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Abstract

In this paper, we study degenerate parabolic system, which is strongly coupled. We prove

general existence result, but the uniqueness remains an open question. Our proof of existence

is based on a crucial entropy estimate which both control the gradient of the solution and the

non-negativity of the solution. Our system is of porous medium type and our method applies to

models in seawater intrusion.
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1 Introduction

For the sake of simplicity, we will work on the torus Ω := TN = (R/Z)N , with N ≥ 1.

Let ΩT := (0, T )× Ω with T > 0. Let an integer m ≥ 1. Our purpose is to study a class of degen-

erate strongly coupled parabolic system of the form

ui
t = div

(
ui

m∑

j=1

Aij∇uj

)
in ΩT , for i = 1, . . . , m. (1.1)

1
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with the initial condition

ui(0, x) = ui
0(x) ≥ 0 a.e. in Ω, for i = 1, . . . , m. (1.2)

In the core of the paper we will assume that A = (Aij)1≤i,j≤m is a real m×m matrix (not necessarily

symmetric) that satisfies the following positivity condition: we assume that there exists δ0 > 0, such

that we have

ξTAξ ≥ δ0|ξ|2, for all ξ ∈ R
m. (1.3)

This condition can be weaken: see Subsection 4.1. Problem (1.1) appears naturally in the modeling

of seawater intrusion (see Subsection 1.2).

1.1 Main results

To introduce our main result, we need to define the nonnegative entropy function Ψ:

Ψ(a)− 1

e
=





a ln a for a > 0,
0 for a = 0,

+∞ for a < 0,
(1.4)

which is minimal for a =
1

e
.

Theorem 1.1. (Existence for system (1.1))

Assume that A satisfies (1.3). For i = 1, . . . , m, let ui
0 ≥ 0 in Ω satisfying

m∑

i=1

∫

Ω

Ψ(ui
0) < +∞, (1.5)

where Ψ is given in (1.4). Then there exists a function u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω)) ∩
C([0, T ); (W 1,∞(Ω))′))m solution in the sense of distributions of (1.1),(1.2), with ui ≥ 0 a.e. in ΩT ,

for i = 1, . . . , m. Moreover this solution satisfies the following entropy estimate for a.e. t1, t2 ∈
(0, T ), with ui(t2) = ui(t2, ·):

m∑

i=1

∫

Ω

Ψ(ui(t2)) + δ0

m∑

i=1

∫ t2

t1

∫

Ω

|∇ui|2 ≤
m∑

i=1

∫

Ω

Ψ(ui
0), (1.6)

where Ψ is given in (1.4).

Here ‖A‖ is the matrix norm defined as

‖A‖ = sup
|ξ|=1

|Aξ| . (1.7)

Notice that the entropy estimate (1.6) guarantees that ∇ui ∈ L2(0, T ;L2(Ω)), and therefore allows

us to define the product ui

m∑

i=1

Aij∇uj in (1.1). When our proofs were obtained, we realized that a

similar entropy estimate has been obtained in [6] and [8] for a special system different from ours.
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Remark 1.2. (Decreasing energy)

If A is a symmetric matrix then a solution u of system (1.1) satisfies

d

dt

(
m∑

i=1

m∑

j=1

∫

Ω

1

2
Aiju

iuj

)
= −

m∑

i=1

∫

Ω

ui

∣∣∣∣∣

m∑

j=1

Aij∇uj

∣∣∣∣∣

2

.

1.2 Application to seawater intrusion

In this subsection, we describe briefly a model of seawater intrusion, which is particular case of our

system (1.1).

An aquifer is an underground layer of a porous and permeable rock through which water can move.

On the one hand coastal aquifers contain freshwater and on the other hand saltwater from the sea can

enter in the ground and replace the freshwater. We refer to [3] for a general overview on seawater

intrusion models.

Now let ν = 1− ǫ0 ∈ (0, 1) where

ǫ0 =
γs − γf

γs

with γs and γf are the specific weight of the saltwater and freshwater respectively.

Figure 1: Seawater intrusion in coastal aquifer

We assume that in the porous medium, the interface between the saltwater and the bedrock is given

as {z = 0}, the interface between the saltwater and the freshwater, which are assumed to be un-

miscible, can be written as {z = g(t, x)}, and the interface between the freshwater and the dry soil

can be written as {z = h(t, x) + g(t, x)}. Then the evolutions of h and g are given by a coupled

nonlinear parabolic system (we refer to see [16]) of the form

{
ht = div {h∇(ν(h + g))} in ΩT ,
gt = div {g∇(νh+ g)} in ΩT ,

(1.8)
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This is a particular case of (1.1), where the 2× 2 matrix

A =

(
ν ν
ν 1

)
(1.9)

satisfies (1.3).

1.3 Brief review of the litterature

The cross-diffusion systems, in particular the strongly coupled ones (for which the equations are

coupled in the highest derivatives terms), are widely presented in different domains such as biology,

chemistry, ecology, fluid mechanics and others. They are difficult to treat. Many of the standard

results cannot be applied for such problems, such as the maximum principle. Hereafter, we cite

several models where our method applies for most of them (see Section 4 for more generalizations

on our problem).

In [26], Shigesada, Kawasaki and Teramoto proposed a two-species SKT model in one-dimensional

space which arises in population dynamics. It can be written in a generalized form with m-species

as

ui
t −∆

[(
βi +

m∑

j=1

αiju
j

)
ui

]
=

(
ai −

m∑

j=1

biju
j

)
ui, in Ω× (0, T ), (1.10)

where ui, for i = 1, . . . , m, denotes the population density of the i-th species and βi, αij , ai, bij

are nonnegative constants. The existence of a global solution for such problem in arbitrary space

dimension is studied in [30], where the quadratic form of the diffusion matrix is supposed positive

definite. On the other hand, the two-species case was frequently studied, see for instance [22, 15, 29,

13, 27] for dimensions 1, 2, and [6, 24, 25, 5] for arbitrary dimension and appropriate conditions.

Another example of such problems is the electochemistry model studied by Choi, Huan and Lui

in [7] where they consider the general form

ui
t =

n∑

ℓ=1

m∑

j=1

∂

∂xℓ

(
aijℓ (u)

∂uj

∂xℓ

)
, u = (ui)1≤i≤m for i = 1, . . . , m, (1.11)

and prove the existence of a weak solution of (1.11) under assumptions on the matrices Al(u) =

(aijl (u))1≤i,j≤m: it is continuous in u, its components are uniformly bounded with respect to u and

its symmetric part is definite positive. Their strategy of proof seeks to use Galerkin method to prove

the existence of solutions to the linearized system and then to apply Schauder fixed-point theorem.

Then they apply the results obtained to an electrochemistry model.

A third example of cross-diffusion models is the chemotaxis model introduced in [19]. The

global existence for classical solutions of this model is studied by Hillen and Painter in [14] where

they considered

{
ut = ∇ · (∇u− χ(u, v)∇v), t > 0, x ∈ Ω
vt = µ∆v + g(u, v), t > 0, x ∈ Ω,
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on a C3- differentiable compact Riemannian manifold without boundary, where the function u de-

scribes the particle density, v is the density of the external signal, the chemotactic cross-diffusion

χ is assumed to be bounded, and the function g describes production and degradation of the exter-

nal stimulus. Another kind of chemotaxis model (the angiogenesis system) has been suggested and

studied in [8]:

{
ut = κ∆u−∇ · (u χ(v)∇v), t > 0, x ∈ Ω
vt = −vmu, t > 0, x ∈ Ω,

where m ≥ 1 and κ is a constant.

Moreover, Alt and Luckhaus prove the existence in finite time of a solution for the following

elliptic-parabolic problem

∂tb
i(u)− div(ai(b(u),∇u)) = f i(b(u)), in Ω× (0, T ), (1.12)

where Ω ⊂ RN is open, bounded, and connected with Lipschitz boundary, b is monotone and

continuous gradient and a is continuous and elliptic with some growth condition. This problem can

be seen as a standard parabolic equation when b(z) = z.

Another problem is the Muskat Problem for Thin Fluid Layers of the form

{
∂tf = (1 + R)∂x(f∂xf) +R∂x(f∂xg),
∂tg = Rµ∂x(g∂xf) +Rµ∂x(g∂xg).

It models, [10], the motion of two fluids with different densities and viscosities in a porous meduim

in one dimension, where f and g are the thickness of the two fluids and R, Rµ > 0 depending on

the densities and the viscosities of the fluids. The authors in [10, 11] studied the classical solutions

of such problem. Moreover, weak solutions are established under different assumptions in [9, 23,

17, 18].

1.4 Strategy of the proof

In (1.1), the elliptic part of the equation does not have a Lax-Milgram structure. Otherwise, our

existence result is mainly based on the entropy estimate (1.6). It is difficult to get this entropy

estimate directly (we do not have enough regularity to do it), so we proceed by approximations.

Approximation 1:

We discretize in time system (1.1), with a time step ∆t = T/K, where K ∈ N∗. Then for a given

un = (ui,n)1≤i≤m ∈ (H1(Ω))m, we consider the implicit scheme which is an elliptic system:

ui,n+1 − ui,n

∆t
= div

{
ui,n+1

m∑

j=1

Aij∇uj,n+1

}
. (1.13)

Approximation 2:

We regularize the right-hand term of (1.13). To do that, we take η > 0 and 0 < ǫ < 1 < ℓ, and we
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choose the following regularization

ui,n+1 − ui,n

∆t
= div

{
T ǫ,ℓ(ui,n+1)

m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1

}
, (1.14)

where T ǫ,ℓ is truncation operator defined as

T ǫ,ℓ(a) :=





ǫ if a ≤ ǫ,
a if ǫ ≤ a ≤ ℓ,
ℓ if a ≥ ℓ,

(1.15)

and the mollifier ρη(x) = η−Nρ (x/η) with ρ ∈ C∞
c (RN ), ρ ≥ 0,

∫
RN ρ = 1 and ρ(−x) = ρ(x).

Now, with the convolution by ρη in (1.14), the term ∇ρη ⋆ ρη ⋆ u
j,n+1 behaves like uj,n+1.

Note that, considering the ZN - periodic extension on RN of uj,n+1, the convolution ρη ⋆ uj,n+1 is

possible over RN .

Approximation 3:

Let δ > 0. We will add a second order term like δ∆ui to equation (1.14) in order to obtain an

elliptic one. More specifically, we consider div
(
δT ǫ,ℓ(ui)∇ui

)
instead of δ∆ui, to keep an entropy

estimate.

Then we freeze the coefficients ui,n+1 on the right-hand side to make a linear structure (these coef-

ficients are now called δT ǫ,ℓ(vi,n+1)), we obtain the following modified system:

ui,n+1 − ui,n

∆t
= div

{
T ǫ,ℓ(vi,n+1)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1 + δ∇ui,n+1

)}
. (1.16)

We will look for fixed points solutions vi,n+1 = ui,n+1 of this modified system. Finally, we will

recover the expected result dropping one after one all the approximations.

1.5 Organization of the paper

In Section 2, we recall some useful tools. In Section 3, we study system (1.1). By discretizing

our problem on time, in Subsection 3.1, we obtain an elliptic problem. We use the Lax-Milgram

theorem to show the existence of a unique solution to the linear problem (1.16). We demonstrate,

in Subsection 3.2, the existence of a solution of the nonlinear problem, using the Schaefer’s fixed

point theorem.

Then we pass to the limit in the following order: (∆t, ǫ) → (0, 0) in Subsection 3.3, (ℓ, η) → (∞, 0)

in Subsection 3.4 and δ → 0 in Subsection 3.5. Generalizations (including more general matrices A

or tensors) will be presented in Section 4. We end with an Appendix showing some technical results

in Section 5.
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2 Preliminary tools

Theorem 2.1. (Schaefer’s fixed point theorem)[12, Theorem 4 page 504]

Let X be a real Banach space. Suppose that

Φ : X → X

is a continuous and compact mapping. Assume further that the set

{u ∈ X, u = λΦ(u) for some λ ∈ [0, 1]}

is bounded. Then Φ has a fixed point.

Proposition 2.2. (Aubin’s lemma)[28]

For any T > 0, and Ω = TN , let E denote the space

E :=
{
g ∈ L2((0, T );H1(Ω)) and gt ∈ L2((0, T );H−1(Ω))

}
,

endowed with the Hilbert norm

‖ω‖E =
(
‖ω‖2L2(0,T ;H1(Ω)) + ‖ωt‖2L2(0,T ;H−1(Ω))

) 1

2

.

The embedding

E →֒ L2((0, T );L2(Ω)) is compact.

On the other hand, it follows from [20, Proposition 2.1 and Theorem 3.1, Chapter 1] that the

embedding

E →֒ C([0, T ];L2(Ω)) is continuous.

Lemma 2.3. (Simon’s Lemma)[28]

Let X , B and Y three Banach spaces, where X →֒ B with compact embedding and B →֒ Y with

continuous embedding. If (gn)n is a sequence such that

‖gn‖Lq(0,T ;B) + ‖gn‖L1(0,T ;X) + ‖gnt ‖L1(0,T ;Y ) ≤ C,

where 1 < q ≤ ∞, and C is a constant independent of n, then (gn)n is relatively compact in

Lp(0, T ;B) for all 1 ≤ p < q.

Now we will present the variant of the original result of Simon’s lemma [28, Corollary 6, page

87]. First of all, let us define the norm ‖.‖Var([a,b);Y ) where Y is a Banach space with the norm ‖.‖Y .

For a function g : [a, b) → Y , we set

‖g‖Var([a,b);Y ) = sup
∑

j

‖g(aj+1)− g(aj)‖Y (2.1)

over all possible finite partitions:

a ≤ a0 < · · · < ak < b
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Theorem 2.4. (Variant of Simon’s Lemma)

Let X , B and Y three Banach spaces, where X →֒ B with compact embedding and B →֒ Y with

continuous embedding. Let (gn)n be a sequence such that

‖gn‖L1(0,T ;X) + ‖gn‖Lq(0,T ;B) + ‖gn‖Var([0,T );Y ) ≤ C, (2.2)

where 1 < q < ∞, and C is a constant independent of n. Then (gn)n is relatively compact in

Lp(0, T ;B) for all 1 ≤ p < q.

Proof. Step 1: Regularization of the sequence

Let ρ̄ ∈ C∞
c (R) with ρ̄ ≥ 0,

∫
R
ρ̄ = 1 and supp ρ̄ ⊂ (−1, 1). For ε > 0, we set

ρ̄ε(x) = ε−1ρ̄(ε−1x).

We extend gn = gn(t) by zero outside the time interval [0, T ). Because q < +∞, we see that for

each n, we choose some 0 < εn → 0 as n → +∞ such that

‖ḡn − gn‖Lq(0,T ;B) → 0 as n → +∞, with ḡn = ρ̄εn ⋆ g
n (2.3)

For any δ > 0 small enough, we also have for n large enough (such that εn < δ):

‖ḡn‖L1(δ,T−δ;X) ≤ ‖gn‖L1(0,T ;X) ≤ C

and

‖ḡnt ‖L1(δ,T−δ;Y ) ≤ ‖gn‖Var([0,T );Y ) ≤ C (2.4)

Step 2: Checking (2.4)

By (2.2) there exists a sequence of step functions fη which approximates uniformly gn on [0, T ) as

η → 0, with moreover satisfies

‖fη‖Var([0,T );Y ) → ‖gn‖Var([0,T );Y ) .

Therefore we get easily (for εn < δ)

‖(ρ̄εn ⋆ fη)t‖L1(δ,T−δ;Y ) ≤ ‖fη‖Var([0,T );Y )

which implies (2.4), when we pass to the limit as η goes to zero.

Step 3: Conclusion

We can then apply Corollary 6 in [28] to deduce that ḡn is relatively compact in Lp(0, T ;B) for all

1 ≤ p < q. Because of (2.3), we deduce that this is also the case for the sequence (gn)n, which ends

the proof of the Theorem.

3 Existence for system (1.1)

Our goal is to prove Theorem 1.1 in order to get the existence of a solution for system (1.1).
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3.1 Existence for the linear elliptic problem (1.16)

In this subsection we prove the existence, via Lax-Milgram theorem, of the unique solution for the

linear elliptic system (1.16).

Let us recall our linear elliptic system. Assume that A is any m × m real matrix. Let vn+1 =

(vi,n+1)1≤i≤m ∈ (L2(Ω))m and un = (ui,n)1≤i≤m ∈ (H1(Ω))m. Then for all ∆t, ǫ, ℓ, η, δ > 0, with

ǫ < 1 < ℓ and ∆t < τ where τ is given in (3.2), we look for the solution un+1 = (ui,n+1)1≤i≤m of

the following system:





ui,n+1 − ui,n

∆t
= div

{
J i
ǫ,ℓ,η,δ(v

n+1, un+1)
}

in D′(Ω),

J i
ǫ,ℓ,η,δ(v

n+1, un+1) = T ǫ,ℓ(vi,n+1)

{
m∑
j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1 + δ∇ui,n+1

}
,

(3.1)

where T ǫ,ℓ is given in (1.15).

Proposition 3.1. (Existence for system (3.1))

Assume that A is any m×m real matrix. Let ∆t, ǫ, ℓ, η, δ > 0, with ǫ < 1 < ℓ, such that

∆t <
δǫη2

C0
2ℓ2 ‖A‖2

:= τ, (3.2)

where

C0 = ‖∇ρ‖L1(RN ). (3.3)

Then for n ∈ N, for a given vn+1 = (vi,n+1)1≤i≤m ∈ (L2(Ω))m and un = (ui,n)1≤i≤m ∈ (H1(Ω))m,

there exists a unique function un+1 = (ui,n+1)1≤i≤m ∈ (H1(Ω))m solution of system (3.1). More-

over, this solution un+1 satisfies the following estimate

(
1− ∆t

τ

)∥∥un+1
∥∥2
(L2(Ω))m

+∆tǫδ
∥∥∇un+1

∥∥2
(L2(Ω))m

≤ ‖un‖2(L2(Ω))m , (3.4)

where τ is given in (3.2).

Proof. The proof is done in four steps using Lax-Milgram theorem.

First of all, let us define for all un+1 = (ui,n+1)1≤i≤m and ϕ = (ϕi)1≤i≤m ∈ (H1(Ω))m, the follow-

ing bilinear form:

a(un+1, ϕ) =
m∑

i=1

∫

Ω

ui,n+1ϕi +∆t
m∑

i,j=1

∫

Ω

T ǫ,ℓ(vi,n+1)Aij

(
∇ρη ⋆ ρη ⋆ u

j,n+1
)
· ∇ϕi

+∆tδ

m∑

i=1

∫

Ω

T ǫ,ℓ(vi,n+1)∇ui,n+1 · ∇ϕi,
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which can be also rewritten as

a(un+1, ϕ) =
〈
un+1, ϕ

〉
(L2(Ω))m

+∆t
〈
T ǫ,ℓ(vn+1)∇ϕ,A∇ρη ⋆ ρη ⋆ u

n+1
〉
(L2(Ω))m

+∆tδ
〈
T ǫ,ℓ(vn+1)∇ϕ,∇un+1

〉
(L2(Ω))m

,

where 〈·, ·〉(L2(Ω))m denotes the scalar product on (L2(Ω))m, and the following linear form:

L(ϕ) =

m∑

i=1

∫

Ω

ui,nϕi = 〈un, ϕ〉(L2(Ω))m .

Step 1: Continuity of a

For every n ∈ N, un+1 and ϕ ∈ (H1(Ω))m, we have

|a(un+1, ϕ)| ≤ ‖un+1‖(L2(Ω)m‖ϕ‖(L2(Ω))m +∆tℓ‖A‖‖∇ρη ⋆ ρη ⋆ u
n+1‖(L2(Ω))m‖∇ϕ‖(L2(Ω))m

+∆tδℓ‖∇un+1‖(L2(Ω))m‖∇ϕ‖(L2(Ω))m

≤ 3max(1,∆tℓ‖A‖,∆tδℓ)‖un+1‖(H1(Ω))m‖ϕ‖(H1(Ω))m .

where ‖A‖ is given in (1.7) and we have used the fact that

∥∥∇ρη ⋆ ρη ⋆ u
n+1
∥∥
(L2(Ω))m

≤
∥∥∇un+1

∥∥
(L2(Ω))m

, (3.5)

and

ǫ ≤ T ǫ,ℓ(a) ≤ ℓ, for all a ∈ R. (3.6)

Step 2: Coercivity of a

For all ϕ ∈ (H1(Ω))m, we have that a(ϕ, ϕ) = a0(ϕ, ϕ) + a1(ϕ, ϕ), where

a0(ϕ, ϕ) = ‖ϕ‖2(L2(Ω))m +∆tδ
〈
T ǫ,ℓ(ϕ)∇ϕ,∇ϕ

〉
(L2(Ω))m

and

a1(ϕ, ϕ) = ∆t
〈
T ǫ,ℓ(ϕ)∇ϕ,A∇ρη ⋆ ρη ⋆ ϕ

〉
(L2(Ω))m

.

On the one hand, we already have the coercivity of a0:

a0(ϕ, ϕ) ≥ ‖ϕ‖2(L2(Ω))m +∆tδǫ‖∇ϕ‖2(L2(Ω))m .

On the other hand, we have

|a1(ϕ, ϕ)| ≤ ∆tℓ ‖A‖ ‖∇ρη ⋆ ρη ⋆ ϕ‖(L2(Ω))m ‖∇ϕ‖(L2(Ω))m

≤ ∆tℓ ‖A‖
(

1

2α
‖∇ρη ⋆ ρη ⋆ ϕ‖2(L2(Ω))m +

α

2
‖∇ϕ‖2(L2(Ω))m

)

≤ ∆tℓ2 ‖A‖2C2
0

2δǫη2
‖ϕ‖2(L2(Ω))m +

∆tǫδ

2
‖∇ϕ‖2(L2(Ω))m ,
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where in the second line we have used Young’s inequality, and chosen α =
δǫ

‖A‖ ℓ in the third line,

with C0 is given in (3.3) and ‖A‖ is given in (1.7). So we get that

a(ϕ, ϕ) ≥
(
1− ∆t

2τ

)
‖ϕ‖2(L2(Ω))m +

∆tǫδ

2
‖∇ϕ‖2(L2(Ω))m (3.7)

is coercive, since ∆t < τ where τ is given in (3.2).

Step 3: Existence by Lax-Milgram

It is clear that L is linear and continuous on (H1(Ω))m. Then by Step 1, Step 2 and Lax-Milgram

theorem there exists a unique solution, un+1, of system (3.1).

Step 4: Proof of estimate (3.4)

Using (3.7) and the fact that a(un+1, un+1) = L(un+1) we get

(
1− ∆t

2τ

)∥∥un+1
∥∥2
(L2(Ω))m

+
∆tǫδ

2

∥∥∇un+1
∥∥2
(L2(Ω))m

≤
〈
ui,n, ui,n+1

〉
(L2(Ω))m

≤ 1

2
‖un‖2(L2(Ω))m +

1

2

∥∥un+1
∥∥2
(L2(Ω))m

,

which gives us the estimate (3.4).

3.2 Existence for the nonlinear time-discrete problem

In this subsection we prove the existence, using Schaefer’s fixed point theorem, of a solution for

the nonlinear time discrete-system (3.10) given below. Moreover, we also show that this solution

satisfies a suitable entropy estimate.

First, to present our result we need to choose a function Ψǫ,ℓ which is continuous, convex and

satisfies that Ψ′′
ǫ,ℓ(x) =

1

T ǫ,ℓ(x)
, where T ǫ,ℓ is given in (1.15). So let

Ψǫ,ℓ(a)−
1

e
=





a2

2ǫ
+ a ln ǫ− ǫ

2
if a ≤ ǫ,

a ln a if ǫ < a ≤ ℓ,

a2

2ℓ
+ a ln ℓ− ℓ

2
if a > ℓ.

(3.8)

Let us introduce our nonlinear time discrete system: Assume that A satisfies (1.3). Let u0 =

(ui,0)1≤i≤m := u0 = (ui
0)1≤i≤m that satisfies

C1 :=

m∑

i=1

∫

Ω

Ψǫ,ℓ(u
i
0) < +∞, (3.9)
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such that ui
0 ≥ 0 in Ω for i = 1, . . . , m. Then for all ∆t, ǫ, ℓ, η, δ > 0, with ǫ < 1 < ℓ and ∆t < τ

where τ is given in (3.2), for n ∈ N, we look for a solution un+1 = (ui,n+1)1≤i≤m of the following

system:





ui,n+1 − ui,n

∆t
= div

{
J i
ǫ,ℓ,η,δ(u

n+1, un+1)
}

in D′(Ω), for n ≥ 0

ui,0(x) = ui
0(x) in Ω,

(3.10)

where J i
ǫ,ℓ,η,δ is given in system (3.1), and T ǫ,ℓ is given in (1.15).

Proposition 3.2. (Existence for system (3.10))

Assume that A satisfies (1.3). Let u0 = (ui
0)1≤i≤m that satisfies (3.9), such that ui

0 ≥ 0 a.e. in Ω

for i = 1, . . . , m. Then for all ∆t, ǫ, ℓ, η, δ > 0, with ǫ < 1 < ℓ and ∆t < τ where τ is given in

(3.2), there exists a sequence of functions un+1 = (ui,n+1)1≤i≤m ∈ (H1(Ω))
m

for n ∈ N, solution

of system (3.10), that satisfies the following entropy estimate:

m∑

i=1

∫

Ω

Ψǫ,ℓ(u
i,n+1)+δ∆t

m∑

i=1

n∑

k=0

∫

Ω

|∇ui,k+1|2+δ0∆t

m∑

i=1

n∑

k=0

∫

Ω

|∇ρη ⋆ u
i,k+1|2 ≤

m∑

i=1

∫

Ω

Ψǫ,ℓ(u
i
0),

(3.11)

where Ψǫ,ℓ is given in (3.8).

Proof. Our proof is based on the Schaefer’s fixed point theorem. So we need to define, for a given

w := un = (ui,n)1≤i≤m ∈ (L2(Ω))m and v := vn+1 = (vi,n+1)1≤i≤m ∈ (L2(Ω))m, the map Φ as:

Φ : (L2(Ω))m → (L2(Ω))m

v 7→ u

where u := un+1 = (ui,n+1)1≤i≤m = Φ(vn+1) ∈ (H1(Ω))m is the unique solution of system (3.1),

given by Proposition 3.1.

Step 1: Continuity of Φ

Let us consider the sequence vk such that





vk ∈ (L2(Ω))m,

vk −→ v in (L2(Ω))m.

We want to prove that the sequence uk = Φ(vk) −→ u = Φ(v) to get the continuity of Φ. From

the estimate (3.4), we deduce that uk is bounded in (H1(Ω))m. Therefore, up to a subsequence, we

have 



uk ⇀ u weakly in (H1(Ω))m,
and

uk → u strongly in (L2(Ω))m,



13

where the strong convergence arises because Ω is compact. Thus, by the definition of the truncation

operator T ǫ,ℓ, we can see that T ǫ,ℓ is continuous and bounded, then by dominated convergence

theorem, we have that

T ǫ,ℓ(vik) −→ T ǫ,ℓ(vi) in L2(Ω), for i = 1, . . . , m.

Now we have
ui
k − wi

∆t
= div

{
J i
ǫ,ℓ,η,δ(vk, uk)

}
in D′(Ω). (3.12)

This system also holds in H−1(Ω), because J i
ǫ,ℓ,η,δ(vk, uk) ∈ L2(Ω). Hence by multiplying this

system by a test function in (H1(Ω))m and integrating over Ω for the bracket 〈·, ·〉H−1(Ω)×H1(Ω), we

can pass directly to the limit in (3.12) as k tends to +∞, and we get

ui − wi

∆t
= div{J i

ǫ,ℓ,η,δ(v, u)} in D′(Ω). (3.13)

where we used in particular the weak L2 - strong L2 convergence in the product T ǫ,ℓ(vk)∇uk. Then

u = (ui)1≤i≤m = Φ(v) is a solution of system (3.1). Finally, by uniqueness of the solutions of (3.1),

we deduce that the limit u does not depend on the choice of the subsequence, and then that the full

sequence converges:

uk → u strongly in (L2(Ω))m, with u = Φ(v).

Step 2: Compactness of Φ

By the definition of Φ we can see that for a bounded sequence (vk)k in (L2(Ω))m, Φ(vk) = uk

converges strongly in (L2(Ω))m up to a subsequence, which implies the compactness of Φ.

Step 3: A priori bounds on the solutions of v = λΦ(v)

Let us consider a solution v of

v = λΦ(v) for some λ ∈ [0, 1].

By (3.4) we see that there exists a constant C2 = C2(∆t, ǫ, ...) such that for any given w ∈
(L2(Ω))m, we have ‖Φ(v)‖(H1(Ω))m ≤ C2 ‖w‖(L2(Ω))m . Hence v = λΦ(v) is bounded.

Step 4: Existence of a solution

Now, we can apply Schaefer’s fixed point Theorem (Theorem 2.1), to deduce that Φ has a fixed

point un+1 on (L2(Ω))m. This implies the existence of a solution un+1 of system (3.10).

Step 5: Proof of estimate (3.11)
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We have,

m∑

i=1

∫

Ω

Ψǫ,ℓ(u
i,n+1)−Ψǫ,ℓ(u

i,n)

∆t

≤
m∑

i=1

∫

Ω

(
ui,n+1 − ui,n

∆t

)
Ψ′

ǫ,ℓ(u
i,n+1)

=
m∑

i=1

〈
ui,n+1 − ui,n

∆t
,Ψ′

ǫ,ℓ(u
i,n+1)

〉

H−1(Ω)×H1(Ω)

= −
m∑

i=1

〈
δT ǫ,ℓ(ui,n+1)∇ui,n+1 + T ǫ,ℓ(ui,n+1)

m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1,Ψ′′

ǫ,ℓ(u
i,n+1)∇ui,n+1

〉

L2(Ω)

= −
m∑

i=1

{
δ

∫

Ω

|∇ui,n+1|2 +
∫

Ω

m∑

j=1

∇ρη ⋆ u
i,n+1Aij∇ρη ⋆ u

j,n+1

}

≤ −
m∑

i=1

δ

∫

Ω

|∇ui,n+1|2 − δ0

m∑

i=1

∫

Ω

|∇ρη ⋆ u
i,n+1|2,

where we have used, in the second line, the convexity inequality on Ψǫ,ℓ. In the third line, we used the

fact that
ui,n+1 − ui,n

∆t
∈ H−1(Ω) and that ∇Ψ′

ǫ,ℓ(u
i,n+1) = Ψ′′

ǫ,ℓ(u
i,n+1)∇ui,n+1 ∈ L2(Ω) because

Ψ′
ǫ,ℓ(u

i,n+1) ∈ C1(R), see [4, Proposition IX.5, page 155]. Thus, in the fourth line we use that ui,n+1

is a solution for system (3.10) where we have applied an integration by parts. In the fifth line, we

used the transposition of the convolution (see for instance [4, Proposition IV.16, page 67]), and the

fact that ρ̌η(x) = ρη(−x) = ρη(x). Finally, in the last line we use that A satisfies (1.3). Then by a

straightforward recurrence we get estimate (3.11). This ends the proof of Proposition 3.2.

3.3 Passage to the limit as (∆t, ǫ) → (0, 0)

In this subsection we pass to the limit as (∆t, ǫ) → (0, 0) in system (3.10) to get the existence of a

solution for the continuous approximate system (3.16) given below.

First, let us define the function Ψ0,ℓ as

Ψ0,ℓ(a)−
1

e
:=





+∞ if a < 0,

0 if a = 0,

a ln a if 0 < a ≤ ℓ,

a2

2ℓ
+ a ln ℓ− ℓ

2
if a > ℓ.

(3.14)
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Now let us introduce our continuous approximate system. Assume that A satisfies (1.3). Let u0 =

(ui
0)1≤i≤m satisfying

C3 :=
m∑

i=1

∫

Ω

Ψ0,ℓ(u
i
0) < +∞, (3.15)

which implies that ui
0 ≥ 0 a.e. in Ω for i = 1, . . . , m. Then for all ℓ, η, δ > 0, with 1 < ℓ < +∞,

we look for a solution u = (ui)1≤i≤m of the following system:





ui
t = div

{
J i
0,ℓ,η,δ(u)

}
in D′(ΩT ),

J i
0,ℓ,η,δ(u) = T 0,ℓ(ui)

{
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j + δ∇ui

}
,

ui(0, x) = ui
0(x) in Ω.

(3.16)

where T 0,ℓ is given in (1.15) for ǫ = 0, and we recall here ΩT := (0, T )× Ω.

Proposition 3.3. (Existence for system (3.16))

Assume that A satisfies (1.3). Let u0 = (ui
0)1≤i≤m satisfying (3.15). Then for all ℓ, η, δ > 0 with

1 < ℓ < +∞ there exists a function u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω)) ∩ C([0, T );L2(Ω)))m,

with ui ≥ 0 a.e. in ΩT , solution of system (3.16) that satisfies the following entropy estimate for

a.e. t1, t2 ∈ (0, T ) with ui(t1) = ui(t1, ·)
∫

Ω

m∑

i=1

Ψ0,ℓ(u
i(t2))+ δ

∫ t2

t1

∫

Ω

m∑

i=1

∣∣∇ui
∣∣2+ δ0

∫ t2

t1

∫

Ω

m∑

i=1

∣∣∇ρη ⋆ u
i
∣∣2 ≤

∫

Ω

m∑

i=1

Ψ0,ℓ(u
i
0). (3.17)

Proof. Our proof is based on the variant of Simon’s Lemma (Theorem 2.4). Recall that ∆t =
T

K
where K ∈ N∗ and T > 0 is given. We denote by C a generic constant independent of ∆t and ǫ. For

all n ∈ {0, . . . , K − 1} and i = 1, . . . , m, set tn = n∆t and let the piecewise continuous function

in time:

U i,∆t(t, x) := ui,n+1(x), for t ∈ (tn, tn+1], (3.18)

with U i,∆t(0, x) := ui
0(x) satisfying (3.9).

Step 1: Upper bound on
∥∥U∆t

∥∥
(L2(0,T ;H1(Ω)))m

We will prove that U∆t = (U i,∆t)1≤i≤m satisfies

∫ T

0

‖∇U∆t(t)‖2(L2(Ω))m ≤ C.

For all n ∈ {0, . . . , K − 1} and i = 1, . . . , m we have

∇U i,∆t(t, x) = ∇ui,n+1(x), for t ∈ (tn, tn+1].

Then
∫ tn+1

tn

‖∇U i,∆t(t)‖2L2(Ω) = ∆t‖∇ui,n+1‖2L2(Ω).
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Hence

∫ T

0

‖∇U∆t(t)‖2(L2(Ω))m = ∆t
K−1∑

k=0

‖∇uk+1‖2(L2(Ω)m

≤ C1

δ
,

where we have used the entropy estimate (3.11) with C1 is given in (3.9). Hence, using Poincaré-

Wirtinger’s inequality we can get similarly an upper bound on

∫ T

0

∥∥U i,∆t
∥∥2
(L2(Ω))m

independently

of ∆t (using the fact that

∫

Ω

ui,n+1 =

∫

Ω

ui,n =

∫

Ω

ui,0 by equation (3.10)) .

Step 2: Upper bound on
∥∥U∆t

∥∥
(Var([0,T );H−1(Ω)))m

We will prove that ∥∥U∆t
∥∥
(Var([0,T );H−1(Ω)))m

≤ C.

We have for i = 1, . . . , m

∥∥U i,∆t
∥∥
Var([0,T );H−1(Ω))

=

K−1∑

n=0

∥∥U i,∆t(tn+1)− U i,∆t(tn)
∥∥
H−1(Ω)

=
K−1∑

n=0

∥∥ui,n+1 − ui,n
∥∥
H−1(Ω)

= ∆t

K−1∑

n=0

∥∥∥∥
ui,n+1 − ui,n

∆t

∥∥∥∥
H−1(Ω)

≤ ∆t

K−1∑

n=0

∥∥∥∥∥T
ǫ,ℓ(ui,n+1)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1 + δ∇ui,n+1

)∥∥∥∥∥
L2(Ω)

≤ ℓ∆t

K−1∑

n=0

{
‖A‖∞

m∑

j=1

∥∥∇ρη ⋆ u
j,n+1

∥∥
L2(Ω)

+ δ
∥∥∇ui,n+1

∥∥
L2(Ω)

}

≤ C,

where

‖A‖∞ = max
1≤i≤m

m∑

j=1

|Aij | , (3.19)

and we have used in the last inequality the entropy estimate (3.11), and the fact that

∆t
K−1∑

n=0

∥∥∇ui,n+1
∥∥
L2(Ω)

≤
√
T

(
∆t

K−1∑

n=0

∥∥∇ui,n+1
∥∥2
L2(Ω)

) 1

2

.

Step 3: Ui,∆t ∈ Lp(0,T,L2(Ω)) with p > 2
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The estimate (3.11) gives us that U i,∆t ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω)) for i = 1, . . . , m.

Using Sobolev injections we get H1(Ω) →֒ L2+α(N)(Ω), with α(N) > 0, and then U i,∆t ∈
L2(0, T ;L2+α(N)(Ω)). Hence by interpolation, we find thatU i,∆t ∈ Lp(0, T ;L2(Ω)) with

(
1

p
,
1

2

)
=

(1− θ)

(
1

∞ ,
1

2

)
+ θ

(
1

2
,

1

2 + α(N)

)
and θ ∈ (0, 1), i.e. for

p =
4 + 4α(N)

2 + α(N)
> 2. (3.20)

Step 4: Passage to the limit as (∆t, ǫ) → (0, 0)

By Steps 1,2 and 3 we have

∥∥U i,∆t
∥∥
Lp(0,T ;L2(Ω))

+
∥∥U i,∆t

∥∥
L1(0,T ;H1(Ω))

+
∥∥U i,∆t

∥∥
Var([0,T );H−1(Ω))

≤ C.

Then by noticing that H1(Ω)
compact→֒ L2(Ω)

continous→֒ H−1(Ω), and applying the variant of Simon’s

Lemma (Theorem 2.4), we deduce that (U i,∆t)∆t is relatively compact in L2(0, T ;L2(Ω)), and there

exists a function U = (U i)1≤i≤m ∈ (L2(0, T ;H1(Ω)))m such that, as (∆t, ǫ) → (0, 0), we have (up

to a subsequence)

U i,∆t → U i strongly in L2(0, T ;L2(Ω)).

By Step 1, we have ∇U i,∆t ⇀ ∇U i weakly in L2(0, T ;L2(Ω)). Now system (3.10) can be written

as

U i,∆t(t+∆t)− U i,∆t(t)

∆t
= div

{
J i
ǫ,ℓ,η,δ(U

i,∆t(t+∆t), U i,∆t(t+∆t))
}

in D′(ΩT ). (3.21)

Multiplying this system by a test function in D(ΩT ) and integrating over ΩT , we can pass directly

to the limit as (∆t, ǫ) → (0, 0) in (3.21) to get

U i
t = div

(
T 0,ℓ(U i)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ U
j + δ∇U i

))
in D′(ΩT ),

where we used the weak L2 - strong L2 convergence in the products such T ǫ,ℓ(U i,∆t)∇U i,∆t to get

the existence of a solution of system (3.16).

Step 5: Recovering the initial condition

Let ρ̄ ∈ C∞
c (R) with ρ̄ ≥ 0,

∫
R
ρ̄ = 1 and supp ρ̄ ⊂ (−1

2
, 1
2
). We set

ρ̄∆t(t) = ∆t−1ρ̄(∆t−1t), with ρ̄(t) = ρ̄(−t).
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Then we have

∥∥U∆t
t ⋆ ρ̄∆t

∥∥2
(L2(0,T ;H−1(Ω)))m

=

m∑

i=1

∫ T

0

∥∥∥∥∥

K−1∑

n=0

(ui,n+1 − ui,n)δtn+1
⋆ ρ̄∆t

∥∥∥∥∥

2

H−1(Ω)

=
m∑

i=1

K−1∑

n=0

∫ T

0

(∆tρ̄∆t(t− tn+1))
2

∥∥∥∥
ui,n+1 − ui,n

∆t

∥∥∥∥
2

H−1(Ω)

= C4∆t

m∑

i=1

K−1∑

n=0

∥∥∥∥
ui,n+1 − ui,n

∆t

∥∥∥∥
2

H−1(Ω)

≤ C4∆t

K−1∑

n=0

m∑

i=1

∫

Ω

∣∣∣∣∣T
ǫ,ℓ(ui,n+1)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1 + δ∇ui,n+1

)∣∣∣∣∣

2

≤ 2 C4ℓ
2∆t

K−1∑

n=0

m∑

i=1

∫

Ω





(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1

)2

+ δ2
∣∣∇ui,n+1

∣∣2




≤ 2 C4ℓ
2∆t

K−1∑

n=0

∫

Ω

{
‖A‖2

∥∥∇ρη ⋆ ρη ⋆ u
n+1
∥∥2
(L2(Ω))m

+ δ2
∥∥∇un+1

∥∥2
(L2(Ω))m

}

≤ 2 C4ℓ
2∆t

K−1∑

n=0

{
‖A‖2‖∇ρη ⋆ u

n+1‖2(L2(Ω))m + δ2
∥∥∇un+1

∥∥2
(L2(Ω))m

}

≤ 2 C4ℓ
2C1

(
‖A‖2
δ0

+ δ

)
≤ 2 C4ℓ

2C3

(
‖A‖2
δ0

+ δ

)
,

where δtn+1
is Dirac mass in t = tn+1, C1 as in (3.9), C3 as in (3.15), C4 :=

∫ T

0
ρ̄(t) dt, and

we have used in the last line the entropy estimate (3.11). Clearly, ρ̄∆t ⋆ U i,∆t
t ⇀ U i

t weakly in

L2(0, T ;H−1(Ω)) as (∆t, ǫ) → 0. Similarly we have that ρ̄∆t⋆U
i,∆t → U i strongly inL2(0, T ;L2(Ω))

since U i,∆t → U i inL2(0, T ;L2(Ω)). Then we deduce thatU i ∈ {g ∈ L2(0, T ;H1(Ω)); gt ∈ L2(0, T ;H−1(Ω))}.

And now U i(0, x) has sense, by Proposition 2.2, and we have that U i(0, x) = ui
0(x) by Proposition

5.1.

Step 6: Proof of estimate (3.17)

By Step 4, there exists a function U i ∈ L2(0, T ;H1(Ω)) such that the following holds true as

(∆t, ǫ) → (0, 0) 



U i,∆t → U i

∇U i,∆t ⇀ ∇U i

∇ρη ⋆ U
i,∆t → ∇ρη ⋆ U

i

∣∣∣∣∣∣
in L2(0, T ;L2(Ω)).

Now using the fact that the norm L2 is weakly lower semicontinuous, with a sequence of integers

n2 (depending on ∆t) such that tn2+1 → t2 ∈ (0, T ) and

U i,∆t(t2) = U i,∆t(tn2+1) = un2+1,
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we get for t1 < t2

∫ t2

t1

∫

Ω

∣∣∇U i
∣∣2 ≤

∫ t2

0

∫

Ω

∣∣∇U i
∣∣2 ≤ lim inf

(∆t,ǫ)→(0,0)

∫ tn2+1

0

∫

Ω

∣∣∇U i,∆t
∣∣2 = lim inf

(∆t,ǫ)→(0,0)
∆t

n2∑

k=0

∫

Ω

|∇ui,k+1|2,

(3.22)

and

∫ t2

t1

∫

Ω

∣∣∇ρη ⋆ U
i
∣∣2 ≤

∫ t2

0

∫

Ω

∣∣∇ρη ⋆ U
i
∣∣2 ≤ lim inf

(∆t,ǫ)→(0,0)
∆t

n2∑

k=0

∫

Ω

|∇ρη ⋆ u
i,k+1|2. (3.23)

Moreover, since we have U i,∆t → U i in L2(0, T ;L2(Ω)), we get that for a.e. t ∈ (0, T ) (up to a

subsequence) U i,∆t(t, ·) → U i(t, ·) in L2(Ω). For such t we have (up to a subsequence) U i,∆t(t, ·) →
U i(t, ·) for a.e. in Ω. Moreover, by applying Lemma 5.2 we get that for a.e. t ∈ (0, T )

Ψ0,ℓ(U
i(t)) ≤ lim inf

(∆t,ǫ)→(0,0)
Ψǫ,ℓ(U

i,∆t(t)). (3.24)

Integrating over Ω then applying Fatou’s Lemma we get for a.e. t1 < t2

m∑

i=1

∫

Ω

Ψ0,ℓ(U
i(t2)) ≤

∫

Ω

lim inf
(∆t,ǫ)→(0,0)

m∑

i=1

Ψǫ,ℓ(U
i,∆t(t2)) ≤ lim inf

(∆t,ǫ)→(0,0)

m∑

i=1

∫

Ω

Ψǫ,ℓ(u
i,n2+1). (3.25)

(3.22),(3.23) and (3.25) with the entropy estimate (3.11) give us that for a.e. t1 < t2 ∈ (0, T )

m∑

i=1

∫

Ω

Ψǫ,ℓ(U
i(t2)) + δ

m∑

i=1

∫ t2

t1

∫

Ω

∣∣∇U i
∣∣2 + δ0

m∑

i=1

∫ t2

t1

∫

Ω

∣∣∇ρη ⋆ U
i
∣∣2

≤ lim inf
(∆t,ǫ)→(0,0)

m∑

i=1

∫

Ω

Ψǫ,ℓ(u
i,n2+1) + lim inf

(∆t,ǫ)→(0,0)
δ∆t

m∑

i=1

n2∑

k=0

∫

Ω

|∇ui,k+1|2

+ lim inf
(∆t,ǫ)→(0,0)

δ0∆t
m∑

i=1

n2∑

k=0

∫

Ω

|∇ρη ⋆ u
i,k+1|2

≤
m∑

i=1

∫

Ω

Ψǫ,ℓ(u
i
0) ≤

m∑

i=1

∫

Ω

Ψ0,ℓ(u
i
0),

which is estimate (3.17).

Step 7: Non-negativity of Ui

Let Ωǫ :=
{
U i,∆t ≤ ǫ

}
. By estimate (3.11), there exists a positive constant C independent of ǫ and
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∆t such that for all i = 1, . . . , m we have

C ≥
∫

Ω

Ψǫ,ℓ(U
i,∆t)

≥
∫

Ωǫ

Ψǫ,ℓ(U
i,∆t)

=

∫

Ωǫ

1

e
+

(U i,∆t)2

2ǫ
+ U i,∆t ln ǫ− ǫ

2

≥
∫

Ωǫ

1

e
+

(U i,∆t)2

2ǫ
+ ǫ ln ǫ− 1

2

≥
∫

Ωǫ

(U i,∆t)2

2ǫ
− 1

2
,

i.e. ∫

Ωǫ

(U i,∆t)2

2ǫ
≤ C +

1

2
. (3.26)

Now by passing to the limit as (∆t, ǫ) → (0, 0) in (3.26) we deduce that

∫

Ω−

∣∣U i
∣∣2 = 0, where

Ω− := {U i ≤ 0}, which gives us that (U i)− = 0 in L2(Ω), where (U i)− = min(0, U i).

Remark 3.4. (Another method following [20])

Note that it would be also possible to use a theorem in Lions-Magenes [20, Chap. 3, Theorem

4.1, page 257]. This would prove in particular the existence of a unique solution for the following

system:




ui
t = div

{
J i
ǫ,ℓ,η,δ(v, u)

}
in D′(ΩT ),

J i
ǫ,ℓ,η,δ(v, u) = T ǫ,ℓ(vi)

{
m∑
j=1

Aij∇ρη ⋆ ρη ⋆ u
j + δ∇ui

}
,

ui(0, x) = ui
0(x) in Ω,

(3.27)

where T ǫ,ℓ is given in (1.15).

It would then be possible to find a fixed point solution v = u of (3.27) to recover a solution of

(3.16). We would have to justify again the entropy inequality (3.17).

3.4 Passage to the limit as (ℓ, η) → (∞, 0)

In this subsection we pass to the limit as (ℓ, η) → (∞, 0) in system (3.16) to get the existence of a

solution for system (3.28) given below (system independent of ℓ and η).

Let us introduce the system independant of ℓ and η. Asume that A satisfies (1.3). Let u0 = (ui
0)1≤i≤m

satisfying (1.5). Then for all δ > 0 we look for a solution u = (ui)1≤i≤m of the following system:





ui
t = div

{
ui

m∑

j=1

Aij∇uj + δui∇ui

}
in D′(ΩT ),

ui(0, x) = ui
0(x) a.e. in Ω.

(3.28)
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Proposition 3.5. (Existence for system (3.28))

Assume that A satisfies (1.3). Let u0 = (ui
0)1≤i≤m satisfying (1.5). Then for all δ > 0 there exists

a function u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω)) ∩ C([0, T ); (W 1,∞(Ω))′))m, with ui ≥ 0 a.e. on ΩT ,

solution of system (3.28), that satisfies the following entropy estimate for a.e. t1, t2 ∈ (0, T ) with

ui(t2) = ui(t2, .):

∫

Ω

m∑

i=1

Ψ(ui(t2)) + δ

∫ t2

t1

∫

Ω

m∑

i=1

∣∣∇ui
∣∣2 + δ0

∫ t2

t1

∫

Ω

m∑

i=1

∣∣∇ui
∣∣2 ≤

∫

Ω

m∑

i=1

Ψ(ui
0), (3.29)

with Ψ is given in (1.4).

Proof. Let C be a generic constant independent of ℓ and η, and uℓ := (ui,ℓ)1≤i≤m a solution of

system (3.16), where we drop the indices η and δ to keep light notations. The proof is accomplished

by passing to the limit as (ℓ, η) → (∞, 0) in (3.16) and using Simon’s lemma (Lemma 2.3), in order

to get the existence result.

Step 1: Upper bound on u
i,ℓ
t

m∑

i=1

‖ui,ℓ
t ‖L1(0,T ;(W 1,∞(Ω))′)

=

m∑

i=1

∫ T

0

∥∥∥∥∥div
{
T 0,ℓ(ui,ℓ)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ + δ∇ui,ℓ

)}∥∥∥∥∥
(W 1,∞(Ω))′

≤
m∑

i=1

∫ T

0

∫

Ω

∣∣∣∣∣T
0,ℓ(ui,ℓ)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ + δ∇ui,ℓ

)∣∣∣∣∣

≤
m∑

i=1

∫ T

0

∫

Ω

∣∣ui,ℓ
∣∣
{∣∣∣∣∣

m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ

∣∣∣∣∣ + δ
∣∣∇ui,ℓ

∣∣
}

≤ (1 + δ)

2

∥∥uℓ
∥∥2
(L2(0,T ;L2(Ω)))m

+
‖A‖2
2

∥∥∇ρη ⋆ u
ℓ
∥∥2
(L2(0,T ;L2(Ω)))m

+
δ

2

∥∥∇uℓ
∥∥2
(L2(0,T ;L2(Ω)))m

≤ C,

where we have used in the last inequality the entropy estimate (3.17), which is also valid for t1 = 0

and t2 = T , and Poincarré-Wirtinger’s inequality.

Step 2: Passage to the limit as (ℓ, η) → (∞, 0)

As in Step 3 of the proof of Proposition 3.3, estimate (3.17) gives us that ui,ℓ ∈ Lp(0, T, L2(Ω))

with p is given in (3.20) and then

∥∥ui,ℓ
∥∥
Lp(0,T ;L2(Ω))

+
∥∥ui,ℓ

∥∥
L1(0,T ;H1(Ω))

+
∥∥∥ui,ℓ

t

∥∥∥
L1(0,T ;(W 1,∞(Ω))′)

≤ C.
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Then by noticing that H1(Ω)
compact→֒ L2(Ω)

continous→֒ (W 1,∞(Ω))′, and applying Simon’s Lemma

(Lemma 2.3), we deduce that (ui,ℓ)ℓ is relatively compact in L2(0, T ;L2(Ω)), and there exists a

function ui ∈ L2(0, T ;H1(Ω)) such that, as (ℓ, η) → (∞, 0), we have (up to a subsequence)

ui,ℓ → ui strongly in L2(0, T ;L2(Ω)).

In addition, since ui,ℓ → ui a.e., ui is nonnegative a.e. hence T 0,ℓ(ui,ℓ) → ui strongly inL2(0, T ;L2(Ω)).

Multiplying system (3.16) by a test function in D(ΩT ) and integrating over ΩT we can pass directly

to the limit as (ℓ, η) → (∞, 0), and we get

ui
t = div

{
ui

m∑

j=1

Aij∇uj + δui∇ui

}
in D′(ΩT ).

where we used in particular the weak L2 - strongL2 convergence in the products such T 0,ℓ(ui,ℓ)∇ui,ℓ.

Therefore, u = (ui)1≤i≤m is a solution of system (3.28).

Step 3: Recovering the initial condition

First of all, let q =
2p

p+ 2
> 1, where p > 2 is given in Step 1 of this proof. It remains to prove that

for i = 1, . . . , m,
∥∥∥ui,ℓ

t

∥∥∥
Lq(0,T ;(W 1,∞)′(Ω))

< C. We have

‖ui,ℓ
t ‖Lq(0,T ;(W 1,∞(Ω))′) =

(∫ T

0

∥∥∥ui,ℓ
t

∥∥∥
q

(W 1,∞(Ω))′

) 1

q

=



∫ T

0

∥∥∥∥∥div
{
T 0,ℓ(ui,ℓ)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ + δ∇ui,ℓ

)}∥∥∥∥∥

q

(W 1,∞(Ω))′




1

q

≤
(∫ T

0

(∫

Ω

∣∣∣∣∣T
0,ℓ(ui,ℓ)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ + δ∇ui,ℓ

)∣∣∣∣∣

)q) 1

q

≤
(∫ T

0

(∫

Ω

∣∣ui,ℓ
∣∣
(∣∣∣∣∣

m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ

∣∣∣∣∣+ δ
∣∣∇ui,ℓ

∣∣
))q) 1

q

≤
∥∥ui,ℓ

∥∥
Lp(0,T ;L2(Ω))

∥∥∥∥∥

m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ

∥∥∥∥∥
L2(0,T ;L2(Ω))

+ δ
∥∥ui,ℓ

∥∥
Lp(0,T ;L2(Ω))

∥∥∇ui,ℓ
∥∥
L2(0,T ;L2(Ω))

≤
∥∥ui,ℓ

∥∥
Lp(0,T ;L2(Ω))

(
‖A‖∞

m∑

j=1

∥∥∇ρη ⋆ u
j,ℓ
∥∥
L2(0,T ;L2(Ω))

+ δ
∥∥∇ui,ℓ

∥∥
L2(0,T ;L2(Ω))

)
≤ C,

where we have used in the fifth line Holder’s inequality (since we have
1

q
=

1

p
+
1

2
) and in the last line

the entropy estimate (3.17) and Step 1 of this proof. Moreover, since W 1,1(0, T ; (W 1,∞(Ω))′) →֒
C([0, T ); (W 1,∞(Ω))′) then ui(0, x) makes sense and ui(0, x) = ui

0(x) for all i = 1, . . . , m, by
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Proposition 5.1.

Step 5: Proof of the estimate (3.29)

The proof is similar to Step 6 of the proof of Proposition 3.3.

3.5 Passage to the limit as δ → 0

Proof. Let C be a generic constant independent of δ and uδ := (ui,δ)1≤i≤m a solution of system

(3.28). We follow the lines of proof of Proposition 3.5.

An upper bound on ui,δ
t and estimate (3.29) allow us to apply Simon’s Lemma (Lemma 2.3), then

(ui,δ)δ is relatively compact in L2(0, T ;L2(Ω)), and there exists a function ui ∈ L2(0, T ;H1(Ω))

such that, as δ → 0, we have (up to a subsequence)

ui,δ → ui strongly in L2(0, T ;L2(Ω)),

and

ui
t = div

{
ui

m∑

j=1

Aij∇uj

}
in D′(ΩT ).

Similarly to Step 4 of the proof of Proposition 3.5 the initial condition is recoverd. Also estimate

(1.6) can be easily obtained.

Remark 3.6. (Passage to the limit as (ℓ, η, δ) → (∞, 0, 0))

It is possible to pass to the limit in system (3.16) as (ℓ, η, δ) → (∞, 0, 0) at the same time: By using

the entropy estimate (3.17) and applying Simon’s Lemma on the sequence ρη ⋆ u
i,ℓ instead of ui,ℓ.

Moreover, to get the entropy estimate (1.6) it is sufficient to use the fact that
∫
Ω
Ψ0,ℓ(ρη ⋆ ui,ℓ) ≤∫

Ω
ρη ⋆Ψ0,ℓ(u

i,ℓ).

4 Generalizations

4.1 Generalization on the matrix A

Assumption (1.3) can be weaken. Indead, we can assume that A = (Aij)1≤i,j≤m is a real m × m

matrix that satisfies a positivity condition, in the sense that there exist two positive definite diagonal

m×m matrices L and R and δ0 > 0, such that we have

ζTLAR ζ ≥ δ0|ζ |2, for all ζ ∈ R
m. (4.1)

Remark 4.1. (Comments on the positivity condition (4.1))

The assumption of positivity condition (4.1), generalize our problem for A not necessarily having

a symmetric part positive definite. Here is an example of such a matrix, whose symmetric part is

not definite positive, but the symmetric part of LAR is definite positive for some suitable positive
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diagonal matrices L and R.

We consider

A =

(
1 −a
2a 1

)
with |a| > 2.

Indeed,

Asym =
AT + A

2
=

(
1 a

2
a
2

1

)
,

satisfying det(Asym) = 1− a2

4
< 0. And let

L =

(
2 0
0 1

)
and R = I2 =

(
1 0
0 1

)
.

On the other hand,

B = L.A.R =

(
2 −2a
2a 1

)
,

satisfies that

Bsym =

(
2 0
0 1

)
,

is definite positive.

Proposition 4.2. (The case where L = I2)

Let A be a matrix that satisfies the positivity condition (4.1) with L = I2. Then ū is a solution for

system (1.1) with the matrix Ā = AR (instead of A) if and only if ui = Rii ū
i is a solution for

system (1.1) with the matrix A.

Proposition 4.3. (The case where R = I2)

Let un+1 = (ui,n+1)1≤i≤m be a solution of system (3.10) with a matrix A satisfying the positivity

condition (4.1) with R = I2 and L a positive diagonal matrix. Then un+1 satisfies the following

entropy estimate

m∑

i=1

∫

Ω

LiiΨǫ,ℓ(u
i,n+1) + δ∆t min

1≤i≤m
{Lii}

m∑

i=1

n∑

k=0

∫

Ω

|∇ui,k+1|2

+ δ0∆t
m∑

i=1

n∑

k=0

∫

Ω

|∇ρη ⋆ u
i,k+1|2 ≤

m∑

i=1

∫

Ω

LiiΨǫ,ℓ(u
i
0)
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Proof. We have that (from fifth line of the computation in Step 5 of the proof of Proposition 3.2)

m∑

i=1

∫

Ω

Lii

(
Ψǫ,ℓ(u

i,n+1)−Ψǫ,ℓ(u
i,n)

∆t

)
≤ −

∫

Ω

m∑

i=1

m∑

j=1

LiiAij(∇ρη ⋆ ρη ⋆ u
j,n+1) · ∇ui,n+1

−δ

m∑

i=1

∫

Ω

Lii|∇ui,n+1|2

≤
∫

Ω

m∑

i=1

m∑

j=1

(∇ρη ⋆ u
j,n+1)LiiAij(∇ρη ⋆ u

i,n+1)

−δ

m∑

i=1

∫

Ω

Lii|∇ui,n+1|2

≤ −δ0

∫

Ω

m∑

i=1

|∇ρη ⋆ u
i,n+1|2

−δ min
1≤i≤m

{Lii}
m∑

i=1

∫

Ω

|∇ui,n+1|2,

where we have used, in the last line, the fact that the matrix A satisfies (4.1) with R = I2. Then by

a straightforward recurrence we get (4.2).

Corollary 4.4. Theorem 1.1 still hold true if we replace condition (1.3) by condition (4.1).

4.2 Generalisation on the problem

4.2.1 The tensor case

Our study can be applied on a generalized systems of the form

ui
t =

m∑

j=1

N∑

k=1

N∑

l=1

∂

∂xk

(
fi(u

i)Aijkl

∂uj

∂xl

)
for i = 1, . . . , m, (4.2)

where fi satisfies





fi ∈ C(R),

0 ≤ fi(a) ≤ C(1 + |a|) for a ∈ R and C > 0,

c |a| ≤fi(a) for a ∈ [0, a0] with a0, c > 0,

∫ A

a0

1

fi(a)
da < +∞ for all A ≥ a0.

An example for such fi is

fi(a) = max
(
0,min

(
a,
√
|a− 1|

))
.
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Moreover, A = (Aijkl)i,j,k,l is a tensor of order 4 that satisfies the following positivity condition:

there exists δ0 > 0 such that

∑

i,j,k,l

Aijkl η
i ηj ζk ζl ≥ δ0|η|2|ζ |2 for all η ∈ R

m, ζ ∈ R
N . (4.3)

The entropy function Ψi is chosen such that Ψi is nonnegative, lower semi-continuous, convex and

satisfies that Ψ′′
i (a) =

1

fi(a)
for i = 1, . . . , m. Our solution satisfies the following entropy estimate

for a.e. t > 0
m∑

i=1

∫

Ω

Ψi(u
i(t)) + δ0

m∑

i=1

∫ t

0

∫

Ω

|∇ui|2 ≤
m∑

i=1

∫

Ω

Ψi(u
i
0). (4.4)

To get this entropy we can apply the same strategy announced in Subsection 1.4 where fi(u
i) will

be replaced by T ǫ,ℓ(fi(v
i)) with T ǫ,ℓ given in (1.15) and we use the fact that

∫

Ω

∑

i,j,k,l

∂ui

∂xk

Aijkl

∂uj

∂xl

=
∑

n∈ZN

∑

i,j,k,l

(̂
∂ui

∂xk

)
(n)Aijkl

(̂
∂uj

∂xl

)
(n)

=
∑

n∈ZN

∑

i,j,k,l

nk ûi(n)Aijkl nl ûj(n)

≥ δ0
∑

n∈ZN

|n|2 |û|2 = δ0 ‖∇u‖2(L2(Ω))m .

4.2.2 The variables coefficients case

Here the coefficients Aij(x, u) may depend continuously of (x, u). Then we have to take ρη ⋆

(Aij(x, u)(∇ρη ⋆ u
j)) instead of Aij∇(ρη ⋆ ρη ⋆ u

j) in the approximate problem. We can consider a

problem

ui
t = div

(
ui

m∑

j=1

Aij(x, u)∇u

)
+ gi(x, u), with gi ≥ 0,

where the source terms are not too large as u goes to infinity.

4.2.3 Laplace-type equations

Moreover, our method applies to models of the form

ui
t = ∆(ai(u)u

i) with u = (ui)1≤i≤m, (4.5)

under these assumptions:




ai(u) ≥ 0 if uj ≥ 0 for j = 1, . . . , m,
ai is sublinear,
ai ∈ C1(R),

Sym

((
∂ai
∂uj

)

i,j

)
≥ δ0I with δ0 > 0,

(4.6)
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where Sym denotes the symmetric part of a matrix. We can consider a particular case of (4.5) where

ai(u) =

m∑

j=1

Aiju
j . Then problem (4.5) can be written as

ui
t = div

{
ui

m∑

j=1

Aij∇uj +

(
m∑

j=1

Aijuj

)
∇ui

}
, (4.7)

which can be also solved under these assumptions:

{
Aij ≥ 0 for i, j = 1, . . . , m,
Sym(A) ≥ δ0I.

4.2.4 Diffusion matrix

We can consider the model

ui
t = div

(
m∑

j=1

m∑

k=1

Bijku
j∇uk

)
, for i = 1, . . . , m. (4.8)

where Sym
(
(
∑m

j=1Bijk)i,k

)
≥ δ0I .

5 Appendix: Technical results

In this section we will present some technical results that are used in our proofs.

Proposition 5.1. (Recovering the initial condition)

Let Y be a Banach space with the norm ‖.‖Y . Consider a sequence (gm)m ∈ C(0, T ; Y ) such that

(gm)t is uniformly bounded in Lq(0, T ; Y ) with 1 < q ≤ ∞, and (gm)|t=0 → g0 in Y . Then there

exists g ∈ C(0, T ; Y ) such that gm → g in C(0, T ; Y ) and

g|t=0 = g0 in Y.

Proof. We have that for all s < t ∈ (0, T )

‖gm(t)− gm(s)‖Y =

∥∥∥∥
∫ t

s

(gm)τ (τ)

∥∥∥∥
Y

≤
∫ t

s

‖(gm)τ (τ)‖Y ds

≤ (t− s)
q−1

q ‖(gm)τ (τ)‖Lq(0,T ;Y ) ≤ (t− s)
q−1

q C, (5.1)

where we have used in the second line Holder’s inequality, and the fact that (gm)τ is uniformly

bounded in Lq(0, T ; Y ). Since (5.1) implies the equicontinuity of (gm)m, by Arzelà-Ascoli theorem,
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there exists g ∈ C(0, T ; Y ) such that gm → g in C(0, T ; Y ). Moreover, Taking s = 0 in (5.1) we

get

‖gm(t)− gm(0)‖Y ≤ t
q−1

q C. (5.2)

By passing to the limit in m in (5.2), we deduce that

‖g(t)− g0‖Y ≤ t
q−1

q C

Particularly, for t = 0, we have

‖g(0)− g0‖Y = 0.

This implies the result.

Lemma 5.2. (Convergence result)

Let (aǫ)ǫ a real sequence such that aǫ → a0 as ǫ → 0. Then we have

Ψ0,ℓ(a0) ≤ lim inf
ǫ→0

Ψǫ,ℓ(aǫ),

where Ψǫ,ℓ and Ψ0,ℓ are given in (3.8) and (3.14) respectively.

Proof. Consider the case where a0 = 0.

We suppose that the sequence (aǫ)ǫ ∈ (−∞; 1
e
]. Let (bǫ)ǫ ∈ (−∞; 1

e
] a sequence that decreases to 0

as ǫ → 0 with bǫ > aǫ. Since Ψǫ,ℓ is decreasing on (−∞; 1
e
] we have Ψǫ,ℓ(aǫ) ≥ Ψǫ,ℓ(bǫ). Moreover,

using the fact that Ψǫ,ℓ(bǫ) → 0 = Ψ0,ℓ(0) we get the result.

Otherwise, when (aǫ)ǫ ∈ (1
e
; +∞) the proof is the same as above but with taking bǫ < aǫ since Ψǫ,ℓ

is nondecreasing in (1
e
; +∞).

For the other cases, a0 < 0 and a0 > 0, the result is easily obtained.
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[4] BREZIS, H., Analyse fonctionnelle, Théorie et applications. Dunod, Paris, (1999).
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