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Abstract

A usual classification tool to study a fractal interface is the com-
putation of its fractal dimension. But a recent method developed by
Y. Heurteaux and S. Jaffard proposes to compute either weak and
strong accessibility exponents or local Lp regularity exponents (the
so-called p-exponent). These exponents describe locally the behavior
of the interface. We apply this method to the graph of the Knopp
function which is defined for x ∈ [0, 1] as F (x) =

∑∞
j=0 2

−αjφ(2jx)
where 0 < α < 1 and φ(x) = dist(x,Z). The Knopp function it-
self has everywhere the same p-exponent α. Nevertheless, using the
characterization of the maxima and minima done by B. Dubuc and S.
Dubuc, we will compute the p-exponent of the characteristic function
of domain under the graph of F at each point (x, F (x)) and show
that p-exponents, weak and strong accessibility exponents change
from point to point. Furthermore we will derive a characterization
of the local extrema of the function according to the values of these
exponents.

2010 Mathematics Subject Classification: Primary 26A16, 26A30. Secondary: 26A27,
28A80.

Key words and phrases: Fractal interface, Knopp function, Hölder and Lp regularities,
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1 Introduction

At the beginning of the century several examples of non differentiable func-

tions were studied, such as the Weiertrass function or the example we will

focus on in the following, i.e the Takagi-Knopp or so called Knopp function

(see [A] and references therein for a review). The issue was the study of the

regularity.

Indeed in 1918, Knopp [K] introduced a new family of non differentiable

functions defined on the interval [0, 1]. Going beyond the construction of

Weierstrass of a continuous non differentiable function, his goal was to build

examples of continuous functions for which one sided limits of the difference

quotient at all points don’t exist. He considered the function Fa,b given by

the series, for x ∈ [0, 1]

(1.1) Fa,b(x) =
∞∑

j=0

ajφ(bjx)

where φ(x) = dist(x,Z), 0 < a < 1, b is an integer such that ab > 4.

For b = 2 and a = 2−α, this function can be seen as a series expanded in

the Faber-Schauder basis Λj,k : x 7→ 2
j

2Λ(2jx− k), j ∈ IN, k = 0, · · · , 2j − 1,

where Λ is the Schauder function defined by Λ(x) = inf(x, 1−x) if x ∈ [0, 1]

and 0 elsewhere. In fact

(1.2) F2−α,2(x) =
∞∑

j=0

2j−1∑

k=0

2−αjΛ(2jx− k) .

We will write F for F2−α,2 in the following.

Thus, for example, using the characterization of Lipschitz spaces with

the help of coefficients in the Schauder-basis [C1], one gets immediately the

fact that F belongs to Cα([0, 1]).

A further step to study the regularity of this function can be to follow the

ideas developped in multifractal analysis. The goal in multifractal analysis

is to study the sets of points where the function has a given pointwise

regularity, and doing so checking if the regularity changes from point to

point and quantify these changes. Recall the definition of Hölder pointwise

regularity and local Lp regularity.
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Definition 1.1. Let x0 ∈ Rd and α ≥ 0. A locally bounded function

f : Rd → R belongs to Cα(x0) if there exists C > 0 and a polynomial

P = Px0 with deg(P ) ≤ [α], such that on a neighborhood of x0,

(1.3) |f(x)− Px0(x)| ≤ C|x− x0|
α.

The pointwise Hölder exponent of f at x0 is hf (x0) = sup{α : f ∈ Cα(x0)}.

Definition 1.2. [CZ] Let x0 ∈ Rd. Let p ∈ [1,∞] and u such that u ≥ −d
p
.

Let f be a function in Lp
loc. The function f belongs to T p

u (x0) if there exists

R > 0, a polynomial P with deg(P ) ≤ u, and C > 0 such that

(1.4) ∀ρ ≤ R :

(
1

ρd

∫

|x−x0|≤ρ

|f(x)− P (x)|pdx

) 1
p

≤ Cρu.

The p-exponent of f at x0 is up
f (x0) = sup{u : f ∈ T p

u (x0)}.

Then again with the help of the Faber-Schauder basis one can prove that

for all x0 ∈ [0, 1], F is in Cα(x0) ( details for this technique can be found

in [JMa]). It is then easy to check that actually uf
p(x0) = hf (x0) = α at

all x0 ∈ [0, 1]. Thus from the point of view of various notions of regularity,

even if it is not differentiable, the function F is rather ‘regular’ since one

can compute at each point x0 the same regularity exponent. This remark

was actually the starting point of this work.

Indeed obviously the graph of the function has a very irregular behav-

ior, and it has also some selfsimilarity properties. What can we say on the

domain Ω = {X = (x, y) : y ≤ F (x)} under the graph of F ?

Denote in the following by 1IΩ the characteristic function of Ω, which

takes the value 1 on Ω and 0 outside Ω.

A first reflex is to compute fractal dimensions of the boundary ∂Ω. The

box dimension of the graph can be derived by standard methods (see Tri-

cot [T1]) and is exactly dimB(∂Ω) = 2 − α. Let us mention that Ciesielski

[C2, C3] proved results of this type for Schauder and Haar bases expansions

in the case of more general families of functions. Jaffard [J], Kamont and

Wolnik [KW] obtained then general formulas that allow to derive the box

dimensions of the graphs of arbitrary functions from their wavelet expan-

sions.

For what concerns the Hausdorff dimension of the graph of F , as far as

we know, the question is not solved yet in its all generality. It was proved
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by Ledrappier [L] in 1992 to be 2 − α in the special case where a = 2α−1

is an Erdös number. By the results of Solomyak [S] on Erdös numbers this

amounts to have the computation for almost every α in [0,1].

Beside the computation of the box and Hausdorff dimension, which pro-

vide global quantities to describe the graph of the function, several methods

were recently developed to classify fractal boundaries with the help of point-

wise exponents. The idea was to be able to give a finer description of the

geometry of the boundary, since the pointwise behavior was studied. In

[JMe], Jaffard and Mélot focused on the computation of the dimension of

the set of points where 1IΩ has a given p-exponent in the sense of Definition

1.2. In [JH], Jaffard and Heurteaux studied pointwise exponents more re-

lated to the geometry. These are the exponents we are actually interested in.

Indeed denote by meas the Lebesgue measure in Rd and B(X, r) the d

dimensional open ball of center X and radius r > 0. Jaffard and Heurteaux

[JH] gave the following definitions.

Definition 1.3. Let Ω be a domain of Rd and let X0 ∈ ∂Ω. The point X0

is weak α-accessible in Ω if there exists C > 0 and r0 > 0 such that

(1.5) ∀r ≤ r0 meas(Ω
⋂

B(X0, r)) ≤ Crα+d .

The supremum of all the values of α such that (1.5) holds is called the weak

accessibility exponent in Ω at X0. We denote it by Ew
Ω (X0).

Example: Let 0 < β < 1 and Ω = {X = (x, y) ∈ R2 : |y| ≤ |x|β}.

Denote Ωc the complement of Ω. Then one can easily check that at each

point X1 6= (0, 0) of the boundary ∂Ω we have Ew
Ω (X1) = 0 = Ew

Ωc(X1) and

at X0 = (0, 0) we have Ew
Ωc(X0) =

1
β
− 1 and Ew

Ω (X0) = 0.

Definition 1.4. Let Ω be a domain of Rd and let X0 ∈ ∂Ω. The point X0

is strong α-accessible in Ω if there exists C > 0 and r0 > 0 such that

(1.6) ∀r ≤ r0 meas(Ω
⋂

B(X0, r)) ≥ Crα+d .

The infimum of all the values of α such that (1.6) holds is called the strong

accessibility exponent in Ω at X0. We denote it by Es
Ω(X0).

The following proposition is given in [JH].
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Proposition 1.5. Let X0 ∈ ∂Ω. Then

d+ Ew
Ω (X0) = lim inf

r→0

log (meas(Ω ∩ B(X0, r)))

log r
,

d+ Es
Ω(X0) = lim sup

r→0

log (meas(Ω ∩ B(X0, r)))

log r
.

(1.7)

Obviously Es
Ω(X0) ≥ Ew

Ω (X0). We will see that thanks to our result one

can prove that these two exponents can be different.

C.Tricot [T2] proved that these exponents are related to local dimension

computation. Let us mention, without entering too much the details, the

relationship of this work [T2] with these exponents. Indeed the author focus

on the formula

(1.8) Hφ(E) = lim inf
ε→0

{
∑

i≥0

φ(Ei) : E ⊂
⋃

i≥0

Ei, diam(Ei) ≤ ε}

with φ : BE → (0,∞) some ”set function” and BE the set of closed balls

centered on E.

Given an open set V such that E ⊂ ∂V the special choice of

φα(B) =
V ol(B ∩ V )

V ol(B)
diam(B)α

lead to definitions of Hausdorff, exterior and interior dimensions, Packing,

exterior and interior dimensions.

The following characterization, written for the setting we are interested

in, holds

Theorem 1.6. [T2] Let Ω be a bounded open set in Rd with boundary ∂Ω

such that meas(∂Ω) = 0. Let X0 ∈ Ω. Let r > 0 and

α(B(X0, r)) = d−
log(meas(Ω

⋂
B(X0, r)))

log(r)
.

Then

lim inf
r→0

α(B(X0, r)) = dimint({X0}) and lim sup
r→0

α(B(X0, r)) = Dimint({X0})

with dimint the Hausdorff interior dimension and Dimint the Packing Haus-

dorff dimension.
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We clearly have dimint({X0}) = −Ew
Ω (X0) andDimint({X0}) = −Es

Ω(X0).

Let us stress that in the setting of Tricot dimext({X0}) = −Ew
Ωc(X0) and

Dimext({X0}) = −Es
Ωc(X0) with Ωc the complementary of Ω in Rd. We

rather refer to [T2] for more details on local dimensions in their all gener-

ality.

We will compute these quantities at the points of the boundary ∂Ω of

Ω = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ F (x)}, where F is the function

defined by (1.2). For that we will use the characterization of the maxima

and minima done in [DD]. This will yield the p-exponent at each point of

1IΩ. We will actually derive the fact that the set of local extrema of the

function is fully characterized by the set of points where this p-exponent

has a given value.

We will also prove that the weak and strong accessibility exponents in Ω

and Ωc change from point to point on the graph ∂Ω of F . They also help to

provide exact characterization of the sets of local maxima and local minima.

Finally we will prove that there is a set of non trivial Hausdorff dimension

such that the strong accessibility exponents in Ω and Ωc are the same and

the weak and strong accessibility exponents different.

Let us emphasize that this is to our knowledge the first time that the

computation of these exponents was done in a nearly exhaustive study on

a given example. The characterization we get for the set of extremas raise

several questions: is it a general property ? Do other functions share it ?

Could it lead to a finer classification of functions in Hölder classes ? We

would like to adress them in future works.

Let us come back now to our work. The outline of the paper is the

following. In Section 2 we set our main result. In Section 3 some notations,

preliminary remarks and technical lemmas, help us to prepare Section 4

where are the main proofs.

2 Main results

2.1 Statement of our main result

Our goal is to prove the following Theorem.
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Main Theorem 2.1. Let a = 2−α with 0 < α < 1 and b = 2. Let F be the

function defined by (1.2).

Let Ω = {X0 = (x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ F (x)} and let f = 1IΩ.

Then at each point X0 of ∂Ω, the graph of F , we have

1. up
f (X0) = 1

p

(
1
α
− 1

)
if and only if F (X0) is a local extremum of F .

Furthermore

(a) Ew
Ω (X0) = Es

Ω(X0) =
1
α
− 1 if and only if F (X0) is a local maxi-

mum of F . And in this case Ew
Ωc(X0) = Es

Ωc(X0) = 0.

(b) Ew
Ωc(X0) = Es

Ωc(X0) = 1
α
− 1 if and only if F (X0) is a local

minimum of F . And in this case Ew
Ω (X0) = Es

Ω(X0) = 0.

2. In the other cases where F (X0) is not a local extremum of F , we have

Ew
Ω (X0) = Ew

Ωc(X0) = 0.

3. Furthermore one can find a subset Dα ⊂ ∂Ω such that for each X0 ∈

Dα Es
Ω(X0) = Es

Ωc(X0) = 1
α
− 1 and Ew

Ω (X0) = Ew
Ωc(X0) = 0. The

orthogonal projection of Dα on [0, 1] has the Hausdorff dimension α.

3 Useful notations and results

3.1 Lemmas for practical computation of the expo-

nents

From the computation of the weak accessibility exponent in Ω and Ωc it

is easy to derive the p-exponent. In [JMe], Jaffard and Mélot proved that

1IΩ ∈ T p
α/p(X0) if and only if either X0 is weak α-accessible in Ω or X0 is

weak α-accessible in Ωc. As a consequence we have

(3.1) p up

1IΩ
(X0) = max(Ew

Ω (X0), E
w
Ωc(X0)) .

We will also need the following lemma.

Lemma 3.1. Let f : R → R be in Cα(x0) with 0 < α < 1 and Ω be the

domain below (resp. above) the graph of f . Consider X0 = (x0, f(x0)). Then

X0 is strong 1
α
− 1 accessible in both Ω and Ωc.

Proof. Suppose that Ω is the domain below the graph of f . Without

any loss of generality, we can assume that X0 = (0, 0). Let r > 0. Since f
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is in Cα(0) and 0 < α < 1 then there exists a constant C ≥ 0 such that in

neighborhood of 0

(3.2) |f(x)| ≤ C|x|α .

Thus

(3.3) −C|x|α ≤ f(x) ≤ C|x|α .

Obviously meas(Ωc
⋂

B(X0, r)) (resp. meas(Ω
⋂

B(X0, r))) is greater than

the area A = C ′

∫ r

0

y1/αdy = C”r1+1/α above (resp. below) the graph of

x 7→ C|x|α and below (resp. above) the square of side r and center X0.

The same results hold if Ω is the domain above the graph of f (we have just

to replace Ω by Ωc).

One of our goals for the points which are not extrema of F will be to

find sequences of local maxima or minima such that the following key-lemma

proved in [H] holds.

Lemma 3.2. Let f : R → R be in Cα(R) and Ω be the domain below the

graph of f . Consider X0 = (x0, f(x0)). Suppose that there exist cα > 0,

a sequence rn of positive numbers, such that rn → 0 as n → +∞, xn ∈

]x0 − rn, x0 + rn[, and n0 ∈ IN, such that

(3.4) ∀n ≥ n0 f(xn) = f(x0)− cαr
α
n .

Then Ew
Ωc(X0) = 0.

Proof. We can suppose that xn ∈]x0 − rn, x0[ (the case xn ∈]x0, x0 + rn[

is similar). Then by the mean value theorem we can find bn ∈]xn, x0[ such

that f(bn) = f(x0) − rn. Let b′n = inf{bn ∈]xn, x0[ ; f(bn) = f(x0) − rn}.

Since f is continuous we get f(b′n) = f(x0)− rn and b′n ∈]xn, x0[. It follows

from the definition of b′n and the mean value theorem that

∀t ∈]xn, b
′
n[ f(t) < f(x0)− rn .

Thus

]xn, b
′
n[×[f(x0)− rn, f(x0) + rn] ⊂ B(X0, rn)

⋂

Ωc .

Therefore

(3.5) meas(B(X0, rn)
⋂

Ωc) ≥ 2|b′n − xn|rn .
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Since

f(xn)− f(b′n) = f(x0)− cαr
α
n − (f(x0)− rn)

= rn − cαr
α
n

≃ −rαn ,

in the sense that there exists a constant C ≥ 1 such that for every n we

have
1

C
rαn ≤ cαr

α
n − rn ≤ Crαn .

Since f belongs to Cα(R) we get

(3.6) C|b′n − xn|
α ≥ |f(b′n)− f(xn)| ≃ rαn .

Thus

(3.7) |b′n − xn| ≥ C ′rn .

Following (3.5) and (3.7) we get

(3.8) meas(B(X0, rn)
⋂

Ωc) ≥ Cr2n .

Since meas(B(X0, r)
⋂

Ωc) ≤ meas(B(X0, r)) ≤ r2 for all r ≥ 0 we get

lim
n→+∞

log(meas(B(X0, rn)
⋂

Ωc))

log(rn)
= 2 .

Thus thanks to Proposition 1.5 we have Ew
Ωc(X0) ≤ 0 which yields Ew

Ωc(X0) =

0.

By replacing f by −f we also have the following result.

Lemma 3.3. Let f : R → R be in Cα(R) and Ω be the domain below the

graph of f . Consider X0 = (x0, f(x0)). Suppose that there exist cα > 0,

rn → 0 as n → +∞, xn ∈]x0 − rn, x0 + rn[, and n0 ∈ IN, such that

(3.9) ∀n ≥ n0 f(xn) = f(x0) + cαr
α
n .

Then Ew
Ω (X0) = 0.

3.2 Dyadic expansions and approximation by dyadics

We give some properties of the approximation of a point by the dyadics.

Such properties will be used later.

Let x ∈ [0, 1]. Set i1(x), · · · , ij(x), · · · the binary digits of x, i.e.

(3.10) x =
∞∑

l=1

il(x)

2l
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• Note that dyadic points, i.e points x = 2−NK with K ∈ 2IN + 1 are

characterized by the fact that one can find N > 0 such that iN(x) = 1

and in(x) = 0 for n > N , or equivalently iN(x) = 0 and in(x) = 1 for

n > N .

Furthermore for n > N the number x − 2−n is dyadic. Since 2−n =
∞∑

j=n+1

2−j, then x− 2−n = (
N−1∑

j=1

ij2
−j) + 2−(N+1) + 2−(N+2) + · · ·+ 2−n.

On the other hand x+ 2−n has the simple expansion
N∑

j=1

ij(x)

2j
+ 1

2n
.

We will denote D the set of all dyadic points in [0, 1].

• Let us come back to the general case with x any point in [0, 1].

For each j ∈ IN, define Kj(= Kj(x)) by

(3.11) |Kj2
−j − x| = inf

k∈IN
|k2−j − x| .

Set

rj(x) =
log |Kj2

−j − x|

log 2−j
.

Define the rate of approximation of x by dyadics as

r(x) = lim sup
j 7→∞

rj(x) .

Since |Kj2
−j − x| ≤ 2−j, then for every x, we have r(x) ≥ 1. If x is

dyadic then r(x) = ∞ (by taking the convention log 0 = −∞). If x is

normal (i.e. the frequency of ones (or zeros) in the binary expansion

of x is equal to 1/2) then r(x) = 1.

• If r(x) > 1, following the definition of r(x), then for any δ > 0 such

that r(x)− δ > 1 one can find a subsequence Jn → +∞ for n → +∞

such that

(3.12) rJn(x) ≤ 2−Jn(r(x)−δ) .

Let J ′
n = [Jn(r(x)− δ)]. We have then
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(3.13) KJn2
−Jn − 2−J ′

n ≤ x ≤ KJn2
−Jn + 2−J ′

n

Thus, either x belongs to the dyadic interval [KJn2
−Jn−2−J ′

n , KJn2
−Jn ],

and in this case it satisfies iJn+1(x) = ... = iJ ′

n−1(x) = 1, or it belongs

to the other interval [KJn2
−Jn , KJn2

−Jn + 2−J ′

n ] and in this case it

satisfies iJn+1(x) = ... = iJ ′

n−1(x) = 0.

In both cases let us notice that the binary expansion of x contains

chains of 0 or 1 whose length J ′
n − Jn ∼ J ′

n increases when n → +∞.

3.3 Approximation by sequences of maxima of F

We will see in the following that points in [0, 1] of the set

(3.14) S =

{

k ∈ IN, N0 ∈ IN,
k

2N0
+

1

3

1

2N0
,
k

2N0
+

2

3

1

2N0

}

will play a big role in this work, since they actually are the locations of the

local maxima of the function F (see below). Remark that they are charac-

terized by the fact that for each x ∈ S, one can find j0 ∈ IN such that for

j ≥ j0 we have ij(x) + ij+1(x) = 1.

As in the case of dyadic approximation we can define a rate of approxi-

mation by this kind of points.

Indeed let for x ∈ [0, 1]

(3.15) |mj − x| = inf
k∈IN

{∣
∣
∣
∣

k

2j
+

1

3

1

2j
− x

∣
∣
∣
∣
,

∣
∣
∣
∣

k

2j
+

2

3

1

2j
− x

∣
∣
∣
∣

}

.

Define

sj(x) =
log(|mj − x|

log 2−j
.

Then the rate of approximation of x by elements of S is given by

s(x) = lim sup
j 7→∞

sj(x) .

Since |mj − x| ≤ 2−j, then for every x, we have s(x) ≥ 1.
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In the case of dyadic numbers, we have s(x) = 1. But remark that in

other non trivial cases there is no obvious relationship between s(x) and

r(x). Indeed one can check on the following examples that s and r can take

independently any value.

• Let x =
+∞∑

j=1

ij(x)

2j
with i3k+1(x) = 0 = i3k+2(x) and i3k+2(x) = 1 for all

k ∈ IN. Then we have r(x) = s(x) = 1.

• Let u > 1. Then x =
+∞∑

n=0

2−[un] with [un] the integer part of un. We

have r(x) = u whereas s(x) = 1.

• Let u > 1. Then x =
+∞∑

n=1

2−2n −
+∞∑

n=0

2−2[un]. We have s(x) = u whereas

r(x) = 1.

• Let u > 1 and s > 1. Let x =
+∞∑

n=1

2−2[sn−1un] +
[snun+1]−1∑

k=[sn−1un]+1

2−2k. Then

r(x) = u and s(x) = s.

3.4 The shift operator

Since 0 < α < 1 it is easy to check that we obtain from (??) with a = 2−α

and b = 2

(3.16)

F (x) =
∞∑

j=0

∑

i=(i1,··· ,ij)∈{0,1}j

2−αj Λ
(
2jx− 2j−1i1 − · · · − 2ij−1 − ij

)
.

The term of (3.16) corresponding to j = 0 is Λ(x). But, the function Λ is

supported in [0, 1], therefore F vanishes outside [0, 1] and for x ∈ [0, 1]

(3.17) F (x) =
∞∑

j=0

2−αj Λ
(
2jx− 2j−1i1(x)− · · · − 2ij−1(x)− ij(x)

)
.

For dyadic rationals x, x = 2−NK with K ∈ 2IN + 1, as we already said it,

there exist two binary expansions, one such that iN(x) = 1 and in(x) = 0

for n > N , and another one such that iN(x) = 0 and in(x) = 1 for n > N .

The two right-hand sides of (3.17) corresponding to the two choices of i(x)

give identical results.
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Denote by τ the shift operator

τx =
∞∑

l=2

il(x)2
−l+1 =

∞∑

l=1

il+1(x)2
−l .

Observe that

τx =

{
2x if x ∈ [0, 1/2[
2x− 1 if x ∈ [1/2, 1].

Hence

(3.18) F (x) =
∞∑

j=0

2−αj Λ
(
τ jx

)

and

τ jx =
∞∑

l=1

il+j(x)2
−l .

Our selfsimilar function is of the form F (x) =
∞∑

j=0

2j−1∑

k=0

Cj,kΛ(2
jx − k)

with
Cj,k = 2−αj if j 6= 0, k 6= 0
C0,0 = 1

For n ≥ 1, denote

(3.19) Fn(x) =
n∑

j=0

2−αj Λ
(
τ jx

)
.

Remark that Fn is affine on intervals of type In+1 =
[

k
2n+1 ,

k+1
2n+1

]
. Remark

also that if t ∈ [0, 1], then Λ(t) = (−1)i1(t)t + i1(t). So, if t
′ ∈ [0, 1] and

i1(t) = i1(t
′), then Λ(t)− Λ(t′) = (−1)i1(t)(t− t′).

It follows that if
k

2n+1
=

n+1∑

j=1

ij
2j

then the slope of Fn at any point x of the

interval ] k
2n+1 ,

k+1
2n+1 [ is exactly

(3.20) Cn = Cn(x) =
n∑

j=0

(−1)ij+1(x)2(1−α)j =
n∑

j=0

(−1)ij+12(1−α)j .

3.5 Extrema of F

We will need the following characterization of the extremas of F proved in

[DE] and [DD]. Let us start with the local and global minima.
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Proposition 3.4. Let 0 < α < 1 and F the function defined by (3.18), then

• 0 and 1 are the abscissas of the global minima of F .

• The dyadic points are the abscissas of the minima of F and further-

more

(3.21) min
x∈IN

F (x) = min

[

FN−1

(
k

2N

)

, FN−1

(
k + 1

2N

)]

with IN =
[

k
2N

, k+1
2N

]
.

In the case of the maxima, the statement of the result is slightly more

technical. We need the following proposition of [DE] using the same nota-

tions as previously.

Proposition 3.5. Let 0 < α < 1 and F the function defined by (3.18). Let

t = 21−α and X(p) the list of positions where F (x)+px attains its maximum

on [0, 1]. Let M(p) be the maximum on [0, 1] of F (x) + px. Then

• X
(

−(tN−1)
t−1

)

=
{

1
3

1
2N

, 2
3

1
2N

}
for N = 0, 1, ...

• X(p) =
{

1
3

1
2N

}
if −(tN+1−1)

t−1
< p < −(tN−1)

t−1
.

• X(p) = 1−X(−p) for all p 6= 0.

• max
x∈IN

F (x) = FN−1

(
k
2N

)
+ 2−NαM

(
CN−1( 2k+1

2N+1 )
tN

)

.

The following proposition is a consequence of the previous one.

Proposition 3.6. Let 0 < α < 1 and F the function defined by (3.18).

Then

• 1/3 and 2/3 are the abscissas of the global maxima of F .

• The abscissas of the local maxima of F are the points of S.

3.6 Approximation of slopes of Fn

Suppose first we have some informations about the dyadic expansion of x.

Then we have the following Lemma, which helps to control the behavior of

the slopes of the affine function Fn−1.
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Lemma 3.7. 1. Let x = K
2N

be a dyadic number. Then one can find

N0 > N , A > 0 and B > 0 depending only on x such that if n ≥ N0

then

(3.22) ∀ y ∈]x, x+ 2−n[ A2(1−α)n ≤ Cn−1(y) ≤ B2(1−α)n

and

(3.23) ∀ y ∈]x− 2−n, x[ −A2(1−α)n ≥ Cn−1(y) ≥ −B2(1−α)n .

2. Let x be the abscissa of a local maximum of F . Then one can find

J0 > 0, A > 0 and B > 0 such that for n ≥ J0

in−1(x) + in(x) = 1 ,

Cn−1(x)Cn(x) < 0

A2(1−α)n ≤ (−1)in+1(x)Cn−1(x) ≤ B2(1−α)n .

(3.24)

3. Let x be a non dyadic point such that r(x) > 1. Then one can find

two subsequences Jn and J ′
n with J ′

n

Jn
> 1 for all n, such that iJn(x) =

iJ ′

n+1(x) and ij(x) + iJn(x) = 1 for Jn < j < J ′
n + 1. Furthermore one

can find J0 > 0, A > 0 and B > 0 such that for n > J0

(3.25) A2(1−α)J ′

n ≤ (−1)iJn+1(x)CJ ′

n−1(x) ≤ B2(1−α)J ′

n .

4. Let x be a non dyadic point such that s(x) > 1. Then one can find

two subsequences Jn and J ′
n with J ′

n

Jn
> 1 for all n, such that ij(x) +

ij+1(x) = 1 for Jn < j < J ′
n and iJ ′

n
(x) = iJ ′

n+1(x). Furthermore one

can find J0 > 0, A > 0 and B > 0 such that for n > J0

(3.26) A2(1−α)J ′

n ≤ (−1)iJ′
n
(x)CJ ′

n−1(x) ≤ B2(1−α)J ′

n .

Proof.

• Case 1: the idea is very simple since it is a direct computation.

Indeed following (3.20) we have for y ∈]x, x+ 2−n[

Cn−1(y) =
n−1∑

j=0

(−1)ij+1(y)2−αj2j

=
N−2∑

j=0

(−1)ij+1(y)2j(1−α) − 2(N−1)(1−α) +
n−1∑

j=N

2j(1−α)

=
N−2∑

j=0

(−1)ij+1(y)2j(1−α) + 2N(1−α)(1− 2α−1) + 2(N+1)(1−α)2
(n−N−1)(1−α) − 1

2(1−α) − 1
.
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The second equation with y ∈]x−2−n, x[ can be computed in the same

way, up to a change of signs.

Thus one can find N0 > N , A > 0 and B > 0 such that (3.23) holds

for n > N0.

• Case 2: it is enough to remark that x has the following binary expan-

sion

(3.27) x =
kN0

2N0
+

∞∑

l=0

1

22l+1+N0
.

As a consequence of Proposition 3.6, the same kind of computation

yields Case 2.

• Case 3: since r(x) > 1, for any δ > 0 one can find two subsequences Jn

and J ′
n such that iJn+1(x) = ... = iJ ′

n−1(x) and |x −KJn2
−Jn | ≤ 2−J ′

n

with J ′
n = [(r(x)− δ)Jn].

Suppose first eventually up to a small change of definition of J ′
n that

iJn(x) = 1 = iJ ′

n+1(x) and iJn+1(x) = ... = iJ ′

n−1(x) = iJ ′

n
(x) = 0.

Then with the same kind of computation as in Case 1 one gets

(3.28) A2(1−α)J ′

n ≤ CJ ′

n−1(x) ≤ B2(1−α)J ′

n .

In the other case iJn+1(x) = ... = iJ ′

n−1(x) = iJ ′

n
(x) = 1, the sign of

the slope will be changed.

• Case 4: this follows exactly the same ideas than previously. Since

s(x) > 1 for any δ > 0 one can find two subsequences Jn and J ′
n such

that for all Jn < j < J ′
n ij(x) + ij+1(x) = 1 and iJn(x) = iJn−1(x),

iJ ′

n
(x) = iJ ′

n+1(x). Then with the same kind of computation as in Case

1 one gets

(3.29) A2(1−α)J ′

n ≤ (−1)iJ′
n
(x)CJ ′

n−1(x) ≤ B2(1−α)J ′

n .

Hence the result.

If we don’t have any further information on x, the following Lemma will be

useful.
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Lemma 3.8. Let x ∈ [0, 1] be a non dyadic number.

1. [G] Then there exists δ > 0 and δ′ = 1
21−α−1

such that for all n ∈ IN

one can find Jn ≥ n such that

(3.30) δ′2Jn(1−α) > |CJn−1(x)| > δ2Jn(1−α) .

2. If x /∈ S then there exists δ > 0 such that for all n ≥ 0 there exists

Jn ≥ n such that (3.30) holds and

• either [CJn−1(x) > 0 and iJn+1(x) = 0] ,

• or [CJn−1(x) < 0 and iJn+1(x) = 1].

Proof.

1. The upper bound is a straightforward computation.

Suppose the contrary, i.e for all δ > 0 one can find N ∈ IN such that

for all n ≥ N

(3.31) −δ2(1−α)n ≤ Cn−1(x) ≤ δ2(1−α)n .

If we suppose without loss of generality that in+1(x) = 0 then at step

n

−δ2(1−α)n ≤Cn−1(x) ≤ δ2(1−α)n

−δ2(1−α)n + 2(1−α)n ≤Cn(x) ≤ δ2(1−α)n + 2(1−α)n

−
δ

21−α
+

1

21−α
≤

Cn(x)

2(1−α)(n+1)
≤

δ

21−α
+

1

21−α
.

(3.32)

It is enough to choose δ such that − δ
21−α + 1

21−α > δ to have a contra-

diction.

2. Suppose the contrary, i.e there exists x /∈ S and that for all β > 0,

there exists N ∈ IN, such that for all n ≥ N

(a) either |Cn−1(x)| ≤ β2Jn(1−α),

(b) or [Cn−1(x) < 0 and in+1(x) = 0],

(c) or [Cn−1(x) > 0 and in+1(x) = 1].
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Remark first that the points of S satisfy exactly (2b) and (2c). Indeed

for x ∈ S, and assuming that in0+1(x) = 1, x has a binary expansion

(3.27).

Thus following (3.20) the slope Cn−1(x) satisfies

Cn−1(x) =
N0−1∑

j=0

(−1)ij+1(x)2(1−α)j +
n−1∑

j=N0

2(1−α)j(−1)ij+1(x)

=
N0−1∑

j=0

(−1)ij+1(x)2(1−α)j + 2N0(1−α) (−2(1−α))n−N0−1
1+21−α .

Hence, for n large enough (2b) and (2c) are satisfied.

Our goal is thus to prove that if we choose β small enough then only

(2b) and (2c) can be satisfied, which will lead to the fact that x ∈ S,

and thus to a contradiction.

Let start by the following special cases.

• We claim that if one can find k large enough such that Ck−1(x) =

0 then x ∈ S, which is a contradiction.

Let us prove this claim.

We will need the following sequence: let for n ∈ IN⋆

(3.33)

dn = 2−(1−α)

n∑

j=0

(−1)j2−j(1−α) =
2−(1−α)

1 + 2−(1−α)

(
1− (−1)n+12−(n+1)(1−α)

)
.

We have clearly dn ≥ d1 > 0 for all n ≥ 1.

Choose β ≤ d1
2
and N such that the hypothesis are satisfied.

Suppose that k ≥ N + 1 is such that Ck−1(x) = 0. Then

|Ck(x)| = 2k(1−α) = 2−(1−α)2(k+1)(1−α).

Remark that β < d1 ≤ 2−(1−α) thus |Ck(x)| > β2(k+1)(1−α).

Suppose without lost of generality that Ck(x) > 0 (the case

Ck(x) < 0 is symetrical and can be proved in exactly the same
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way). Thus ik+2(x) = 1 and

Ck+1(x) = −2(k+1)(1−α) + 2k(1−α) = −2(k+2)(1−α)
(
2−(1−α) − 2−2(1−α)

)

< −β2(k+2)(1−α) .

(3.34)

Let us prove by induction on n that for all n ∈ IN⋆

|Ck+n(x)| = dn2
(k+n+1)(1−α)), (−1)nCk+n(x) > 0 (P) .

We just proved that (P) is true for n = 1.

Suppose that for n ∈ IN⋆ (P) is true. Suppose without lost of

generality that Ck+n(x) > 0 (the case Ck+n(x) < 0 is symetrical

and can be proved in exactly the same way ). Thus ik+n+2(x) = 1

and

Ck+n+1(x) = Ck+n(x)− 2(n+k+1)(1−α) = dn2
(k+n+1)(1−α)) − 2(n+k+1)(1−α)

= −(−2−(1−α)dn + 2−(1−α))2(k+n+2)(1−α) .

(3.35)

Since dn satisfies exactly dn+1 = −2−(1−α)dn + 2−(1−α), we have

the result and (P) is satisfied at level n+ 1.

Thus for all n ∈ IN⋆ (P) is true. Remind that since β < d1 ≤ dn for

all n ∈ IN⋆, this implies that for all n ∈ IN⋆ ik+n+2(x)+ik+n+3(x) =

1, which is exactly the characterization of the points in S, and is

in contradiction with the hypothesis x /∈ S.

In the following we will always keep the hypothesis 0 < β ≤ d1
2

so that for n large enough we have always Cn(x) 6= 0.

• We now consider the case where |Cn−1(x)| is close to the value

of β2n(1−α) and prove that this yields that x ∈ S, and thus a

contradiction.

Let 0 < β ≤ d1
2
, and β′ > 0 whose value will be precised later on.

Suppose n ≥ N is such that β′2n(1−α) > Cn−1(x) > β2n(1−α)

(the case Cn−1(x) < −β2n(1−α) can be done exactly in the same

way). Then in+1(x) = 1 and Cn(x) = Cn−1(x)− 2n(1−α), hence
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β2n(1−α) − 2n(1−α) ≤Cn(x) ≤ β′2n(1−α) − 2n(1−α)

(β − 1)2−(1−α)2(n+1)(1−α) ≤ Cn(x) ≤ (β′ − 1)2−(1−α)2(n+1)(1−α) .

(3.36)

Choose β′ such that (β′−1)2−(1−α) < −β, hence β < β′ < 1−β
2−(1−α) ,

which is possible since β ≤ d1
2
< 2−(1−α)

1+2−(1−α) .

This yields in+2(x) = 0. Thus

Cn+1(x) = Cn−1(x) + (−2n(1−α) + 2(n+1)(1−α))

> (2−(1−α) − 2−2(1−α))2(n+2)(1−α) > β2(n+2)(1−α) .

(3.37)

Let us prove by induction on k that for all k ∈ IN,

(−1)k+1Cn+k(x) > β2(n+k+1)(1−α) (Q) .

We just prove that the case k = 0 is true.

Suppose one can find k ∈ IN such that (Q) is true for all 0 ≤ k′ ≤

k.

Let us prove that it is true at k + 1. Without lost of generality

suppose Cn+k(x) > 0, thus in+k+2(x) = 1.

We have

Cn+k+1(x) = Cn+k−1(x) + 2(n+k)(1−α) − 2(n+k+1)(1−α)

< −(2−(1−α) − 2−2(1−α))2(n+k+2)(1−α) < −β2(n+k+2)(1−α) .

(3.38)

This proves that (Q) is true at k + 1.

Thus by induction (Q) is true for all k ∈ IN. This means that for

all k ∈ IN in+k+2(x) + in+k+3(x) = 1, and thus x ∈ S. Hence the

contradiction.

• We now study the case where |Cn−1(x)| ≤ β2n(1−α) and prove

that if we choose β small enough then it will lead to x ∈ S.

Indeed let β ≤ inf(d1
2
,
d′1
2
) with

(3.39) d′1 =
2−(1−α) − 2−2(1−α)

1 + 2−2(1−α)
.
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And suppose n ≥ N such that |Cn−1(x)| ≤ β2n(1−α). Suppose

in+1(x) = 0 without lost of generality. Thus we have

Cn(x) = Cn−1(x) + 2n(1−α)

(−β + 1)2−(1−α)2(n+1)(1−α) ≤ Cn(x) ≤ (β + 1)2−(1−α)2(n+1)(1−α) .

Remark that with the choice of β we made, we have on one

hand β < (−β + 1)2−(1−α) and on the other hand β < (β +

1)2−(1−α) < 1−β
2−(1−α) . Thus following the previous result using β

′ =

(β + 1)2−(1−α), x ∈ S and we have a contradiction.

• We consider the case where Cn−1(x) > 0 and Cn(x) < 0 for n

large enough under the previous range of values of β.

Let β ≤ inf(d1
2
,
d′1
2
) (recall that d1 is defined by (3.33) and d′1 by

(3.39)).

And suppose that for n ≥ N we have Cn−1(x) > 0 and Cn(x) < 0.

Following the previous case we have Cn−1(x) > β2n(1−α) and

Cn(x) < −β2(n+1)(1−α). Thus in+1(x) = 1 and in+2(x) = 0.

Then

Cn+1(x) = Cn−1(x)− 2n(1−α) + 2(n+1)(1−α)

> β2(n+2)(1−α)
(3.40)

since by definition of β and d1 we have 2
−(1−α)− 2−2(1−α) ≥ d1 >

β. Thus in+3(x) = 1.

We have Cn+2(x) = Cn(x)+2(n+1)(1−α)−2(n+2)(1−α < −β2(n+3)(1−α).

A proof by induction exactly in the same way as previously yields

that for k ≥ 0 we have Cn+2k+1(x) > 0 and Cn+2k(x) < 0, thus

in+2k+2(x) + in+2k+3(x) = 1 for all k ∈ IN and we have x ∈ S,

hence a contradiction.

We will now go the main proof, taking into account what we just

proved.

In the following we will consider δ > 0 and Jn defined as in Point

1, β = inf(d1
2
, δ
2
,
d′1
2
) and n such that Jn ≥ N . Thus for all n ∈ IN
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|CJn−1(x)|

2Jn(1−α) > δ > β.

Suppose CJn−1(x) > 0. This means that CJn(x) = CJn−1(x)−2Jn(1−α) <

CJn−1(x). The only case we want to consider is CJn(x) > β2(Jn+1)(1−α)

since for all the other cases the previous points yield x ∈ S.

Thus iJn+2(x) = 1. It is clear that one can find k ∈ IN such that for

all 0 ≤ k′ ≤ k CJn+k′(x) > β2(Jn+k′+1)(1−α) and iJn+k′+2(x) = 1 and

CJn+k+1(x) < β2(Jn+k+2)(1−α).

Hence either |CJn+k+1(x)| ≤ β2(Jn+k+2)(1−α) and x ∈ S, or CJn+k+1(x) <

−β2(Jn+k+2)(1−α) and since CJn+k(x) > β2(Jn+k+1)(1−α) we have also

the result.

In all cases we proved that Points (2a), (2b), (2c) lead to x ∈ S, which

is a contradiction. Hence the Lemma.

4 Computation of weak and strong accessi-

ble exponents

4.1 Case of dyadic points

We will prove the following proposition.

Proposition 4.1. If x is a dyadic point, and X = (x, F (x)) then

(4.1) Ew
Ωc(X) =

1

α
− 1 and Ew

Ω (X) = 0

(4.2) Es
Ωc(X) =

1

α
− 1 and Es

Ω(X) = 0

(4.3) up
f (X) =

1

p
(
1

α
− 1) .
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If x is a dyadic point, i.e. x = 2−NK with K ∈ 2IN + 1, we consider

its binary expansion in which iN(x) = 1 and in(x) = 0 for n > N .

For n > N the number x − 2−n is dyadic. Since 2−n =
∞∑

j=n+1

2−j then

x − 2−n = (
N−1∑

j=1

ij2
−j) + 2−(N+1) + 2−(N+2) + · · · + 2−n. On the other hand

x+ 2−n has the simple expansion (
N∑

j=1

ij(x)

2j
) +

1

2n
.

Remark that FN−1(x) = Fn−1(x) = F (x) for n > N and Fn−1(x + 2−n) =

F (x+ 2−n).

Any point y in the interval ]x, x + 2−n[ satisfies the expansion iN(y) =

iN+1(y) = ... = in−1(y) = in(y) = 0.

It follows that

F (x+ 2−n)− F (x) = Fn−1(x+ 2−n)− Fn−1(x) = 2−nCn−1(y)

with y any of the points of the interval ]x, x+ 2−n[.

Following Lemma 3.7 and Case 1 there exist two constants A > 0 and

B > 0 and J0 ≥ N (which depend only on the given dyadic point x) such

that

(4.4) ∀n ≥ J0 A2−αn ≤ F (x+ 2−n)− F (x) ≤ B2−αn .

Thus we have F (x+ 2−n)− F (x) ≥ A.2−αn.

On the other hand, following remarks of Section ??, for any y ∈]x−2−n, x[

we have iN(y) = 1 = ... = in(y). Thus

(4.5) F (x− 2−n)− F (x) = Fn−1(x− 2−n)− Fn−1(x) = −Cn−1(y)2
−n .

Whence, following Lemma 3.7 and Case 1 we have for n ≥ J0

(4.6) ∀n ≥ J0 A2−αn ≤ −F (x− 2−n) + F (x) ≤ B2−αn .

Let ρ > 0 and J ≥ J0 such that 2−J−1 ≤ ρ ≤ 2−J .

Since F ≥ FJ , then Ωj ⊂ Ω where ΩJ is the domain below the graph of

FJ . So

(4.7) meas(B(X, ρ) ∩ Ωc) ≤ meas(B(X, ρ) ∩ Ωc
J) .

But meas(B(X, ρ)∩Ωc
J) is smaller than the area hb/2 of a triangle with

altitude h issued from X and a corresponding hypotenuse b (see Figures

below).
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x =
1

22

h = 2
−J

x =
1

22

b ∼ 2
−J/α

Overview of the function Zoom at the point x = 1
22

Clearly, we can take h ∼ 2−J . On the other hand, if we write 2−(j+1) <

b/2 < 2−j with j ≥ J , then using properties (4.4) and (4.6) (in which we

replace nα by J), we get b/2 ∼ 2−J/α. Since α < 1, Equations (4.4) and

(4.6) are valid with n = J
α
≥ J0.

Whence

(4.8) meas(B(X, ρ) ∩ Ωc) ≤ Cρ1+
1
α .

We conclude that

(4.9) Ew
Ωc(X) ≥

1

α
− 1 .

Since Ew
Ωc(X) ≤ Es

Ωc(X) ≤ 1
α
− 1 this yields

Es
Ωc(X) =

1

α
− 1 .

Since f = 1Ω then

(4.10) up
f (X) ≥

1

p
(
1

α
− 1) .

Since meas(B(X, r)) = meas(B(X, r)
⋂
Ω) +meas(B(X, r)

⋂
Ωc)

we get Es
Ω(X) = 0, hence Ew

Ω (X) = 0.

Whence Proposition 4.1.

4.2 Case of a local maximum of F

We will prove the following proposition.
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Proposition 4.2. Let X = (x, F (x)).

If x is a local maximum,

(4.11) Ew
Ω (X) =

1

α
− 1 and Ew

Ωc(X) = 0

(4.12) Es
Ω(X) =

1

α
− 1 and Es

Ωc(X) = 0

(4.13) up
f (X) =

1

p
(
1

α
− 1) .

Let x be a local maximum of F . There is an interval I containing x such

that for all x′ ∈ I, F (x) ≥ F (x′). Let N be such that the dyadic interval
[
kN
2N

, kN+1
2N

]
which contains x is contained in I.

Following Lemma 3.6, we know that x has the binary expansion (3.27),

i.e x =
kN0

2N0
+

∞∑

l=0

1
22l+1+N0

.

As a consequence of Lemma 3.7, and following Case (2), one can find

J0 and two constants A and B such that for n ≥ J0 Equation (3.24) holds.

Remark that it implies clearly that for n ≥ J0 in(x) = 1 if n is odd, and

in(x) = 0 if n is even.

Our goal now is to evaluate F (x)−F (x′) with x′ in the interval
[
kn
2n
, kn+1

2n

]
⊂

[
kN
2N

, kN+1

2N

]

and x′ 6= x. If x′ is a dyadic then we take its expansion of type

ij(x
′) = 0 for j large enough.

Letm ≥ n be the smallest integer such that im(x) = im(x
′) and im+1(x) 6=

im+1(x
′). To fix the ideas, suppose that im+1(x) = 1 and im+1(x

′) = 0. Thus

1

32m−1
≥ x− x′ ≥

1

2m+1
+

1

2m+3
−

∞∑

j=m+2

1

2j
≥

1

2m+3
.(4.14)

Since im(x) = 0 we have Cm−1(x) > 0.

Thus

(4.15) F (x)− F (x′) = Cm−1(x)(x− x′)
︸ ︷︷ ︸

(I)

+
+∞∑

k=m

2−kα
(
Λ(τ kx)− Λ(τ kx′)

)

︸ ︷︷ ︸

(II)

.

We have

(4.16) A2m(1−α)2−m−3 = C12
−mα ≤ (I) ≤ B2m(1−α)2−m−1/3 = C22

−mα .
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Since for k ≥ m− 1 we have Λ(τ kx) = 1/3, this yields

(4.17) 0 ≤ (II) ≤ C32
−mα .

Thus we have

(4.18) C12
−mα ≤ F (x)− F (x′) ≤ (C3 + C2)2

−mα .

Let us compute the weak and strong exponents at x.

Let ρ and J ≥ J0 such that 2−J−1 ≤ ρ ≤ 2−J . Thus obviously

meas(B(X, ρ)
⋂

Ω) ≤ meas(B(X, 2−j)
⋂

Ω) .

Remark first that if (x′, y′) ∈ B(X, 2−J)
⋂

Ω then |x − x′| < 2−J , |y′ −

F (x)| < 2−J and y′ ≤ F (x′). Since x is a local maximum on the interval
[
kJ
2J
, kJ+1

2J

]
, then y′ ≤ F (x′) ≤ F (x) and so 0 ≤ F (x)− F (x′) < 2−J . Hence

(x′, F (x′)) ∈ B(X, 2−J)
⋂

Ω.

Furthermore since F (x′) satisfies 0 ≤ F (x)−F (x′) ≤ 2−J , and following

Equation (4.18) x′ belongs to [x − C2−J/α, x + C2−J/α] with C depending

only on C3 + C2.

Thus B(X, 2−J)
⋂

Ω is contained in a rectangle of length 2−J and width

C2−J/α.

This yields

(4.19) meas(B(X, ρ)
⋂

Ω) ≤ C2−J(1+ 1
α
) ≤ C ′ρ1+

1
α .

We can conclude that

Ew
Ω (X) ≥

1

α
− 1 .

Since Ew
Ω (X) ≤ Es

Ω(X) ≤ 1
α
− 1 this yields

(4.20) Ew
Ω (X) = Es

Ω(X) =
1

α
− 1 .

Since meas(B(X, ρ)) = meas(B(X, ρ)
⋂
Ω) + meas(B(X, ρ)

⋂
Ωc) we

get

Es
Ωc(X) = Ew

Ωc(X) = 0.

And finally

(4.21) up
f (X) =

1

p

(
1

α
− 1

)

.
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4.3 Case of x /∈ D
⋃

S

If x /∈ D
⋃

S then we will compute separately the weak and strong ex-

ponents. We will first prove that for any point x in [0, 1] which is not a

maximum or a minimum of F the two weak exponents vanish.

Proposition 4.3. Let x /∈ D
⋃

S and X = (x, f(x)).

Then Ew
Ω (X) = Ew

Ωc(X) = 0.

Proof. We will prove first that we have always Ew
Ωc(X) = 0, but will

separate the proofs in cases r(x) > 1 and r(x) = 1. Then we will prove that

Ew
Ω (X) = 0 and prove it separately for s(x) > 1, and s(x) = 1.

• Case r(x) > 1. We follow the notations of Case 3 of Proposition 3.7,

i.e one can find two subsequences Jn and J ′
n such that J ′

n

Jn
> 1 and

iJn(x) = iJ ′

n+1(x), ij(x) + iJn(x) = 1 for Jn < j < J ′
n + 1. Suppose

without loose of generality that iJn+1(x) = 0. Let x̃n =
KJn

2Jn
=

Jn∑

j=1

ij(x)

2j
.

Thus we have

(4.22) 2−J ′

n−1 ≤ x− x̃n ≤ 2−J ′

n .

Since Case 3 of Proposition 3.7 holds, we get

A2(1−α)J ′

n2−J ′

n−1 ≤ FJ ′

n−1(x)− FJ ′

n−1(x̃n) ≤ B2(1−α)J ′

n2−J ′

n

A′2−αJ ′

n ≤ FJ ′

n−1(x)− FJ ′

n−1(x̃n) ≤ B′2−αJ ′

n .
(4.23)

We have F (x) = FJ ′

n−1(x) +
+∞∑

k=J ′

n

2−kαΛ(τ kx)

︸ ︷︷ ︸

≥0

and FJ ′

n−1(x̃n) = F (x̃n).

Thus following (4.23) we have

A2(1−α)J ′

n2−J ′

n−1 ≤ F (x)− F (x̃n) ≤ B2(1−α)J ′

n2−J ′

n + 2−J ′

nα

+∞∑

k=0

2−kαΛ(τ k+J ′

nx)

A′2−αJ ′

n ≤ F (x)− F (x̃n) ≤ B′2−J ′

n + 2−αJ ′

nF (τJ
′

nx)

A′2−αJ ′

n ≤ F (x)− F (x̃n) ≤ B′2−J ′

n + 2−αJ ′

nF (τJ
′

n1/3)

A′2−αJ ′

n ≤ F (x)− F (x̃n) ≤ C2−αJ ′

n

(4.24)
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indeed the maximum of F is reached at abscissas 1/3 or 2/3.

We can now apply the mean value theorem and get that for each

n ≥ J0 we can find yn ∈]x− 2−J ′

n , x+2−J ′

n [ such that F (x)−F (yn) =

A′.2−αn/2.

Thus using Lemma 3.2 we can conclude that Ew
Ωc(X) = 0.

• Case r(x) = 1.

Let Jn be defined just as in Lemma 3.8, i.e that one can find δ > 0,

δ′ > 0 and Jn such that Equation (3.30) is satisfied.

Following the definition of r(x), for all γ > 0 there exists n0 such

that for all j ≥ Jn0 |Kj2
−j − x| > 2−j(1+γ). Thus in particular for all

n ≥ n0 we have

(4.25) 2−Jn >
∣
∣KJn2

−Jn − x
∣
∣ > 2−Jn(1+γ) .

Suppose on one hand CJn−1(x) ≥ 0. Then choose x̃n = KJn2
−Jn if

x ∈]KJn2
−Jn , 2−Jn + KJn2

−Jn [ (respectively x̃n = KJn2
−Jn − 2−Jn if

x ∈]KJn2
−Jn − 2−Jn , KJn2

−Jn [).

We have obviously

(4.26) FJn−1(x)− FJn−1(x̃n) = CJn−1(x)(x− x̃n) ≥ 0 .

If we suppose on the other hand CJn−1(x) ≤ 0, then we can choose in

the same way a dyadic number x̃n = k
2Jn

such that

(4.27) FJn−1(x)− FJn−1(x̃n) = CJn−1(x)(x− x̃n) ≥ 0 .

Together with Equation (3.30) this yields in any of these cases that

δ′2−αJn ≥ |FJn−1(x)− FJn−1(x̃n)| ≥ δ2−Jn(1+γ)2(1−α)Jn

δ′2−αJn ≥ FJn−1(x)− FJn−1(x̃n) ≥ δ2−Jn(1+γ)2(1−α)Jn .
(4.28)

Since
+∞∑

k=J ′

n

2−kαΛ(τ kx) ≥ 0 and FJn−1(x̃n) = F (x̃n) we get

δ′2−αJn + 2−αJnF (1/3) ≥ F (x)− F (x̃n) ≥ FJn−1(x)− FJn−1(x̃n)

≥ δ2−Jn(1+γ)2(1−α)Jn

C2−αJn ≥ F (x)− F (x̃n) ≥ δ2−Jn(γ+α) .

(4.29)
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To get Ew
Ωc(X) we only have to adapt the proof of Lemma 3.2 to the

case rn = 2−Jn . Suppose without lost of generality that x < x̃n (the

other case can be treated in a similar way) and let rn = 2−Jn for

n ≥ n0.

Indeed, since for γ small enough and for n large enough 2−Jn is neglige-

able in front of 2−(α+γ)Jn (what we denote 2−(α+γ)Jn >> 2−Jn), follow-

ing the mean value theorem we can find bn ∈] min(x, x̃n),max(x, x̃n)[

such that bn = sup{un ∈]x, x̃n[, f(un) = f(x)− rn}. For all t ∈]bn, x̃n[,

we have f(t) < f(x) − rn. Thus following the same method as in

Lemma 3.2 we can find C > 0 such that

(4.30) C ′r2n ≥ meas
(

B(X, rn)
⋂

Ωc
)

≥ Cr
(1+ γ

α
)+1

n .

This yields

(4.31)

2 ≤ lim inf
n→+∞

log (meas (B(X, rn)
⋂

Ωc))

log(rn)
≤ lim sup

n→+∞

log (meas (B(X, rn)
⋂

Ωc))

log(rn)
≤ 2+

γ

α
.

Since γ > 0 is arbitrary and rn is independent of γ, we have the result

and Ew
Ωc(X) = 0.

• Case s(x) > 1.

Following Case 4, then one can find two subsequences Jn and J ′
n with

J ′

n

Jn
> 1 for all n, such that ij(x) + ij+1(x) = 1 for Jn < j < J ′

n and

iJ ′

n
(x) = iJ ′

n+1(x). Suppose without loosing generality that iJ ′

n
(x) = 0.

Let X̃n such that X̃n =
kJn
2Jn

+ 2
3(2Jn )

=
Jn∑

j=1

ij(x)

2j
+ 2

3(2Jn )
. We have clearly

(4.32) 2−J ′

n−1 ≤ −x+ X̃n ≤ 2−J ′

n .

Following the same sketch as in the proof with r(x) > 1 we can say

that, using Case 4 of Proposition 3.8

(4.33) A′2−αJ ′

n ≤ FJ ′

n−1(X̃n)− FJ ′

n−1(x) ≤ B′2−αJ ′

n

and since 2−αJ ′

nF (τJ
′

n1/3) ≥
+∞∑

k=J ′

n

2−kαΛ(τ kX̃n)−
+∞∑

k=J ′

n

2−kαΛ(τ kx) ≥ 0

we have indeed

(4.34) A′2−αJ ′

n ≤ F (X̃n)− F (x) ≤ C2−αJ ′

n .
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Thus using the mean value theorem and Lemma 3.3 as in the previous

case we conclude that Ew
Ω (X) = 0.

• Case s(x) = 1.

Let Jn be defined just as in Lemma 3.8, i.e that one can find δ > 0,

δ′ > 0 and Jn such that Equation (3.30) is satisfied as well as Point 2

of Lemma 3.8.

Following the definition of s(x), for all γ > 0 there exists n0 such that

for all j ≥ Jn0 |mj − x| > 2−j(1+γ). Thus in particular for all n ≥ n0

we have

(4.35) 2−Jn > |mJn − x| > 2−Jn(1+γ) .

Suppose on one hand that CJn−1(x) > 0. Then take X̃n =
KJn

2Jn
+ 2

3(2Jn )
.

Since iJn+1(x) = 0 we have FJn−1(X̃n)− FJn−1(x) > 0.

Together with Equation (3.30) this yields that

δ′2−αJn ≥
∣
∣
∣FJn−1(x)− FJn−1(X̃n)

∣
∣
∣ ≥ δ2−Jn(1+γ)2(1−α)Jn

δ′2−αJn ≥ −FJn−1(x) + FJn−1(X̃n) ≥ δ2−Jn(1+γ)2(1−α)Jn .
(4.36)

The same computation as previously yields

δ′2−αJn + 2−αJnF (1/3) ≥ −F (x) + F (X̃n) ≥ −FJn−1(x) + FJn−1(X̃n)

≥ δ2−Jn(1+γ)2(1−α)Jn

C2−αJn ≥ −F (x) + F (X̃n) ≥ δ2−Jn(γ+α) .

(4.37)

To get Ew
Ω (X) we only have to adapt the proof of Lemma 3.3 in the

same way we adapt the one of Lemma 3.2 in the case r(x) = 1.

Thus taking rn = 2−Jn and following the same method as previously

we can find C > 0 such that

(4.38) C ′r2n ≥ meas
(

B(X, rn)
⋂

Ω
)

≥ C2−Jn(1+
γ

α
)2−Jn .

This yields

(4.39)

2 ≤ lim inf
n→+∞

log (meas (B(X, rn)
⋂

Ω))

log(rn)
≤ lim sup

n→+∞

log (meas (B(X, rn)
⋂

Ω))

log(rn)
≤ 2+

γ

α
.
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Since γ > 0 is arbitrary, we have the result and Ew
Ω (X) = 0.

Hence the proof of Proposition 4.3.

For what concerns the strong accessibility exponent we have the following

result.

Proposition 4.4. Suppose x /∈ D
⋃

S and let X0 = (x, F (x)). Then

1. If r(x) > 1
α
then Es

Ωc(X0) =
1
α
− 1.

2. If s(x) > 1
α
then Es

Ω(X0) =
1
α
− 1.

3. Let Dα the set of x /∈ D
⋃

S such that r(x) > 1
α
and s(x) > 1

α
. Then

the Hausdorff dimension of Dα is α.

Proof.

1. Let us prove Point 1. Since r(x) > 1
α
, and following Point 3 of Lemma

3.7, for δ > 0 such that r(x)− δ > 1
α
we can find J ′

n and Jn such that

• xn = KJn2
−Jn and |x− xn| ≤ 2−J ′

n .

• |F (x)− F (xn)| ≤ 2−αJ ′

n .

Since we can choose J ′
n such that 2−J ′

n ≤ C2(r(x)−δ)Jn (see the proof

of Point 3 of Lemma 3.7), then |x− xn| is negligeable in front of 2−Jn

(what we denote |x − xn| << 2−Jn) and |F (x) − F (xn)| ≤ 2−αJ ′

n <<

2−Jn .

Thus we can choose a constant C such that with ρn = C2−Jn and

B(X0, ρn/2) ⊂ B((xn, F (xn)), ρn). Following the proof of Proposition

4.1 and more precisely Equation (4.8) we have

meas((B(X, ρn/2)
⋂

Ωc) ≤ meas(B((KJn2
−Jn , F (KJn2

−Jn), ρn)
⋂

Ωc))

≤ Cρ
1+1/α
n .

This yields Es
Ωc(X) ≥ 1

α
− 1.

Since Es
Ωc(X) ≤ 1

α
− 1, we get Es

Ωc(X) = 1
α
− 1.

2. We follow exactly the same proof as previously replacing xn by X̃n the

sequence of local maxima defined in the proof of Point 4 of Lemma

3.7.
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3. We follow here the results proved by [D] and summarized in [AB] for

our special case. Indeed recall the definition given in [D] of an ubiq-

uitous system in a real interval of R.

Definition 4.5. Let U be a real open interval. Let (xi)i≥1 be points

in U and let (ri)i≥1 be a sequence of positive real numbers such that

lim
i→∞

ri = 0. The family (xi, ri)i≥1 is a homogeneous ubiquitous system

in U if the set lim sup
i

B(xi, ri) is of full Lebesgue measure in U .

Theorem D of [AB] proved in [D] yields the following result.

Theorem 4.6. Let τ be a real number with τ ≥ 1. With the above

notations if the families (xi, ri)i≥1 and (x′
i, r

′
i)i≥1 are two homoge-

neous ubiquitous systems in U, then the Hausdorff dimension of the

set lim supB(xi, r
τ
i )

⋂
lim supB(x̃j, r̃

τ
j ) is at least equal to 1

τ
.

Let U =]0, 1[ and consider K1 = {( k
2j
, 2−j), k ∈ IN, 0 < k < 2j, j ≥ 1}.

It is a countable set and can be written as K1 = {(xi, ri), i ≥ 1}

with xi a dyadic number for all i ≥ 1. Let K2 = {(x, r), x ∈ S, r =
2−j

3
for j ≥ 1}. It is again a countable set and we can rewrite it as

K2 = {(x̃i, r̃i), i ≥ 1} with x̃i ∈ S for all i ≥ 1.

It is clear that lim supB(xi, ri) and lim supB(x̃i, r̃i) are of full Lebesgue

measure.

Remark then that Dα = lim supB(xi, r
τ
i )

⋂
lim supB(x̃i, r̃

τ
i ) with τ =

1
α
. Since Dα ⊂

⋃

j≥J,0≤k≤2j
B(xi, r

τ
i ) the Hausdorff dimension of Dα is

less or equal than α. We apply Theorem 4.6 and we find it is exactly α.

4.4 Proof of Theorem 2.1

Propositions 4.1, 4.2, 4.3 and 4.4 achieve the proof of Theorem 2.1.
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