the blue (dashed
thin) “eraser” element, representing a node of type ldmon, must be present, and
c) if both conditions are satisfied, the blue (dashed thin) element is deleted.
This means that if a monitor of type ldmon is not monitoring a component, the
monitor node, ldmon, must be deleted. The reader interested in GROOVE is
referred to [5].

Our implementation uses the GROOVE typed mode to guarantee that all
graphs are well-typed. It consists of generic types and graph rules that can
manage assigned priorities in such a way that a rule is applied only if no rule of
higher priority matches the current graph. The input is a graph containing an
FTPL formula and a component-based system, both represented using the model
presented in Sec. 2. Figure 4 shows a screenshot of GROOVE displaying, in the
main panel, a graph modelling the location component-based system used in the
case study below. Components are represented in blue, Required (resp. Provided)

Decentralised Evaluation of Temporal Patterns 15

Interfaces in magenta (resp. red), Parameters in black, and both ITypes and
PTypes in grey. The top left panel shows graph rules ordered by priority, whereas
the bottom left panel contains GROOVE types.

Fig. 4: Model of the location component-based system displayed with GROOVE

5.2 Case Study

In this section we illustrate the LDMon algorithm with an example of a location
composite component, and afterwards we provide several details on its imple-
mentation in GROOVE. The location system is made up of different positioning
systems, like GPS or Wi-Fi, a merger and a controller. Thanks to adaptation poli-
cies with temporal patterns, the location composite component can be modified to
use either GPS or Wi-Fi positioning systems, depending on some properties, such
as available energy, occurrences of indoor/outdoor positioning external events,
etc. For example, when the level of energy is low, if the vehicle is in a tunnel
where there is no GPS signal, it would be useful to remove the GPS component
(cf. Fig. 5). To save energy, this component may not be added back before the
level of energy reaches an acceptable value.

removegpsrun run addgps run

Location GPS

Wi-FiController

Merger Location GPS

Wi-FiController

MergerLocation

Wi-FiController

Merger

σ(k) σ(i0−1) σ(i0) σ(i1−1) σ(i1)

Fig. 5: Representation of the suffix configuration path σk

16 O. Kouchnarenko, J-F. Weber

This example has been fully implemented with GROOVE together
with adaptation policies. Let G be the GROOVE graph represent-
ing this example. Let us consider the FTPL temporal property ϕ =
after removegps normal (eventually (power≥ 33) before addgps normal),
which can be written as ϕ = after e0 φ, with e0 = removegps normal, φ =
trp before e1, trp=eventually cp, e1 =addgps normal, and cp=(power≥33).

Intuitively, ϕ represents the requirement “After the GPS component has been
removed, the level of energy has to be greater than 33% before this component is
added back”. Figure 6 shows how ϕ is represented in our implementation.

Let Mc, Mm, Mg, and Mw be four monitors pertaining respectively to
the controller, merger, GPS, and Wi-Fi components. Monitor Mc has access
to the value of the configuration property power_ge_33 (> if power ≥ 33,
or ⊥ otherwise) while Mm is aware of the values of addgps_normal (resp.
removegps_normal) which are > at the configuration following the addition
(resp. removal) of the GPS component, or ⊥ otherwise. Since monitors, Mg

and Mw do not have access to any atomic event having an influence on the
evaluation of ϕ (i.e., Prop(ϕ) ∩ AEg = Prop(ϕ) ∩ AEw = ∅), Mg and Mw

do not send messages, which has a beneficial effect on the communication
overhead. In our implementation, each monitor is a subgraph of G contain-
ing the monitored component via an edge named monitor. Communications
between monitors are represented by edges named sentreceived and broad-
cast. Recall that in the model, communications between monitors are covered
by run operations as they do not directly affect the system’s architecture.

property eventList

property eventList event

eventconfigProp

Fig. 6: Representation of the ϕ FTPL property

Let us consider a reconfigura-
tion path σ representing the se-
quences of configurations of the
location composite component
where the transitions between
configurations are reconfigura-
tion operations. In the suffix
path σk displayed in Fig. 5, we
suppose that all the reconfigu-
ration operations are run, ex-
cept between σ(i0−1) and σ(i0)
(resp. σ(i1−1) and σ(i1)), where
it is removegps (resp. addgps).
During runtime, an adaptation
controller—in charge of the ap-
plication of adaptation policies—
needs to evaluate FTPL properties. To do so, the adaptation controller uses the
LDMon algorithm to evaluate ϕ. When a result is returned by a monitor, the
most suitable adaptation policy is applied, and the algorithm is used again to
evaluate ϕ at the following configuration, where it may vary because of the scope,
for example. In the following, we describe how, at each configuration of index s

Decentralised Evaluation of Temporal Patterns 17

(k ≤ s ≤ i1) the adaptation controller requests the evaluation of ϕ to the monitors
using the LDMon algorithm, and receives the answer at the same configuration σ(s).
In Fig. 7 green (dashed) arrows represent broadcast communications, blue (plain)
arrows represent formulae being sent, and red (dotted) arrows indicate that a) the
destination component is able to solve the most urgent sub-formula of the source
component and b) no communication is made between these components. Because
neither Mg nor Mw has access to atomic events impacting their formulae, they
do not send any message during the run described below.

Location
GPS

Wi-FiController

Merger

broadcast

mϕ̂
k
σk

(k) = >p

cϕ
k
σk

(k + 1) = #

gϕ
k
σk

(k + 1) = #

wϕ
k
σk

(k + 1) = #

(a) Interactions at configuration σ(k)

Location
GPS

Wi-FiController

Merger

broadcast

mϕ̂
s
σk

(s) = >p

cϕ
s
σk

(s + 1) = #

gϕ
s
σk

(s + 1) = #

wϕ
s
σk

(s + 1) = #

mϕ
s−1
σk

(s− 1) = FA(∅,⊥,>p)

(b) Interactions at configuration σ(s), with k+1≤s≤ i0−1

Location

Wi-FiController

Merger

broadcast

mϕ̂
s
σk

(s) = >p

cϕ
s
σk

(s + 1) = # wϕ
s
σk

(s + 1) = #

mϕ
s−1
σk

(s− 1) = FA({i0},>p,>p)

(c) Interactions at configuration σ(s), with i0+1≤s≤ i1−1

Location
GPS

Wi-FiController

Merger

broadcast

mϕ̂
i1
σk

(i1) = >p

cϕ
i1
σk

(i1 + 1) = #

gϕ
i1
σk

(i1 + 1) = #

wϕ
i1
σk

(i1 + 1) = #

mϕ
i1−1
σk

(i1 − 1) = FA({i0},>p,>p)

(d) Interactions at configuration σ(i1)

Fig. 7: Interactions between monitors

At configuration σ(k), sinceMm

can evaluate e0 = ⊥, by defini-
tion of the after FTPL prop-
erty, mϕ̂

k
σk

(k) = >p is estab-
lished and broadcast. Other
monitors progress their formu-
lae and determine that the
most urgent sub-formula can be
solved by Mm (Fig. 7a); conse-
quently,Mc sends its formulae10
to Mm.
At every configuration σ(s) for
k+ 1 ≤ s ≤ i0−1, since e0 does
not occur, the decentralised eva-
luation consists in evaluating ϕ
by Mm that returns and broad-
casts the result. Other monitors
receive the result from the pre-
vious configuration broadcast
by Mm

11. They also progress
their current formulae, which
cause Mc to send its formu-
lae to Mm. This is diplayed in
Fig. 7b, where FA represents the
FTPL temporal property after
in the same way FB does for the
before property in Def. 7.
At configuration σ(i0), the event e0 = removegps normal, signifying the GPS
normal removal, occurs. The Mm monitor, being aware of this occurrence, eval-
uates ϕ: mϕ̂i0σk(i0) = mφ̂

i0
σi0

(i0) = >p because the “before” FTPL pattern is
defined to be >p at the first configuration of its scope. The result is then retuned
and broadcast. In the meantime, Mc and Mw receive the result broadcast at the
previous configuration and Mc sends its formulae to Mm.
At configuration σ(s) for i0 + 1 ≤ s ≤ i1 − 1, because e0 occurred once, Mm

computes mϕ̂sσk(s) = mφ̂
s

σi0
(s) = >p, since φ = trp before e1 and e1 has not

10 The formula to evaluate as well as its sub-formulae evaluated at the current state.
11 This allows all monitors to keep a history of |M|+ 1 configurations.

18 O. Kouchnarenko, J-F. Weber

yet occurred; the result is then returned and broadcast. Mc and Mw receive
the result broadcast at the previous configuration which contains, as a sub-
formula, the information that e0 occurred at configuration σ(i0). The formula
progressed by Mc contains cφsσi0 (s+ 1) = FB(Xe1, ˆtrps−1

σi0
(s),>p). We suppose

that there is a configuration σ(s′) s.t. s′ > i0, where the power rises over 33%, i.e.,
cp = (power ≥ 33) = > and then ˆtrpsσi0 (s) = cp t ˆtrps−1

σi0
(s) = > for s ≥ s′. In

this case, the set of formulae Mc sends to Mm (Fig. 7c) contains FB(Xe1,>,>p)
and trpsσi0 (s).
At configuration σ(i1), e1 = addgps terminates just occurred. We assume that
the reconfiguration terminated normally and that the GPS component was added.
Mc, Mg, and Mw receive the result broadcast at the previous configuration.
Mc and Mw behave in a way similar than above at configuration σ(s) with
i0 + 1 ≤ s ≤ i1 − 1, whereas Mg behaves like Mw. Finally, Mm evaluates its
formula to mϕ̂

i1
σk

(i1) = mφ̂
i1
σi0

(i1) = FB(>,Xtrpσi0 ,>
p) = >p using the fact that

the sub-formula Xtrpσi0 was sent by Mc at the previous configuration. This
result answers correctly the TPDEP.

Back to the implementation, Table 1 gives information on the GROOVE
graph rules for the case study. The columns show, from left to right, the possible
values of the index of the considered configurations, the number of graph rules
used, the reconfiguration occurring (if any), and the part of the FTPL formula
that must be evaluated to obtain a result in B4. At configuration σ(k) 85 rules are
used, rules concerning the evaluation of FTPL events are the ones used the most;
as long as the event removegps normal has not occurred yet, only the evaluation
of the part “after removegps normal . . . ” of the formula is needed to obtain a
result. At configuration σ(s), with k+ 1 ≤ s ≤ i0−1, from 111 to 162 graph rules
are used, depending of the length of the history being built at the beginning of the
run; once the length of history has reach its maximum, i.e., |M|+1, the most used
graph rules are the ones designed to clear outdated history. At configuration σ(i0),
the reconfiguration removegps occurs, then as long as the event addgps normal
has not occurred yet, only the evaluation of the part “. . .before addgps normal”
of the formula is needed to obtain a result; 237 graph rules are used, most of them
doing a cleaning of the elements of the subgraph representing the monitor of the
GPS component being removed. At configuration σ(s), with k + 1 ≤ s ≤ i0 − 1,
149 graph rules are used, mainly to clear outdated history. At configuration σ(i1),

Table 1: Graph rules used at configuration σ(s)

Index s of configuration Number of graph rules Reconfiguration Part of formula to be evaluated
s = k 85 after removegps normal . . .

k + 1 ≤ s ≤ i0 − 1 111− 162 after removegps normal . . .
s = i0 237 removegps . . .before addgps normal

i0 + 1 ≤ s ≤ i1 − 1 149 . . .before addgps normal
s = i1 253 addgps . . . eventually (power ≥ 33) . . .

Decentralised Evaluation of Temporal Patterns 19

the reconfiguration addgps occurs, then only the evaluation, at the previous
configuration, of the part “. . . eventually (power ≥ 33) . . . ” of the formula is
needed to obtain a result; 253 graph rules are used, mainly to clear outdated
history and to update the scope of the property.

6 Conclusion

This paper has addressed the decentralised evaluation problem for linear temporal
patterns on reconfiguration paths of component-based systems. To this end,
we have proposed a specific progressive semantics of temporal patterns, and
an algorithm for their decentralised evaluation using monitors associated with
components. We have shown that when reached, the decentralised evaluation
results coincide with the results obtained by the centralised evaluation of temporal
patterns at runtime. We have described the implementation with GROOVE and
its application to a location composite component.

In this paper, for the sake of readability, monitors only deal with a single
FTPL property. To evaluate several FTPL formulae, we can either use a single
monitor (per component) dealing with all the formulae, as herein described, or
a monitor per formula of interest. Depending on the context, each method can
have its own advantages and drawbacks.

In the case of the removal of a component, the corresponding monitor termi-
nates and is removed. Thanks to the adaptation policies’ controller, this should not
influence any ongoing temporal pattern evaluation. When a component is added,
its monitor starts with a blank history. Furthermore, when a monitored primitive
component is replaced with a composite component whose sub-components con-
tain (among other) the same parameters as the original component, the monitor
shall keep working seamlessly. Since no additional monitor is added, this mecha-
nism allows us to mitigate the communication overhead that could be incurred
by the increase of the number of components.

As a future work, we intend to extend the analysis of the TPDEP problem
to the case when several reconfiguration operations occur. It would be possible
when reconfigurations lead to configurations whose atomic events do not interfere
with the evaluation of the temporal property of interest (the TPDEP input). In
this case the adaptation controller can authorize reconfigurations of independent
parts of the component-based system. On the implementation side, we plan to
exploit the decentralised evaluation method for the implementation handling the
adaptation policies. The overall goal is to exploit its results to apply adaptation
policies to the component-based system under scrutiny at runtime. So far we have
considered the components having monitors to be all on the same architectural
level, i.e., they all are siblings. As a future work, we plan to delegate part of the
monitoring of composite components to their subcomponents.

20 O. Kouchnarenko, J-F. Weber

References

1. de Lemos, R., et. al: Software engineering for self-adaptive systems: A second
research roadmap. In de Lemos, R., Giese, H., Müller, H.A., Shaw, M., eds.:
Software Engineering for Self-Adaptive Systems. Volume 7475 of LNCS., Springer
(2010) 1–32

2. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Software Engineering. (1999) 411–420

3. Kouchnarenko, O., Weber, J.F.: Adapting component-based systems at runtime
via policies with temporal patterns. In Fiadeiro, J.L., Liu, Z., Xue, J., eds.: FACS.
Volume 8348 of LNCS. Springer (2014) 234–253

4. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: FM 2012: Formal
Methods. Volume 7436 of LNCS., Springer (2012) 85–100

5. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. Int. J. on Software Tools for Technology Transfer 14
(2012) 15–40

6. Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and
Computation 164 (2001) 322–344

7. Bozzelli, L., Murano, A., Peron, A.: Pushdown module checking. In Sutcliffe, G.,
Voronkov, A., eds.: LPAR. Volume 3835 of LNCS., Springer (2005) 504–518

8. Aminof, B., Legay, A., Murano, A., Serre, O., Vardi, M.Y.: Pushdown module
checking with imperfect information. Inf. Comput. 223 (2013) 1–17

9. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. Int. J. of Logic and Computation 20 (2010) 651–674

10. Kim, M., Lee, I., Shin, J., Sokolsky, O., et al.: Monitoring, checking, and steering
of real-time systems. ENTCS 70 (2002) 95–111

11. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal
component model and its support in java. Softw., Pract. Exper. 36 (2006) 1257–1284

12. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal
Asp. Comput. 17 (2005) 390–422

13. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
component-based middleware platform for reconfigurable service-oriented architec-
tures. Software: Practice and Experience 42 (2012) 559–583

14. Garavel, H., Mateescu, R., Serwe, W.: Large-scale distributed verification using
cadp: Beyond clusters to grids. Electr. Notes Theor. Comput. Sci. 296 (2013)
145–161

15. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Runtime verification of temporal
patterns for dynamic reconfigurations of components. In Arbab, F., Ölveczky, P.,
eds.: FACS. Volume 7253 of LNCS. Springer Berlin Heidelberg (2012) 115—132

16. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic for dynamic
reconfigurations of components. In Barbosa, L., Lumpe, M., eds.: FACS. Volume
6921 of LNCS. Springer Berlin Heidelberg (2012) 200–217

17. Hamilton, A.G.: Logic for mathematicians. Cambridge University Press, Cambridge
(1978)

18. Dormoy, J., Kouchnarenko, O., Lanoix, A.: When structural refinement of com-
ponents keeps temporal properties over reconfigurations. In: FM 2012: Formal
Methods. Volume 7436 of LNCS. Springer (2012) 171–186

Decentralised Evaluation of Temporal Patterns 21

A FTPL Syntax and Semantics [3]

In this section, we summarize the FTPL semantics as presented in [3].

A.1 Syntax

<FTPL> ::=<tpp> |<events> | cp
<tpp> ::= after<events><tpp> | before<events><trp> |<trp>until<events> |<trp>
<trp> ::= always cp | eventually cp |<trp>∧<trp> |<trp>∨<trp>
<events> ::=<event>,<events> |<event>
<event> ::= openormal | ope exceptional | ope terminates | ext

A.2 FTPL Basic Semantics

Definition 10 (Configuration Properties Semantics). We say that a con-
figuration σ(i) satisfies cp ∈ CP , written J σ(i) |= cp K = >, when l(σ(i))⇒ cp.
In this case, cp is valid on σ(i). Otherwise, σ(i) does not satisfy cp, written
J σ(i) |= cp K = ⊥.

Definition 11 (FTPL Events Semantics). Let ope be a reconfiguration ope-
ration, ext an external event, e an event, and events a list of events.

The interpretation of the events at the i-th state of the path σ is defined by:

Jσ(i) |= ope normalK =

{
> if i > 0 ∧ σ(i− 1) 6= σ(i) ∧ σ(i− 1) ope→ σ(i)
⊥ otherwise.

Jσ(i) |= ope exceptionalK =

{
> if i > 0 ∧ σ(i− 1) = σ(i) ∧ σ(i− 1) ope→ σ(i)
⊥ otherwise.

Jσ(i) |= ope terminatesK = Jσ(i) |= ope normalK t Jσ(i) |= ope exceptionalK

Jσ(i) |= extK = evalσ(cpext, i)12

Jσ(i) |= e, eventsK = Jσ(i) |= eK t Jσ(i) |= eventsK

A.3 FTPL Runtime Progressive Semantics

In order to evaluate, in a progressive fashion, FTPL expressions at runtime, with-
out consulting a complete history of FTPL properties’ evaluation, we introduce
the following notations. Let φσ = Jσ |= φK be the evaluation of an FTPL formula
where φ is a list of events, a trace property, or a temporal property. We denote
φσ(i) the evaluation of φ on σ, at the i-th state of the path.

Furthermore, following [2], if the scope of an FTPL property φ is restricted
to the suffix path σk, k ≥ 0, we write φσk = Jσk |= φK for such a restriction, and
φσk(i) for the evaluation in B4 of this restriction at the i-th state of σ, where
i ≥ k. Then, the evaluation of φ on the path σ (φσ = Jσ |= φK), is similar to the
evaluation of φ on the suffix path σ0 starting at the first configuration, which is
φσ0 = Jσ0 |= φK. For the sake of simplicity, we also write cpσk(i) = Jσk(i) |= cpK.
12 ext, evalσ, and cpext are defined as in [3].

22 O. Kouchnarenko, J-F. Weber

Definition 12 (FTPL Runtime Progressive Trace Properties Seman-
tics). Let cp be a configuration property, φ (resp. ϕ) a trace proper-
ty of the form φ = always cp (resp. ϕ = eventually cp). We de-
fine φσk(i) (resp. ϕσk(i)), the evaluation in B4 of Jσk |= φK (resp.
Jσk |= ϕK) at the i-th state of σ when the scope is restricted to σk, by:
− for i = k, φσk(k) = >p u cpσ(k) ; ϕσk(k) = ⊥p t cpσ(k)
− for i > k, φσk(i) = φσk(i− 1) u cpσ(i) ; ϕσk(i) = ϕσk(i− 1) t cpσ(i)

Furthermore, let ψ1 and ψ2 be two trace properties, then:
Jσk |= ψ1 ∧ ψ2K = Jσk |= ψ1K u Jσk |= ψ2K ; Jσk |= ψ1 ∨ ψ2K = Jσk |= ψ1K t Jσk |= ψ2K

On the scope starting at the k-th state of σ, if at state k one has cpσ(k) = >
(resp. cpσ(k) = ⊥), the trace property always cp (resp. eventually cp) is
evaluated to >p (resp. ⊥p); otherwise, it is evaluated to ⊥ (resp. >). Then, for
i > k, at the i-th state of σ, always cp (resp. eventually cp) is evaluated to
the minimum (resp. maximum), interpreted wrt. v, of a) its evaluation at the
previous state and b) cpσ(i).

Definition 13 (FTPL Runtime Progressive Lists of Events Semantics).
Let e be a list of events. We define eσk(i), the evaluation in B4 of Jσk |= eK at
the i-th state of σ when the scope is restricted to σk, by:

− for i = k, eσk(k) = Jσk(k) |= eK
− for i > k, eσk(i) = Jσk(i) |= eK t (>p u eσk(i− 1))

Intuitively, the expression Jσ(i) |= eK t (>p u eσk(i − 1)) evaluates to > if
there is an occurrence of e at configuration i, and to ⊥ (resp. >p) if there is no
occurrence of e at configuration i and no (resp. at least one) occurrence of e
happening before configuration i on the scope starting at configuration k.

Definition 14 (FTPL Runtime Progressive Temporal Properties Se-
mantics). Let tpp be a temporal property, trp a trace property, e a list of
events, φ (resp. ϕ, ψ) a temporal property of the form φ = after e tpp (resp.
ϕ = before e trp, ψ = trp until e). We define φσk(i) (resp. ϕσk(i), ψσk(i)), the
evaluation in B4 of Jσk |= φK (resp. Jσk |= ϕK, Jσk |= ψK) at the i-th state of σ
when the scope is restricted to σk, by: for i ≥ k,

φσk (i) =
(l

j∈I
σi
k

(e)

tppσj (i)
)
u >p

where I
σi
k

(e) = {j|k ≤ j ≤ i ∧ Jσ(j) |= eK = >}
represents the set of indexes for an occurrence of e.

ϕσk (i) =

{
>p if eσk (i) = ⊥ ∨ i = k

⊥ if eσk (i) = > ∧ trpσk (i− 1) ∈ {⊥,⊥p}
ϕσk (i− 1) otherwise

ψσk (i) =

>p if trpσk (i) 6= ⊥ ∧ eσk (i) = > ∧ eσk (i− 1) = ⊥ ∧ trpσk (i− 1) ∈ {>p,>}
⊥p if trpσk (i) 6= ⊥ ∧ (eσk (i) = ⊥ ∨ i = k)
⊥ if trpσk (i) = ⊥ ∨ (eσk (i) = > ∧ trpσk (i− 1) ∈ {⊥,⊥p})
ψσk (i− 1) otherwise

By definition, the evaluation of φ = after e tpp is either a) >p as long as
e does not occur or if tpp is evaluated to >p or > on each suffix of the path

Decentralised Evaluation of Temporal Patterns 23

starting at an occurrence of e, or b) ⊥ if on any of these suffixes tpp is evaluated
to ⊥, or c) ⊥p, otherwise.

For ϕ = before e trp, its evaluation is either a) >p if e has not occurred yet,
or b) ⊥ if for each occurrence of e, trp is evaluated to ⊥ or ⊥p on the segment
starting at the beginning of the considered scope and ending at the previous
i− 1-th configuration on the σ path. Otherwise, φ at the i-th configuration is
evaluated to its value at the previous i− 1-th configuration.

Intuitively, the ψ = trp until e property can be seen as being evaluated
similarly to before e trp, but with the two following exceptions: a) when trp is
evaluated to ⊥, ψ is evaluated to ⊥; otherwise, b) on the beginning part of the
scope and as long as e has not occurred, ψ is evaluated to ⊥p.

Finally, we say that a reconfiguration model S = 〈C, C0,Rrun ,→, l〉 satisfies a
property φ ∈ PropFTPL, written S |= φ, if ∀σ.(σ ∈ Σ(S)∧σ(0) ∈ C0 ⇒ φσ=>).

B Progression of FTPL Properties

Let us introduce the formulae in Fig. 8 to ease the notations of the progression
function for FTPL properties. In Equation 6, Iσk(e) is the set of indexes of the
segment σk where the FTPL event e is evaluated to >. Equation 7 represents a
rewriting formula that associates the progression of an FTPL property with a
couple composed of itself and of the progression of this property at the previous
event. Equations 8 to 10 are established using the FTPL temporal properties’
semantics.

With the formulae of Fig. 8, the progression function P of Def. 4 is extended
to the FTPL properties’ evaluation formulae on a (suffix) path as follows.

FI(Iσk (e), θ(i)) =
{
FI(Iσk (e), θ(i− 1))∪{j|j= i ∧ P (e, θ(j))=>} for i ≥ k
∅ otherwise

(6)

FP(ξ, θ(i)) = (P (ξ, θ(i)), P (ξ, θ(i− 1))) (7)

FA(J , P (e, θ(i)), P (tppσi , θ(i))) = >p u
l

j∈J

P (tppσj , θ(i))) (8)

FB(ε, trp, tpp) =

{
>p if ε = ⊥
⊥ if ε = > ∧ trp ∈ {⊥,⊥p}
tpp otherwise

(9)

FU ((ε, ε′), (trp, trp′), tpp) =

>p if trp 6= ⊥ ∧ ε = > ∧ ε′ = ⊥ ∧ trp′ ∈ {>p,>}
⊥p if trp 6= ⊥ ∧ ε = ⊥
⊥ if trp = ⊥ ∨ (ε = > ∧ trp′ ∈ {⊥,⊥p})
tpp otherwise

(10)

Fig. 8: Rewriting formulae for progression of FTPL properties

24 O. Kouchnarenko, J-F. Weber

Definition 15 (Progression of FTPL properties’ evaluation formulae
on a (suffix) path). Let cp be a configuration property, ψ1 and ψ2 two trace
properties, φ (resp. ϕ) a trace property of the form φ = always cp (resp. ϕ =
eventually cp), e a list of FTPL events, tpp a temporal property, trp a trace
property, α (resp. β, γ) a temporal property of the form α = after e tpp (resp.
β = before e trp, γ = trp until e). The progression function P for FTPL
properties on a (suffix) path is defined by:

P (ασk , θ(i)) = FA(FI(Iσk (e), θ(i)), P (e, θ(i)), P (tppσi , θ(i))) for i ≥ k (11)

P (βσk , θ(i)) =
{
>p for i = k

FB(P (eσk , θ(i)), P (Xtrpσk , θ(i)), P (Xβσk , θ(i))) for i > k
(12)

P (γσk , θ(i)) =
{
P (trpσk , θ(i)) u ⊥p for i = k

FU (FP(eσk , θ(i)), FP(trpσk , θ(i)), P (Xγσk , θ(i))) for i > k
(13)

P (eσk , θ(i)) =
{
P (e, θ(i)) for i = k

P (e, θ(i)) t (>p u P (Xeσk , θ(i))) for i > k
(14)

P (φσk , θ(i)) =
{
P (cp, θ(i)) u >p for i = k

P (cp, θ(i)) u P (Xφσk , θ(i)) for i > k
(15)

P (ϕσk , θ(i)) =
{
P (cp, θ(i)) t ⊥p for i = k

P (cp, θ(i)) t P (Xϕσk , θ(i)) for i > k
(16)

P (ψ1 ∧ ψ2, θ(i)) = P (ψ1, θ(i)) u P (ψ2, θ(i)) (17)
P (ψ1 ∨ ψ2, θ(i)) = P (ψ1, θ(i)) t P (ψ2, θ(i)) (18)

	Decentralised Evaluation of Temporal Patterns over Component-based Systems at Runtime
	Introduction
	Background: Reconfiguration Model and Temporal Patterns
	Reconfiguration Model
	Temporal Patterns

	FTPL Progression and Urgency
	Decentralised Evaluation Problem
	Problem Statement and Local Monitor Algorithm
	Correctness, Uniqueness, and Termination

	Implementation and Experiment
	Implementing with GROOVE
	Case Study

	Conclusion
	FTPL Syntax and Semantics
	Syntax
	FTPL Basic Semantics
	FTPL Runtime Progressive Semantics

	Progression of FTPL Properties

