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Abstract

Motivation: Extracting geometrical information from large 2D or 3D

biomedical images is important to better understand fundamental phe-

nomena such as morphogenesis. We address the problem of automatically

analyzing spatial organization of cells or nuclei in 2D or 3D images of

tissues. This problem is challenging due to the usually low quality of

microscopy images as well as their typically large sizes.

Results: The structure tensor is a simple and robust descriptor that

was developed to analyze textures orientation. Contrarily to segmentation

methods which rely on an object based modelling of images, the structure

tensor views the sample at a macroscopic scale, like a continuum. We

propose an original theoretical analysis of this tool and show that it allows

quantifying two important features of nuclei in tissues: their privileged

orientation as well as the ratio between the length of their main axes. A

quantitative evaluation of the method is provided for synthetic and real 2D

and 3D images. As an application, we analyze the nuclei orientation and

anisotropy on multicellular tumor spheroids cryosections. This analysis

reveals that cells are elongated in a privileged direction that is parallel to

the boundary of the spheroid.

Availability: Source codes are available at

http://www.math.univ-toulouse.fr/~weiss/

∗Corresponding author: pierre.armand.weiss@gmail.com
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1 Introduction

The advent of new imaging technologies allows observing biological samples with
an unprecedented spatial, temporal and spectral resolution. It offers new op-
portunities to perform systematic studies of geometrical configurations of cells
or nuclei in their micro-environment to better understand the fundamental pro-
cesses involved in morphogenesis or tumor growth [22, 18].

Due to the huge amount of data contained in large images, automatic pro-
cedures are however essential to assess cells properties such as location, size,
orientation, aspect ratio, etc... The lack of robust, fast and universal procedures
to provide such a geometric description is probably one of the main obstacles
to exploit the full potential of images.

The mainstream approach to analyze image contents nowadays consists in
segmenting each cell/nuclei independently [22, 24]. A precise segmentation com-
pletely describes the geometrical contents of images and is often regarded as the
best source of information one can hope for. However biological images often
suffer from many degradations. For instance, in fluorescence microscopy, light
scattering, absorption or poor signal to noise ratio strongly impair image qual-
ity, especially in 3D. In many situations it is therefore hopeless to perform a
proper image segmentation. Moreover, in cases where large cell populations are
investigated, a complete segmentation (i.e. a precise description of the objects
boundaries) still brings more information than needed to understand the overall
geometrical distribution.

In this paper we therefore pursue a somehow less ambitious goal. We adopt
a macroscopic point of view and consider the biological sample as a continuous
medium. This idea stems from mathematical models that describe tissues as
continuous media such as incompressible fluids, elastic or viscoelastic materials
[6, 1, 17, 16, 4]. Our main contribution is to show through both theoretical and
numerical results that the so-called structure tensor [12, 3, 13], provides a fast,
robust and precise enough tool to retrieve cells orientation and anisotropy in
2D and in 3D. We show the following original results:

• While the structure tensor is usually implemented to assess texture orien-
tations, we show that it also allows quantifying precisely the anisotropy
of cells or nuclei. This is done by analyzing the method behavior on fields
of functions with ellipsoidal isosurfaces.

• The proposed mathematical analysis also allows quantifying the method
bias. It shows that a very good estimation can be expected even when
very few nuclei are locally similar (in the sense that they can be well
approximated by the same ellipsoid).

• We show that the method is invariant under contrast changes.

We also perform various experiments to validate our theoretical findings. We
assess the structure tensor efficiency on synthetic and real 2D and 3D images.
Its output is compared to ground-truth obtained analytically in case of synthetic
data or manually in case of real data. These comparisons show that the structure
tensor allows to quickly assess cells organization at a large scale. We finish the
paper by providing an example of application to the analysis of geometrical
configurations of nuclei in multicellular tumor spheroids.
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Related work The structure tensor has already been used in various contexts
of biological imaging. One of its main applications is coherence enhancing or
diffusion [33, 34, 24] which usually allows improving images quality without
degrading their geometrical content too much. It was also used to analyze
geometrical features such as fibers orientations in 2D and 3D [23, 20, 10, 26, 11].
The works [26, 11] also come with an ImageJ plugin http://bigwww.epfl.

ch/demo/orientation/. This plugin has a nice interface and can be used to
reproduce some experiments of our paper. The authors of these two references
mention that the structure tensor allows quantifying the orientation and the
isotropy properties of a region of interest. However, the isotropy is defined in
a way different from the present paper and the authors do not state precisely
how this information relates to the image contents.

Paper organization The rest of the paper is organized as follows. Notation
is introduced in Section 2. Section 3 constitutes the theoretical part of the
paper. We introduce the structure tensor and demonstrate its properties when
applied to images that consist in fields of functions with ellipsoidal isosurfaces.
In Section 4, we illustrate the method on synthetic and real 2D and 3D data.

2 Notation

For any x, y ∈ Rd, the angle in degrees between x and y is denoted ∠(x, y), this
angle lies in [0◦, 90◦]. The ℓp-norm of x ∈ Rd is denoted ‖x‖p and defined by

‖x‖p := (
∑d

i=1 |xi|
p)1/p. The positive semidefiniteness of a matrix A is denoted

A � 0. The spectral norm of a matrix A is denoted ‖A‖2. We denote Ā :=
A/‖A‖2 the normalized version of A. The largest (resp. smallest) eigenvalue
of A is denoted λmax(A) (resp. λmin(A)). The notation Id denotes the identity
operator. Given a vector x ∈ Rd, we let diag(x) denote a diagonal matrix
whose diagonal elements are the entries of x. The Givens transform, denoted
by Rθ

ij ∈ Rd×d, represents a counter-clockwise rotation for an angle θ in the

(i, j)-coordinates plane. In the particular case d = 2, it is abbreviated Rθ.

3 Theoretical analysis

The structure tensor appeared in the field of image processing in the late 80’s [12]
for the problem of interest point detection. It was then justified theoretically and
popularized in different contexts such as interest point detection [12, 15], texture
analysis [3, 13], representation of flow-like images [25], optical flow problems [19]
and anisotropic or coherence enhancing diffusion [24, 33, 34].

In this section, we first recall the definition of structure tensor, then show
its capability of analyzing fields of locally coherent ellipses (in 2D) or ellipsoids
(in 3D). The motivation for introducing fields of ellipses is that images such as
Figure 3 are a rather good approximation of certain dense tissues such as mi-
crotumors. To the best of our knowledge, even though fields of locally coherent
ellipsoids share some similarities with flow-like images, the proposed theoretical
analysis and results are original and shed a novel light on the structure tensor.
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3.1 Preliminary facts about the structure tensor

Let u : Rd → R denote a grayscale image. In this paper, we restrict on the
practical cases d = 2 and d = 3, although the theory is valid in any dimension.
For ease of exposition, we assume that u ∈ C1(Rd) and has bounded partial
derivatives. The function K ∈ L1(Rd) is a filter that satisfies the following
conditions:

(i) K(x) ≥ 0, ∀x ∈ R
d; (ii)

∫

Rd

K(x) dx = 1. (1)

For any ρ > 0, we define Kρ the scaled version of K by

Kρ(x) :=
1

ρd
K

(
x

ρ

)
, ∀x ∈ R

d. (2)

The conditions (1) still hold for any ρ > 0. In practice, K is usually a smoothing
filter (e.g. a Gaussian) and Kρ is a scaled version at scale ρ.

The structure tensor of u, denoted by Jρ, is defined by

Jρ := Kρ ⋆
(
∇u∇uT

)
, (3)

where ∇ denotes the gradient operator and ‘⋆’ is the convolution operation
which acts independently on each component of the d×d tensor ∇u∇uT . Using
the boundedness of the partial derivatives of u and the conditions (1), we have

| (Jρ(x))i,j | ≤

(∫

Rd

|Kρ(x− y)| dy

)

︸ ︷︷ ︸
=1

(
max
y∈Rd

|(∂iu∂ju)(y)|

)
< +∞

for any x ∈ Rd, which implies that Jρ is bounded in Rd. Notice that the
definition given in equation (3) differs slightly from that found in standard
articles or textbooks such as [33, 34]. Therein, the image u is first convolved
with a Gaussian filter and the filter K is assumed to be a Gaussian, see the
discussion in Section 3.4.

A useful property of structure tensor is its positive semidefiniteness, which is
a direct consequence of (1) and the convexity of the cone of symmetric positive
semidefinite matrices.

Proposition 1 (Positive semidefiniteness) The structure tensor satisfies Jρ(x) �
0 for any ρ > 0 and any x ∈ Rd.

3.2 Structure tensor and a single ellipsoid

In this section, we analyze the structure tensor behavior on a simple image
whose isosurfaces are concentric ellipsoids. We show that it allows recovering
its principal orientations as well as the ratios between the length of the ellipsoid
main axes.

Let ϕ : R+ → R denote a C1 function different from 0 satisfying ϕ′(0) =
0. Let A ∈ Rd×d denote a symmetric positive-definite matrix with spectral
decomposition A = UΣUT , where Σ = diag(σ−2

1 , . . . , σ−2
d ) and U is orthogonal.

Let x = (x1, . . . , xd). Define ψ : Rd → R by

ψ(x) := ϕ(xTAx), ∀x ∈ R
d. (4)
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Figure 1: Representation of ψ in (4) with specific ϕ, U and Σ in (5)-(6). Left:
the case σ1 = 2, σ2 = 1 and θ = 0◦. Right: the case σ1 = 2, σ2 = 1 and θ = 30◦.

The isosurfaces of ψ are ellipsoids in Rd with semiaxes of length σi (i =
1, 2, · · · , d).

Example 1 Let ϕ : R → R denote the bump function

ϕ(t) =

{
exp

(
− 1

1−t2

)
, if |t| < 1;

0, otherwise,
(5)

and let

U =

(
cos θ sin θ
− sin θ cos θ

)
and Σ =

(
σ−2
1 0
0 σ−2

2

)
. (6)

With the above choices, the level lines of ψ in (4) are ellipses in R2 (see Figure
1).

Proposition 2 Let u := ψ with ψ defined in (4). Assume that supp(ψ) ⊂[
− 1

2 ,
1
2

]d
. Let K be the indicator of a unit disk:

K(x) =

{
Cd, if ‖x‖2 ≤ 1;

0, otherwise,
(7)

where the normalizing constant Cd is chosen so that the normalization condition
(ii) of (1) is satisfied. Then, for all ρ ≥

√
d/2, we have J̄ρ(0) = Ā and if x is

small enough then J̄ρ(x) = J̄ρ(0).

The above proposition leads to the following observations:

• First, for simple functions with ellipsoidal isosurfaces, a diagonalization
of the structure tensor allows recovering the orientation matrix U as well
as the matrix Σ up to a multiplicative constant. In 2D, it means that√
λmin(Jρ(0))/λmax(Jρ(0)) is the ratio between the principal axes.
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• Second, since this result holds for any function ϕ, the method is con-
trast invariant, which is a highly desirable property. Contrast invariance
basically indicates that the method should behave similarly on different
imaging devices or when using different stainings.

• Third, the structure tensor is stable in the sense that this result holds not
only at point 0, but also in a neighborhood of 0.

3.3 Structure tensor and fields of ellipsoids

In the previous section, we focussed on a very simple image u. We now turn to
a slightly more realistic setting where u is the sum of functions with ellipsoidal
isosurfaces and nonoverlapping support.

We use the same notation as in the previous section and assume that supp(ψ) ⊂[
− 1

2 ,
1
2

]d
. The Dirac comb, denoted by X, is defined by

X :=
∑

x∈Zd

δx,

where δx is the Dirac delta function (see e.g. [5]). Consider the image u

u = X ⋆ ψ, (8)

where ψ is defined in (4). The image u consists of a function ψ replicated
periodically over all Rd. Note that the translated versions of ψ do not overlap

since supp(ψ) ⊂
[
− 1

2 ,
1
2

]d
. Figure 2 illustrates such an image in the 2D case.

In Proposition 2, it is proven that J̄ρ(0) = Ā, which implies that Jρ(0)
possesses adequate information to retrieve the orientation and anisotropy of u.
However, that proposition holds under the following assumptions: (i) the im-
age u has concentric ellipsoidal isosurfaces without neighbors; (ii) the ellipsoid’s
center should be known. Both requirements are hardly met in practical appli-
cations. We develop below a stronger theory stating that the structure tensor
allows recovering the orientation and anisotropy at every point of the image do-
main. Namely, for the image u defined in (8), we expect that J̄ρ(x) ≃ Ā holds at
any x ∈ Rd. The questions we tackle in this paragraph are the following: does
the structure tensor provide an approximation of Ā at any point of the image
domain? How many cells are necessary to reach a low approximation error?

The following proposition provides a preliminary answer.

Proposition 3 Let K be the function defined in (7) and u be the image defined
in (8). Then ‖J̄ρ(x)− Ā‖2 = O(1/ρ) for all x ∈ Rd.

Proposition 3 indicates that J̄ρ(x) ≃ Ā for any x ∈ Rd and sufficiently large
ρ. However, the asymptotic O(1/ρ) convergence rate is not compelling. The
following theorem shows that much more attractive results can be obtained by
using smoother kernels.

Theorem 1 Let K be the Gaussian function

K(x) =
1

(2π)d/2
exp

(
−
‖x‖22
2

)
(9)
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Figure 2: Left: image u defined in (8). The axes lengths of a single ellipsoid are
respectively 8 and 4 pixels. Right: ‖J̄ρ(x)− Ā‖2 w.r.t. ρ.

and u be the image defined in (8). Then there exits a constant C > 0 s.t. ∀ρ ≥ 1
2

and ∀x ∈ Rd:
∥∥J̄ρ(x)− Ā

∥∥
2
≤ C exp

(
−
ρ2

2

)
.

Surprisingly, the convergence of J̄ρ(x) to Ā is extremely fast if smooth filters
are exploited. Theorem 1 implies that moderate values of ρ’s should produce
satisfactory orientation and anisotropy estimates, and it follows from numerical
experiments that a value of ρ of the order of the radius of the objects of interest
is sufficient. A closer inspection at the proof of Theorem 1 reveals that the
smoothness of the filter function plays a key role to control the asymptotic
convergence rate.

Theorem 1 is illustrated in the 2D case in Figure 2. It shows that the
magnitude ‖J̄ρ(x) − Ā‖2 decreases to zero (up to numerical errors) extremely
fast. An ellipse is around 8 pixels wide and a value of ρ around 5 provides results
nearly as good as can be expected.

3.4 A note on pre-processing

As mentioned in Section 3.1, the structure tensor definition (3) is different from
what is found in [33, 34]. The image u is usually pre-convolved with a Gaussian
filter so as to improve the signal-to-noise-ratio. Before getting further in our
investigation, let us illustrate the detrimental effect of this strategy.

Assume for simplicity that u = ψ and that ϕ(t) = exp(−t/2). The image
u(x) = exp

(
−xTAx/2

)
is thus a Gaussian function with covariance matrix A−1.

If u is further convolved with a Gaussian filter as in [33, 34], we obtain

uσ := Kσ ⋆ u,

where K is the Gaussian filter defined in (9). By exploiting the facts that the
convolution of Gaussian functions is still a Gaussian and that the covariance
matrices sum up, we obtain

uσ(x) ∝ exp

(
−
xT (A−1 + σ2Id)−1x

2

)
,

where Id is identity matrix. Consequently, pre-convolving u with a Gaussian
filter shifts the eigenvalues of A by a quantity σ2. This, in turn, results in biased
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anisotropy estimates. For instance, in the 2D case, the structure tensor based
anisotropy obtained using uσ is

(
λ−1
max(A) + σ2

λ−1
min(A) + σ2

)1/2

,

which is different from the ground truth anisotropy
(

λmin(A)
λmax(A)

)1/2

.

The simple analysis above shows that in practice, more advanced image
denoising techniques that keep isosurfaces unchanged should be preferred over
a simple convolution with a Gaussian filter. A wide choice is now available such
as anisotropic diffusion, total variation denoising, frame based regularization or
non-local methods [31, 27, 29, 7, 8].

4 Numerical validation

In this section, we conduct some numerical experiments to evaluate the structure
tensors performance on synthetic and real data. The main biological problem
addressed in our experiments is the analysis of geometrical configurations of nu-
clei in multicellular tumor spheroids. There are at least two reasons making this
analysis relevant. First, tumor development is associated with a disorganization
of the tissue. The role played by this disorganization is not well understood yet
and it has been shown that it could have an impact on tumor cell behavior [36].
Second, among the key parameters involved in tumor growth, those related to
mechanical forces seem to play a critical role [21, 30, 9]. The elongation of nu-
clei in a preferential direction is an indicator of local stresses [14, 32]. Assessing
the anisotropy and orientation of nuclei in their micro-environment is therefore
crucial to better understand tumor organization and mechanics.

4.1 Implementation details

Up to now, we only performed theoretical analyses in the continuous domain.
In practice, the structure tensor should be adapted to the discrete setting.

The discrete gradient operator ∇ is defined by ∇ =



∂1
...
∂d


. In all reported

experiments, the partial differential operators ∂i are defined as convolutions
with discrete kernels. From an asymptotic point of view any kernel leading to a
consistent discretization should provide good results. However, the kernel design
turns out to be crucial to provide good orientation and anisotropy estimates.
Key properties of discrete kernels are [35]: i) rotation invariance, ensuring a
reliable orientation estimation, ii) separability, ensuring faster computations and
iii) no shift, implying the use of centered finite differences. Following these
criteria, the authors of [35] suggested to use the following filter in 2D:

h =
1

32




−3 0 3
−10 0 10
−3 0 3


 .

8



i.e. to set ∂1u = h ⋆ u and ∂2u = hT ⋆ u. Using the same methodology in 3D,
one can derive the following filter (using Matlab notation):

h(:, :, 1) =



0.0153 0 −0.0153
0.0568 0 −0.0568
0.0153 0 −0.0153


 ,

h(:, :, 2) =



0.0568 0 −0.0568
0.2117 0 −0.2117
0.0568 0 −0.0568




and h(:, :, 3) = h(:, :, 1).

The gradient is computed in the space domain, while the convolution withKρ

is based on fast Fourier transforms. The overall computational complexity for
an image with n pixels is therefore O(n log(n)). In practice, the structure tensor
can be computed in near real-time for 2D images and takes a few seconds for 3D
images. It can be very easily parallelized on multicore or GPU architectures. All
codes were written in Matlab 7.9 and experiments were conducted on a Lenovo
personal computer with Intel Core (TM) CPU 2.30GHZ and 8G memory.

4.2 2D and 3D synthetic data

In order to validate the theory, we first concentrate on 2D and 3D synthetic
tumor spheroids.

4.2.1 Synthesizing images

A tumor spheroid image u : Rd → R+ is synthesized by

u(x) =

N∑

i=1

ϕ
(
(x− xci )

TAi(x− xci )
)
, ∀x ∈ R

d, (10)

where N is the number of nuclei in the spheroid; ϕ is the bump function defined
in (5); and xci ∈ Rd is the i-th nucleus center. The centers are drawn at random
in a d-dimensional sphere in such a way that the nuclei do not overlap.

• If d = 2, the matrix Ai ≻ 0 is defined by

Ai = Rθidiag(σ−2
1,i , σ

−2
2,i )(R

θi)T . (11)

where Rθi is the Givens transform (see Section 2); θi is the phase angle of
the radial line issued from the origin and crossing the nucleus center xci ,
see Fig. 1.

• If d = 3, the matrix Ai ≻ 0 is defined by

Ai = Rθi
1,2R

γi

2,3diag(σ−2
1,i , σ

−2
2,i , σ

−2
3,i )(R

θi
1,2R

γi

2,3)
T , (12)

where θi, γi denote the compass and elevation angles of the radial line
crossing the ellipsoid center.
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The anisotropy of the i-th nucleus is defined by

αi :=

min
k=1,2,··· ,d

σk,i

max
k=1,2,··· ,d

σk,i
. (13)

In our 2D experiment, the anisotropy αi increases linearly from the image center
to the outer layers of the sphere. For the 3D case, the anisotropy αi is set as
constant. Figure 3(a) and Figure 6 (a)-(b) display the 2D and 3D synthetic
spheroids respectively.

4.2.2 Measuring the performance

In order to assess the structure tensor efficiency, we evaluate the following quan-
tities:

• Orientation. Let ṽi denote the eigenvector corresponding to the largest
eigenvalue of Jρ(x

c
i ) and vi = (cos θi, sin θi) denote the ground truth ori-

entation. The following angles

∠(ṽi, vi), i = 1, 2, · · · , N, (14)

are used to evaluate the orientation accuracy in 2D. An angle close to
0◦ indicates a good orientation estimation, while an angle close to 90◦ is
the worst possible estimate. For the 3D case, we choose for ṽi either the
largest eigenvector (prolate spheroid) ot the smallest eigenvector (oblate
spheroid).

• Anisotropy. The structure tensor based anisotropy is defined by α̃i =(
λmin(Jρ(x

c
i ))

λmax(Jρ(xc
i
))

)1/2

. The ratio

α̃i/αi, i = 1, 2, · · · , N, (15)

is used to quantify the estimated anisotropy accuracy, where αi is ground-
truth anisotropy, see (13). A ratio close to 1 indicates that the anisotropy
is correctly evaluated.

• Spectral norm. In the experiments based on synthetic images, a matrix
A(x) can be associated to every point of the image domain. We can
therefore evaluate the spectral norm ‖J̄ρ(x)− Ā(x)‖2 everywhere and not
only at the nuclei centers.

4.2.3 2D synthetic data

We report numerical results on the 2D synthetic spheroid displayed in Figure
3(a). The spheroid is first approximated by the nuclei convex hull, denoted
by H. The green curve in Figure 3(d) represents the convex hull boundary1,
denoted by ∂H. Note that the upcoming analyses are all restricted to the convex
hull.

1In Matlab, this result can be obtained by first thresholding the image and then using
the quickhull algorithm [2] (convhull command).
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(a) (b) (c)

(d) (e) (f)

Figure 3: 2D synthetic data (a) 512×512 synthetic tumor spheroid (b) ground-
truth orientations (c) ground-truth anisotropy (d) ground-truth orientations (e)
Structure tensor based orientations (f) Structure tensor based anisotropy.

We use the value ρ = 5 in (3), this value is to be compared with the small
axis of the ellipses that is σ1 = 10 and the large axis which ranges σ2 from
10 to 32. An adequate value for ρ is of the order of the radius of the objects
of interest. Figure 3 (e)-(f) show the structure tensor based orientations and
anisotropies which should be compared to the ground truth ones in Figure 3
(b)-(c). The orientations and anisotropy are clearly very well estimated. This
is somehow surprising since for this image, only a small number of cells share
the same orientation and anisotropy locally. This favorable behavior is another
illustration of the fast convergence speed obtained in Theorem 1.

To further quantify the accuracy of the results, the quantities (14)-(15) are
evaluated. The histograms of both quantities are displayed in Figure 4. They
show that approximately 95% of estimated orientations have an angular error
below 4◦. Similarly, approximately 65% of estimated anisotropies have a an
error below 10%.

Finally, when using synthetic data, a ground-truth structure tensor A(x) can
be defined at every point of the image domain. We can thus compare the four
coefficients of the 2 × 2 matrix Ā(x) with the coefficients of J̄ρ. The distance
‖J̄ρ − Ā‖2 can also be evaluated at every point of the image domain, see Figure
5. We observe that the structure tensor approximates accurately the ground
truth tensor.

4.2.4 3D synthetic data

We now test the structure tensor efficiency on 3D synthetic data generated
by formula (12), see Figures 6(a) for an oblate example and (b) for a prolate
example. The structure tensor Jρ is computed with ρ = 5. The estimated
orientations are displayed in Figure 6 (e) and (f) while the ground truth orien-
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Figure 4: Analysis of structure tensor based accuracy for the 2D test case.
Histograms of orientations errors (left) and of anisotropy errors (right).

Figure 5: Four coefficients of matrix Ā (left), four coefficients of matrix J̄ρ
(center) and error map ‖J̄ρ − Ā‖2 (right).

tations are displayed in Figure 6 (c) and (d). The orientation is well retrieved.
This is also confirmed by the histogram in Figure 7. Moreover, the histogram
of anisotropy discrepancies show that approximately 70% of the anisotropies
are evaluated with an error below 10%. Overall, these results confirm that the
structure tensor is also very attractive to estimate anisotropies and orientations
for 3D data.

4.3 Performance evaluation on real spheroid images

We now evaluate the structure tensor based orientation and anisotropy on a 2D
real image. The image that we use in our experiment contains 1465 nuclei. The
’gold standard’ reference was obtained manually. The scalar ρ is set to 10 in
this section. This value was selected manually and corresponds roughly to the
radius of the nuclei.

The gold standard and estimated orientations are displayed in Figure 8.
The orientation and anisotropy errors are presented in Figure 9(a) and (b)
respectively.

Let us emphasize that the gold standard is subject to many errors since
i) a preferential orientation cannot be defined properly on isotropic cells and
ii) fitting a thousand ellipses manually is subject to many errors. Moreover,
real data strongly depart from the ideal models considered in Section 3 since
(i) the SNR of real tumor spheroid image is typically low due to noise, blur,
variations in illumination, etc; (ii) the nuclei geometry is only approximately
ellipsoidal; (iii) the nuclei may overlap in 2D. Despite the rather poor quality of

12



(a) (c) (e)

(b) (d) (f)

Figure 6: 3D synthetic data (size: 128× 128× 128). (a) spheroid with σ1 : σ2 :
σ3 = 5 : 5 : 2. (b) spheroid with σ1 : σ2 : σ3 = 5 : 2 : 2. (c)-(d) ground truth
orientations of spheroids (a) and (b) respectively. (e)-(f) structure tensor based
orientations.

Figure 7: Analysis of structure tensor based errors for 3D synthetic data from
Figure 6. Histograms of orientations errors (left) and of anisotropy errors (right).
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data and gold standard, the results fit remarkably well. Overall the orientation
is evaluated with an error no larger 20◦ while the anisotropy seldom exceeds
50% error. Finally, note that the preferential orientation is not well defined at
the image center since cells are near isotropic.

In Figure 9(c) we plot the median, mean and 25% ∼ 75% percentiles of
the angle error (14) with respect to the distance to the spheroid boundary.
The notation ‘dist(xci , ∂H)’ stands for the Euclidean distance from the nucleus
center xci to the spheroid boundary. Figure 9(c) indicates that structure tensor
provides accurate orientations near the spheroid boundary and less accurate in
the center, since the median error increases from 7◦ close to the boundary to
14◦ near the center.

4.4 Application to drug effects analysis on spheroids

As a proof of concept, spheroids were treated with latrunculin A, an inhibitor
of actin polymerization. The comparison of (a) and (e) in Figure 10 shows
that this treatment induces a disorganization. We applied the structure tensor
to extract the orientation and anisotropy maps in Figure 10 (c), (d), (g) and
(h). The angle is measured with respect to the normal of the closest point
of the boundary. In other words, an angle equal to 90◦ means that the local
orientation is parallel to the boundary, and an angle equal to 0◦ means that the
local orientation is normal to the boundary.

The results obtained show a decrease of both nuclei anisotropy and alignment
with the spheroid boundary in the outer layers after treatment. This observation
is confirmed by the graphs showed in Figure 11. In Figure 11(a) we compare the
alignement of the nuclei with respect to the boundary with or without treatment.
In Figures 11(b) and (c) we present the alignment with respect to the distance
to the boundary. We observe that the mean angle at the origin is around 80◦ for
the control spheroid and 60◦ for the treated spheroid, indicating that the drug
tends to desalign the nuclei with respect to the spheroid boundary. Moreover,
in Figure 11 (b), the gray zone is narrow at the origin, reflecting the fact that
nearly all nuclei near are well aligned with the boundary in the outer layers. On
the contrary, the gray zone at the origin of the graph in Figure 11 (c) is thick,
indicating that the orientation is much more erratic.

In Figure 11(d) we present the distribution of anisotropy for the control and
the treated spheroid. In Figures 11 (e) and (f) we present the anisotropy with
respect to the distance to the boundary. We observe that the mean anisotropy
near the spheroid boundary is approximately equal to 0.6 for the control spheroid
and 0.8 for the treated spheroid, indicating that nuclei are more round for the
treated case.

As a summary, our methodology allows quantifying both the change of align-
ment and the decrease of anisotropy and could therefore have interesting appli-
cations in high content throughput.

5 Outlook

We proposed an original theoretical analysis of structure tensors, justifying their
use for evaluating orientations and anisotropies of cells or nuclei in 2D or 3D
images. Our theoretical results were validated by numerical experiments, on
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Figure 8: Comparison of ground truth orientations (top) and estimated orien-
tations (bottom) on spheroid sections. Nuclei are stained using DAPI. Images
were acquired using epifluorescence microscope (LEICA DM5000) and 10X ob-
jective NA:0.3. Scale bar: 100µm.

(a) (b) (c)

Figure 9: Quantification of structure tensor based results for the 2D experimen-
tal test case. (a) histogram of orientation error, (b) histogram of anisotropy
error, (c) structure tensor based orientations with respect to nuclei locations.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 10: (a) and (e): Images of Tumor spheroids cryosections with nuclei
labelled using DAPI. Images were obtained as in Figure 8. Top row: control
spheroid (with no drug). Bottom row: treated with latrunculin. (b) and (f):
orientation map. (c) and (g): angle maps. An angle equal to 90◦ indicates that
nuclei are aligned with the spheroid boundary. (d) and (h) anisotropy map.
Scale bar: 100µm.
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(a) (b) (c)

(d) (e) (f)

Figure 11: Structure tensor based orientations for the control and treated
spheroids. (a) histogram of the orientation with respect to the normal at the
closest point on the boundary. (b) and (c) distribution of orientations w.r.t.
the distance to the boundary for the no-drug and drug cases respectively. (d)
histograms of anisotropy. (e) and (f) distributions of anisotropies w.r.t. the
distance to the boundary for the no-drug and drug cases respectively.

synthetic and real data. Overall the present work shows that the structure
tensor provides a fast, simple, robust and user friendly method for biomedical
imaging. To finish, let us add a few remarks:

• First, cells or nuclei are not the only ellipsoid like objects and the method
can actually be applied in any field where such objects appear (e.g. lobules
in adipose tissues).

• Second, our results show that the structure tensor can be used as a pre-
processing tool for segmentation methods. Knowing the rough orientation,
anisotropy and volume of a cell can provide an initialization for more
advanced segmentation techniques. For instance, it is fundamental to
have a first rough segmentation in random based optimization methods
[28] .

• Finally, more and more mathematical models describe tissues as contin-
uous media. The information contained in the structure tensor is itself
continuous and therefore seems easy to use in data assimilation problems.
This opens interesting perspectives to understand tissue biomechanics for
instance. We plan to further investigate this problem in forthcoming
works.

A Proof of Proposition 2

Simple calculation lead to

∇ψ(x) = 2ϕ′(xTAx)Ax.
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Therefore

Jρ(0) =

∫

Rd

Kρ(−x)(∇ψ∇ψ
T )(x) dx

= 4A

(∫

Rd

(ϕ′(xTAx))2xxTKρ(x) dx

)
AT .

But if ρ >
√
d/2 then Kρ is constant on the domain where ψ does not vanish.

Therefore by using the change of variable y = Σ
1

2UTx, we obtain:

Jρ(0) ∝ |Σ− 1

2 |AUΣ− 1

2

(∫

Rd

ϕ′(‖y‖22)
2yyT dy

)

︸ ︷︷ ︸
∝Id

Σ− 1

2UTAT

∝ A.

Since Kρ is constant on a neighborhood of the domain where ψ does not vanish,
Jρ is invariant by small translations hence Jρ is locally constant around 0.

B Proof of Proposition 3

We denote B(x0, ρ) = {x | ‖x − x0‖2 ≤ ρ} the Euclidian ball centered at x0
with radius ρ and S(x0, ρ) = {x | ‖x− x0‖2 ≤ ρ} the Euclidian sphere centered
at x0 with radius ρ. We have

Jρ(x0) =
1

ρd

∫

B(x0,ρ)

(∇u∇uT )(x) dx.

The image u is a sum of (non-overlapping) replicates of ψ. From Proposition 2,
we know that all the replicates of ψ with support included in B(x0, ρ) will have a
contribution to Jρ(x) proportional to A while the ones with support intersecting
S(x0, ρ) have a contribution that can be considered as a bias, whose components
are bounded by

∫
Rd |∂iψ∂jψ|(x) dx. Let I = {i ∈ Zd | supp(ψ(·−i)) ⊂ B(x0, ρ)}

and J = {j ∈ Zd | supp(ψ(· − j)) ∩ S(x0, ρ) 6= ∅}. For sufficiently large ρ,
|I| ∝ ρd (the volume of a ball of radius ρ) while |J | ∝ ρd−1 (the area of the
sphere). Therefore

Jρ(x0) ∝ (ρdA+ ρd−1Bρ)/ρ
d,

where Bρ is some bias of bounded amplitude. This implies that

‖J̄ρ(x0)− Ā‖2 = O (1/ρ) .

C Proof of Theorem 1

The non-smoothed structure tensor is defined by

J0 = ∇u∇uT

= (X ⋆∇ψ) · (X ⋆∇ψ)T

= ((∂iψ∂jψ) ⋆X)i,j ,
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where the last equality follows from the fact that the functions are nonover-
lapping. By exploiting the facts that Jρ = Kρ ⋆ J0 and X̂ = X, it comes
that

Ĵρ =
(
(∂̂iψ∂jψ) · X̂ · K̂ρ

)
1≤i,j≤d

=


∑

k∈Zd

(∂̂iψ∂jψ)(k)K̂ρ(k)δk




1≤i,j≤d

.

This analysis provides a Fourier series decomposition of Jρ:

Jρ(x) =


∑

k∈Zd

(∂̂iψ∂jψ)(k)K̂ρ(k) exp(−2iπ〈x, k〉)




1≤i,j≤d

.

Moreover (1)-(ii) implies that K̂ρ(0) = 1, and for all i, j:
∣∣∣(Jρ(x))i,j − (∂̂iψ∂jψ)(0)

∣∣∣

=

∣∣∣∣∣∣
∑

k∈Zd\{0}

(∂̂iψ∂jψ)(k)K̂ρ(k) exp(−2iπ〈x, k〉)

∣∣∣∣∣∣

≤
∑

k∈Zd\{0}

∣∣∣(∂̂iψ∂jψ)(k)
∣∣∣
∣∣∣K̂ρ(k)

∣∣∣

By denoting y = Σ
1

2UTx, we obtain:
(
∂̂iψ∂jψ)(0)

)
1≤i,j≤d

=

(∫

Rd

(∂iψ∂jψ)(x)

)

1≤i,j≤d

= 4A

(∫

Rd

ϕ′(xTAx)2xxT dx

)

1≤i,j≤d

AT

= 4|Σ− 1

2 |AUΣ− 1

2

(∫

Rd

ϕ′(‖y‖22)yy
T dx

)

1≤i,j≤d︸ ︷︷ ︸
∝Id

Σ− 1

2UTAT

∝ A.

Since ψ ∈ C1 with bounded support, c = ‖∂iψ∂jψ‖1 < +∞. Therefore

‖∂̂iψ∂jψ‖∞ ≤ c. Moreover, K̂ρ(k) = K̂(ρk) so that

∑

k∈Zd\{0}

∣∣∣(∂̂iψ∂jψ)(k)
∣∣∣
∣∣∣K̂ρ(k)|

∣∣∣ ≤ c
∑

k∈Zd\{0}

|K̂ρ(k)|

= c
∑

k∈Zd\{0}

|K̂(ρk)|

∝
∑

k∈Zd\{0}

exp

(
−
ρ2‖k‖22

2

)
.
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We now remark that

∑

k∈Zd

exp

(
−
ρ2‖k‖22

2

)
=


∑

j∈Z

exp

(
−
ρ2j2

2

)


d

=


1 + 2

∑

j≥1

exp

(
−
ρ2j2

2

)


d

= (1 + 2u(ρ))
d

= 1 + 2du(ρ) +Oρ→+∞(u(ρ))

where

u(ρ) =
∑

j≥1

exp

(
−
ρ2j2

2

)
≤

∑

j≥1

exp

(
−
ρ2j

2

)
=

exp(−
ρ2

2
)

1− exp(−
ρ2

2
)

.

Since u(ρ) is asymptotic to exp(−
ρ2

2
) when ρ→ ∞ the claim is proved.
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