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Introduction to optimal vector quantization and its

applications for numerics

Gilles Pagès ∗

Abstract

We present an introductory survey to optimal vector quantization and its first applications
to Numerical Probability and, to a lesser extent to Information Theory and Data Mining. Both
theoretical results on the quantization rate of a random vector taking values in R

d (equipped with
the canonical Euclidean norm) and the learning procedures that allow to design optimal quantizers
(CLV Q and Lloyd’s I procedures) are presented. We also introduce and investigate the more
recent notion of greedy quantization which may be seen as a sequential optimal quantization. A
rate optimal result is established. A brief comparison with Quasi-Monte Carlo method is also
carried out.

Keywords : Optimal vector quantization ; greedy quantization ; quantization tree ; Lloyd’s I algo-
rithm ; Competitive Learning Vector Quantization ; stochastic gradient descent ; learning algorithms ;
Zador’s Theorem ; Feynman-Kac’s formula ; variational inequality ; optimal stopping ; quasi-Monte
Carlo method ; nearest neighbor search ; partial distance search.

1 Introduction to vector quantization

1.1 Signal transmission, information

The history of optimal vector quantization theory goes back to the 1950’s in the Bell laboratories where
researches were carried out to optimize signal transmission by appropriate discretization procedures.
Two kinds of “stationary” signal can be naturally considered: either a deterministic – more or less
periodic – signal (denoted by (xt)t≥0) or a stochastic signal (denoted by (Xt)t≥0), considered under
its stationary regime, supposed to be ergodic. In both cases, these signals share an averaging property
as will be seen further on. Vector quantization can be briefly introduced as follows.

Let Γ = {x1, . . . , xN
} be a subset of Rd (d ≥ 1) of size (at most) N ≥ 1, called a quantization

grid or simply a quantizer at level N if Γ has exactly cardinality N i.e. if the elementary quantizers
xi are pairwise distinct. When d = 1 the numbering of the elementary quantizers xi is a priori made
consistent with the natural order on the real line so that i 7→ xi is non-decreasing.

In what follows, except specific mention, | . | will denote the canonical Euclidean norm on R
d

(although many of the stated results remain true or admit variants for more general norms).

A Γ-valued quantization function (also called quantizer) is simply any Borel function q : Rd → Γ.
A naive idea is to transmit at time t the stochastic signal q(Xt) instead of Xt itself inducing a resulting
pointwise error

|Xt − q(Xt)|
∗Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, UPMC, case 188, 4, pl. Jussieu, F-75252 Paris Cedex
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Figure 1: Quantization of a scalar (periodic) signal (B. Wilbertz)

One proceeds likewise for a deterministic signal with a resulting error |xt − q(xt)|.
⊲ Deterministic signal : Let p ∈ (0,+∞). Assume that

1

t

∫ t

0
δx(s)ds weakly converges as t → +∞

toward a distribution µ on (Rd,Bor(Rd)) such that

∫

Rd

|ξ|pµ(dξ) < +∞. If the quantization function

q is µ-a.s. continuous and, e.g., lim sup
t→+∞

1

t

∫ t

0
|x(s)|rds < +∞ for some r > p, then

lim
t→+∞

(
1

t

∫ t

0
|x(s)− q(x(s))|pds

) 1
p

=

(∫

Rd

|ξ − q(ξ)|pµ(dξ)
) 1

p

= ‖ξ − q(ξ)‖Lp(µ) < +∞.

⊲ Stationary ergodic stochastic signal : We consider again p∈ (0,+∞). Assume the process (Xt)t≥0

is stationary. Then, Xt has the same marginal distribution, say µ, for every t ∈ R+. Moreover, if
E |Xt|p =

∫
Rd |ξ|pµ(dξ) < +∞, then

‖Xt − q(Xt)‖Lp(P) = ‖X0 − q(X0)‖Lp(P) = ‖ξ − q(ξ)‖Lp(µ) < +∞.

Moreover, if the process (Xt)t≥0 is ergodic, ergodic pointwise Birkhoff’s Theorem ensures that

P-a.s. lim
t→+∞

(
1

t

∫ t

0
|Xs − q(Xs)|pds

) 1
p

= ‖ξ − q(ξ)‖Lp(µ) < +∞.

At this stage, several questions arise to optimize the transmission. Based on what precedes, we
will mainly adopt from now on the static point of view of an R

d-valued random vector X, defined on
a probability space (Ω,A,P), with distribution µ. It corresponds to the value of Xt at any time t or
to the asymptotic behavior of the signal (x(t))t≥0. More general situations of quantization or coding
can be investigated in Information Theory which take into account the dynamics of the (ergodic)
process leading to the most general Shannon’s source coding theorem. For these deeper aspects from
Information Theory, we refer to the general distortion theory as analyzed by large deviation methods
in [22] and the references therein.

Question 1 How to optimally choose the Γ-valued quantization function q (Geometric optimization)?

It is clear that, whatever the quantization function q : Rd → Γ is, one has

|ξ − q(ξ)| ≥ dist(ξ,Γ)

where dist(ξ, A) = infa∈A |ξ − a| denotes the distance of ξ to the set A ⊂ R
d (with respect to the

current norm). One easily checks that equality holds in the above inequality if and only if q is a Borel
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nearest neighbour projection i.e. q = πΓ defined by

= πΓ(ξ) =

N∑

i=1

xi1Ci(Γ)(ξ)

where the N -tuple of subsets
(
Ci(Γ)

)
1≤i≤N

is a Borel partition of (Rd,Bor(Rd)) satisfying

∀ i = 1, . . . , N, Ci(Γ) ⊂
{
ξ∈ R

d : |ξ − xi| = min
1≤j≤N

|ξ − xj |
}
.

Such a partition of Rd is called a Voronoi partition (or sometimes tessellation) induced by Γ. When
the norm | . | is Euclidean the closures Ci(Γ) of the cells are non-empty polyhedral closed convex
sets (intersection of finitely many half-spaces defined by median hyperplanes of the couples of points
(xi, xj), i 6= j). One easily shows that

{
ξ∈ R

d : |ξ − xi| < min
1≤j≤N, j 6=i

|ξ − xj |
}
⊂

◦
Ci (Γ) ⊂ Ci(Γ) ⊂

{
ξ∈ R

d : |ξ − xi| = min
1≤j≤N

|ξ − xj |
}
.

The inclusions at both ends of the inclusion chain can be replaced by equalities in an Euclidean
framework.

Then, for a given (static) random vector having values in R
d, one defines a Voronoi Γ-quantization

of X by Γ as
X̂Γ = πΓ(X).

Remark. For more developments on the non-Euclidean framework, like e.g. the ℓr-norms defined by

|ξ|r =
(
|ξ1|r+ · · ·+ |ξd|r

) 1
r , r∈ [1,+∞), or |ξ|∞ = max1≤j≤d |ξj |, ξ = (ξ1, . . . , ξd)∈ R

d, we refer to [32],
Chapter 1.

This leads us to define for p∈ (0,+∞), the Lp-mean quantization error induced by a grid Γ by

ep(Γ, X) =
∥∥X − πΓ(X)

∥∥
Lp(P)

=
∥∥dist(X,Γ)

∥∥
Lp(P)

=
∥∥ min
1≤i≤N

|X − xi|
∥∥
Lp(P)

(1.1)

=
∥∥ min
1≤i≤N

|ξ − xi|
∥∥
Lp(µ)

=

(∫

Rd

min
1≤i≤N

|ξ − xi|pµ(dξ)
) 1

p

. (1.2)

Note that, from a computational point of view, the computation of πΓ(ξ) is very demanding when
the size N is large since it amounts to a nearest neighbour search. We will come back to that point
further on in Section 3 devoted to numerical aspects of (optimal) quantization grid computation.

Question 2 How to choose Γ in order to improve the transmission?

The underlying idea is to try selecting (or designing) a grid Γ with size at most N which optimally
“fits” to the distribution µ of X with in mind an approximation in the Lp-sense when X ∈ Lp

Rd(P).
To this end, we introduce the Lp-distortion function.

Definition 1.1. Let p∈ (0,+∞) and X∈ Lp
Rd(P). The R+-valued function Gp,N defined on (Rd)N by

Gp,N : (x1, . . . , xN
) 7−→ E

(
min

1≤i≤N
|X − xi|p

)
= ep(Γ, X)p =

∥∥dist(X,Γ)
∥∥p
Lp(P)

.

is called the Lp-distortion function.
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It is clear that, if we define the optimal Lp-mean quantization problem by

ep,N (X) = inf
Γ, card(Γ)≤N

ep(Γ, X) (1.3)

where card(Γ) denotes the cardinality of the grid Γ ⊂ R
d, then

ep,N (X) = inf
(x1,...,xN

)∈(Rd)N

(
Gp,N (x1, . . . , xN

)
) 1

p .

Note that, in fact, ep,N (X) only depends on the distribution µ of X. So we will occasionally write
ep,N (µ) instead of ep,N (X). This follows from the easy remark that a grid Γ with less than N elements
can be represented by always an N -tuple in which each element of the grid appears as a component
at least once.

Proposition 1.1. Let p ∈ (0,+∞). Assume that X ∈ Lp
Rd(P) i.e.

∫

Rd

|ξ|pµ(dξ) < +∞ so that the

distortion function Gp,N is finite everywhere on (Rd)N .

(a) The distortion function Gp,N attains a minimum at an N -tuple x(N,p) = (x
(N,p)
1 , . . . , x(N,p)

N
).

(b) If card
(
supp(µ)

)
≥ N , then the corresponding grid Γ(N,p) =

{
x
(N,p)
1 , . . . , x(N,p)

N

}
has full size N

and for every Voronoi partition
(
Ci(Γ

(N))
)
1≤i≤N

of Rd induced by Γ(N), P(X∈ Ci(Γ
(N)) > 0.

(c) The sequence N 7→ ep,N (X) (strictly) decreases as long as N ≤ |supp(µ)| and

lim
N
ep,N (X) = 0.

The proof of this proposition is postponed to Section 2.1. The grid Γ(N,p), the corresponding N -
tuples x(N,p) (there are N ! N -tuples obtained by permutations of the components if the grid has full
size N) as well as the (Borel) nearest neighbour projections qΓ(N,p) are all called Lp-optimal quantizers.

Of course a crucial question in view of possible applications is to compute such Lp-optimal quan-
tizers at level N , especially in higher dimension.

When d = 1 and µ = U([0, 1]), then, for any p∈ (0,+∞), the mid-point grid Γ(N,p) =
{
2i−1
2N , i =

1, . . . , N
}

is the unique optimal Lp-quantizer at level N . The attached weights are all equal to

w
(p,N)
i = 1

N , i = 1, . . . , N and the resulting optimal Lp-quantization error is given for every N ≥ 1 by

ep,N
(
U([0, 1])

)
=

1

2(1 + p)1/pN
. (1.4)

More generally the question of the rate of decay of ep,N (X) is the central question of optimal vector
quantization theory. It will be investigated further on in Section 2.3.

1.2 Application to signal transmission

As mentioned in the introduction, this application of (optimal) quantization goes back to the very
origin of quantization theory in the 1950’s. Imagine one has access to an Lp-optimal quantization
grid, say for p = 2 (quadratic case in an Euclidean setting). For convenience, we assume that Γ =
{x1, . . . , xN

} is a grid (possibly optimal) such that P
(
X ∈ ⋃1≤i≤N ∂Ci(Γ)

)
= µ

(⋃
1≤i≤N ∂Ci(Γ)

)
= 0

e.g. because µ assigns no mass to hyperplanes.

What is the information “contained” in X̂Γ = πΓ(X)? Or equivalently, in probabilistic terms,

what are the characteristics of the distribution of X̂Γ?
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1. Its state space Γ = {x1, . . . , xN
},

2. Its “companion” weights wi = w
(Γ)
i = P(X̂Γ = xi) = P(X∈ Ci(Γ)) = µ(Ci(Γ)), i = 1, . . . , N .

If X is a random vector with a known simulatable distribution µ, one can pre-compute these
weights wi with an arbitrary accuracy by a large scale Monte Carlo simulation since, owing to the
Strong Law of large Numbers,

wi = P-a.s. lim
M→+∞

∣∣∣
{
1 ≤ m ≤M : |Xm − xi| < minj 6=i |Xm − xj |

}∣∣∣
M

, i = 1, . . . ,M,

where (Xm)m≥1 is a sequence of i.i.d. random vectors with distribution µ. In case of a not too large
dataset (which is more common for signal transmission) one compute the weights wi by assigning its
Voronoi class to each data (when the dataset is too large a statistical approach is adopted).

Coding the (quantized) signal Let Γ = {x1 . . . , xN
} ⊂ R

d be a grid (possibly non-optimal at
this stage) of size N and let P(Γ) be the set of distributions whose support is exactly Γ. In order to
transmit a Γ-valued signal from a sender A to a receiver B, A will transmit a codeword Ci = C(xi)
representative of xi instead of (an accurate enough approximation of) xi itself. For simplicity we will
assume that the coding function C maps Γ into the set {0, 1}(N) of finite {0, 1}-valued sequences (this
means that we adopt a dyadic coding procedures). The set {0, 1} is called a 2-alphabet (1). Our first
request on the function C is identifiability i.e. that B can always recover xi from Ci or equivalently
that C is injective. To design the codewords (Ci)1≤i≤N , one aims at minimizing the mean transmission
cost κ, also known as the mean length of the message. This is in fact very old problem which goes
back to the origins of Information Theory introduced by Claude Shannon in [69].

Let us focus for a while on this coding problem. The mean transmission cost κ(N) for a grid of
size N is clearly defined by

κ(N) =

N∑

i=1

wi × length(Ci).

A first (not so naive) idea is to re-index the points xi by a permutation σ so that i 7→ wσ(i) is non-
increasing. Without loss of generality, we may assume from now on that σ is identity (though, for
one-dimensional distributions, it is not consistent in general with the natural order of the points xi on
the real line). Then, it is intuitive (but in fact not mandatory) to devise the coding function C so that
i 7→ length(Ci) is non-decreasing since, doing so, the more often a code is transmitted, the shorter it
will be. In case of equality (like for the uniform distribution over Γ conventions have to be made).

A naive approach is to simply code xi through the regular dyadic expression ī2 of i which needs
1 + ⌊log2 i⌋ digits (where ⌊ξ⌋ denotes the lower integer part of ξ∈ R). This yields

κ(N) =

N∑

i=1

wi

(
1 + ⌊log2 i⌋

)
= 1 +

N∑

i=1

wi⌊log2 i⌋ ≤ 1 + ⌊log2N⌋.

The transmission relies on the fact that both A and B share the codebook i.e. a one-to-one correspon-
dence

xi ←→ ī
2
. (1.5)

⊲ A toy example. Imagine that, to transmit a uniformly distributed signal over the unit interval

[0, 1], we first optimally quantize it using the mid-point grid Γ(N) =
{2i− 1

2N
, i = 1, . . . , N

}
. This is

1More generally, if C is X (N)-valued, then X is called a card(X )-alphabet.
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equivalent to transmit a uniformly distributed signal over {1, . . . , N} thanks to the codebook so that,
as far as transmission is concerned, the grid Γ(N) itself plays no role. The resulting mean transmission
cost κ(N) is equal to

κ(N) = 1 +
1

N

N∑

i=1

⌊log2 i⌋ ∼ log2
(
N/e

)
as N → +∞.

To be more precise, once noted that the dyadic entropy H2

(
µ̂Unif

N

)
of the uniform distribution µ̂Unif

N

over {1, . . . , N} (or equivalently on Γ(N)) is equal to log2N , we can show that

c− = lim inf
N

(
κ(N)−H2

(
µ̂Unif

N

))
≤ lim sup

N

(
κ(N)−H2

(
µ̂Unif

N

)
)
)
= c+

where c− ≈ −2, 8792 and c+ ≈ −0.9139.
⊲ Instantaneous coding. However, this approach is definitely too naive. In practice, A does not send
one isolated codeword but a sequence of codewords. Such a coding is not satisfactory, mainly because
it is not self-punctuated. To be decodable, an extra symbol (space, comma, etc) is needed to isolate
the codewords. Doing so amounts to adding one symbol to the alphabet (with a special status since
it cannot be repeated, like the large space in Morse coding). But this lowers the global performance
of the coding system since it induces de facto switching from a 2-alphabet to a 3-alphabet coding
function C, the third symbol having moreover a lower status of “under-symbol”. To overcome this
problem, the idea, again due to Shannon in his seminal 1948 paper [69], is to devise self-punctuated
codes. This relies on two conditions. First we ask the coding process to be uniquely decodable in the
sense that the concatenation of codewords C(x1) · · ·C(xN

) uniquely characterizes the concatenation
x1 · · ·xN

. The additional condition which defines an instantaneous coding system is that a codeword
can never be the prefix of another or, equivalently, no codeword can be obtained as the concatenation
of another codeword and further symbols of the alphabet (here 0 and 1 digits). One easily checks that
an instantaneous coding procedure is always self-punctuated.

Unfortunately, it is also straightforward to check that the naive dyadic coding (1.5) formerly
mentioned which consists in writing in base 2 every index i is not an instantaneous coding system
since, e.g., 2̄

2
= 10 and 5̄

2
= 101.

Let us illustrate on a simple example how an instantaneous coding procedure look. We consider
the following coding procedure of the set of indices {1, 2, 3, 4}:

C(1) = 0, C(2) = 10, C(3) = 110, C(4) = 111.

Such a code is uniquely decodable (e.g. 0110111100110 can be uniquely decoded as the string 134213).
Furthermore it is clearly instantaneous (thus 010111110010 can be parsed on line as 0, 10, 111, 110, 10
i.e. the string 12432).

If we consider the uniform distribution µ̂Unif
4

over {1, 2, 3, 4}, the resulting mean cost transmission

(or mean length) is equal to κ
(
µ̂Unif

4

)
:=

1

4
(1+ 2+ 3+ 3) =

9

4
whereas the naive dyadic coding of the

indices seemingly yields 8
4 = 2. However, the implementable version of this naive dyadic coding (1.5),

i.e. including an extra symbol like “,”, has a mean length equal to 3 > 9
4 . This can be up to 30% more

symbol consuming than the above instantaneous code!

Now, let us consider a general distribution µ̂
N

(exactly) supported by {1, . . . , N} (or equivalently
by a grid Γ

N
of size N) and a priori not uniform. Assume we have access to the weights wi = µ̂

N

(
{i}
)

(i.e. to µ̂ itself). We define the dyadic entropy H2(µ̂) of µ̂ by

H2(µ̂) = −
N∑

i=1

wi log2wi.
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Then, the following classical theorem from Information Theory holds (see [19], Chapter 5, Theorem
5.3.1 and Section 5.4).

Theorem 1.1. For any instantaneous dyadic coding procedure C : {1, . . . , N} → {0, 1}(N) of the
distribution µ̂, its mean transmission cost κµ̂(N) satisfies

κ(µ̂
N
) ≥ H2(µ̂N

). (1.6)

Furthermore, there exists (at least) one instantaneous coding procedure such that

κµ̂(N) < H2(µ̂N
) + 1. (1.7)

For a proof of this result based on Kraft’s inequality, which is too far from the scope of this paper,
we refer to [19]. Furthermore when a sequence (Yn)n≥0 of {1, . . . , N}-valued signals to be transmitted
is stationary with marginal (invariant) distribution µ̂

N
and ergodic, it is possible by aggregating n of

them to show (with obvious notations, see again [19]) that

κ(Y1, . . . , Yn)→ H2(µ̂) as n→ +∞. (1.8)

Examples: (a) The Huffman code: It was the first optimal instantaneous code – devised in Huffman’s
PhD thesis (see also [36]). Its length sequence (ℓ∗i )1≤i≤N can be obtained as the solution to the integer
optimization problem (ℓi denotes the length of a code Ci):

ℓ∗ = argmin
∑

2−ℓi≤1

∑
wiℓi

so that H2(µ̂N
) ≤ κHuf (µ̂N

) =
∑
wiℓ

∗
i ≤ H2(µ̂N

)+1. For an explicit construction of the Huffman code
(and not only of its length sequence!), we refer again to [19], Sections 5.6 & 5. Let us simply mention
that the codes are obtained by the concatenation of labels given to the edges (1 for “right” edges, 0 for
“left edges” starting from the root) of successive trees built from the (non-increasing) monotony of the
weights wi. The se successive trees are obtained by summing up the lower probabilities (starting from
w̃

N−1 := wN+wN−1), with appropriate conventions in case of equality like with uniform distributions).

(b) The Shannon coding (see exercise 5.28 in [19]): Still assume that the weights of the distribution
µ̂

N
satisfy 0 < w

N
≤ · · · ≤ w1 < 1. Let F µ̂

N denote the strict-cumulative distribution function of µ̂
N

defined by

F
µ̂
N

i =
∑

j<i

wj .

Set
ℓi = ⌈− log2wi⌉ and Ci = ⌊2ℓiF µ̂

i ⌋, i = 1, . . . , N,

where ⌈ξ⌉ denotes the upper integer part of the real number ξ. Elementary computations show that
Shannon’s code is instantaneous and that its mean transmission cost κShanS(µ̂N

) also satisfies

H2(µ̂N
) ≤ κShanS(µ̂N

) < H2(µ̂N
) + 1.

Global error induced by the transmission of a quantized signal Let us bring back quantiza-
tion into the game by considering a continuous signal which needs to be quantized in order to reduce
its transmission cost. Let us briefly compare from a quantitative viewpoint two modes of transmission
for a signal.
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⊲ Direct transmission. Let (Xt)t≥0 be a stochastic stationary signal with marginal distribution µ

defined on a probability space (Ω,A,P) and Γ = {x1, . . . , xN
}. To transmit the Γ-quantization X̂Γ of

the random signal X = Xt0 at time t0, the resulting quadratic mean quantization error is equal to
∥∥X − X̂Γ

∥∥
L2(P)

+ 2−r = e2(Γ, µ) + 2−r

where 2−r is the dyadic transmission accuracy of any of the elementary quantizers xi. In fact this
corresponds to a fixed transmission cost κ = r + 1 i.e. number of dyadic digits used to transmit these
values. Common values for r lie between 10 and 20 (having in mind that 2−10 = 1

1024 ≈ 10−3).

⊲ Signal transmission using the codebook. If the receiver B uses the codebook (Ci ←→ xi)1≤i≤N for
the decoding phase (2), the resulting mean quadratic transmission error will be equal to

∥∥X − X̂Γ
∥∥
L2(P)

= e2(Γ, µ)

whereas the mean unitary transmission cost is κµ̂(N) where µ̂ is the distribution of the quantized signal

X̂Γ. In this second case, there is a connection between the transmission error and the transmission
cost that will be made more precise in Section 2.3 when the grid Γ is L2-optimal at level N for µ.

However, in the very simple case of the uniform distribution U([0, 1]) over the unit interval, we can
establish a direct relation between quadratic mean transition error and mean transmission cost κ when
both the quantization and the instantaneous coding are optimal. The optimal quadratic quantization
of U([0, 1]) is the uniform distribution µ̂Unif

N
over the N -mid-point whose dyadic entropy is exactly

H2(µ̂
Unif
N

) = log2N . Plugging this equality in (1.7) yields κµ̂
N
≤ log2(N). In turn, plugging this

inequality in the quantization error bound (1.4) yields that the lowest achievable mean transmission
error, for a prescribed mean transmission cost κ, approximately satisfies

2−(κ+1)

√
3
≤ L2-Mean transmission error(κ) ≤ 2−κ

√
3
.

A less sharp (reverse) formulation is

− log2
(
Transmission error(κ)

)
∼ κ as κ→ +∞.

This result appears as the most elementary version of a seminal result from Information Theory:
Shannon’s source coding theorem (in one dimension). Its extension to more general distributions µ on
R
d will be possible, once established the sharp convergence rate of the L2-optimal mean quantization

error of general distributions on R
d stated in Section 2.3 (Zador’s Theorem).

We enhanced in the above lines a static random signal presentation but the adaptation to a
stationary process or a quasi-periodic (as defined above in terms of weak convergence of its time
empirical measure) signal is straightforward (in particular for stationary ergodic signal one may take
advantage of the improvement provide by (1.8), using n-aggregates of the signal, to reduce the range
of the two-sided inequality (1.6)-(1.7) in Theorem 1.1.

1.3 What else is quantization for?

1.3.1 Data mining, clustering, automatic classification

Let (ξk)1≤k≤n be an R
d-valued dataset and µ the uniform distribution over this dataset – the empirical

measure of the dataset – defined by

µ =
1

n

n∑

k=1

δξk

2The sender A only needs a codebook to discriminate the elementary quantizers xi i.e. a codebook where all xi are
known with a fixed length ℓ1 (dyadic) bits in its dyadic representation. The receiver B may need arbitrary accurate
values for the elementary quantizers xi in his/her codebook in order to reconstruct a posteriori the signal.

8



where δa denotes the Dirac mass at a∈ R
d. In such a framework, n is usually large, say 106 or more,

and optimal quantization can be viewed as a model for clustering i.e. the design of a set of N prototypes
of the dataset, with N ≪ n, obtained as a solution to the mean quadratic (or more generally Lp-)
optimal quantization at level N ≥ 1 of the distribution µ (p∈ (0,+∞) being fixed). This reads as the
(Lp-)minimization problem

min
(x1,...,xN

)∈(Rd)N

1

n

n∑

k=1

min
1≤i≤N

|ξk − xi|p.

The existence of such an optimal N -quantization grid Γ(N,p) of prototypes follows from the above
Proposition 1.1. Such a distribution does assign mass to hyperplanes and in particular to the bound-
aries of polyhedral Voronoi cells. However, owing to Theorems 4.1 and 4.2 in [32] (p.38), we know
that the boundaries of the Voronoi cells induced by an optimal grid Γ(N,p) are always µ-negligible.

Once an optimized grid of N prototypes has been computed (see Section 3 devoted to the algo-
rithmic aspects), it can be used to produce an automatic classification of the dataset by making up
“clusters” of points of the dataset following the nearest neighbour rule among the prototypes. For-
mulated equivalently, one defines the N clusters as the “trace” of the dataset on the Voronoi cells
Ci(Γ

(N)), i = 1, . . . , N .

From a mathematical point of view, investigations on this topic are carried out be replacing the
deterministic dataset (ξk)1≤k≤n by a sequence of i.i.d. random vectors (Xk)k≥0 defined on a probability
space (Ω,A,P) with distribution µ. The quantities of interest become, in short, the sequence of
optimization problems induced by the random empirical measures µn(ω, dξ) = 1

n

∑n
k=1 δXk(ω)(dξ),

ω∈ Ω. This has given rise to a huge literature in Statistics and has known a kind of renewal with the
emergence of clustering methods in the “Big Data” world, see [10]. We consider, for every ω∈ Ω, the
optimization problem

min
(Rd)N

[
1

n

n∑

k=1

min
1≤i≤N

|Xk(ω)− xi|p =
∫

Rd

min
1≤i≤N

|ξ − xi|pµn(ω, dξ)
]
. (1.9)

The main connection with optimal quantization is the following: Assume that µ(B(0; 1)) = 1. For
every ω∈ Ω, there exists (at least) an optimal N -tuple x(N)(ω, n) for the above problem which satisfies

E

(
e2
(
x(N)(ω, n), µ

))
− e2,N (µ) ≤ Cmin



√
Nd

n
,

√
dN1− 2

d log n

n




where C > 0 is a positive universal real constant.

1.3.2 From Numerical integration (I) . . .

Another way to take advantage of optimal quantization emerged in the 1990’s (see [53]). As we know
that for a sequence (Γ(N,p))N≥1 of Lp-optimal grids of size N with N → +∞ we have

‖X − X̂ΓN,p‖Lp(P) = ep,N (X)→ 0

i.e. X̂ΓN,p → X as N → +∞ in Lp (hence in distribution). It can be shown (see [21]) that, in fact, this
convergence also holds in an a.s. sense although we will make little use of this feature in what follows.
In particular, if a function F : Rd → R is bounded and continuous, then EF (X̂ΓN,p

) → EF (X) as

9



N → +∞. On the other hand, using the characteristics (x
(N)
i , w

(N)
i )1≤i≤N of the distribution of X̂ΓN,p

,
we derive a very simple weighted cubature formula

EF (X̂ΓN,p

) =

N∑

i=1

w
(N)
i F

(
x
(N)
i

)
. (1.10)

When F has more regularity (and possibly not bounded), we can easily establish precise error
bound for this quantization based cubature formula.

First order quantization based cubature formula. More generally, we consider a function F : Rd → R

which is locally α-Hölder continuous in the sense that there exists α∈ (0, 1], β ≥ 0, and a real constant
[F ]α,β such that

∀x, y∈ R
d, |F (x)− F (y)| ≤ [F ]α,β |x− y|α

(
1 + |x|β + |y|β

)
.

Then, for every conjugate Hölder exponents (p, q)∈ [1,+∞],

∣∣EF (X)− EF (X̂Γ)
∣∣ ≤ [F ]α,βE

(
|X − X̂Γ|α

(
1 + |X|β + |X̂Γ|β)

))

≤ [F ]α,β,loc‖X − X̂Γ‖αLαp(P)

(
1 + ‖X‖β

Lβq(P)
+ ‖X̂Γ‖β

Lβq(P)

)
.

In particular, if p = 1
α , one gets

∣∣EF (X)− EF (X̂Γ)
∣∣ ≤ [F ]α,β‖X − X̂Γ‖α1

(
1 + ‖X‖β

L
β

1−α (P)
+ ‖X̂Γ‖β

L
β

1−α (P)

)
(1.11)

(with the convention ‖ . ‖0
L

β
1−1 (P)

= 1). If F is α-Hölder continuous with Lipschitz coefficient [F ]α =

1
3 [F ]1,0, then ∣∣EF (X)− EF (X̂Γ)

∣∣ ≤ F ]α‖X − X̂Γ‖αLα(P). (1.12)

From the cubature formula (1.12) and using that bounded Hölder functions characterize the weak
convergence of probability measures, we derive the following corollary about Lp-optimal quantizers
(by considering α = p ∧ 1).

Corollary 1.1. Let (Γ(N))N≥1 be a sequence of (Lp, µ)-quantizers with Γ(N) of size N and such that

ep(Γ
(N), µ)→ 0 as N → +∞. Let µ̂

N
denote the distribution of X̂Γ(N)

. Then

µ̂
N
=

N∑

i=1

µ
(
Ci(Γ

(N))
)
δ
x
(N)
i

(w)−→ µ as N → +∞. (1.13)

where
(w)−→ denotes the weak convergence of distributions.

1.3.3 . . . to Numerical Probability (conditional expectation)

One of the main problem investigated in the past twenty years in Numerical Probability has been the
numerical computation of conditional expectations, mostly motivated by problems arising in finance
for the pricing of derivative products of American style or more generally known as “callable”. It
is also a challenging problem for the implementation of numerical schemes for Backward Stochas-
tic Differential Equations (see [2, 3]), Stochastic PDEs (see [31]), for non-linear filtering [54, 66] or

10



Stochastic Control Problems (see [55, 13, 14]). Further references are valuable in the survey paper [59]
devoted to applications of optimal vector quantization to Numerical Probability. The specificity of
these problems in the probabilistic world is that, whatever the selected method is to suffer in some
way or another, from the curse of dimensionality. Optimal quantization trees (introduced in [2]) is
one of the numerical methods designed to cope with this problem (with regression and Monte Carlo-
Malliavin method, see [44], [27]). The precise connection between vector quantization and conditional
expectation computation can be summed up in the proposition below.

We consider a couple of random vectors (X,Y ) : (Ω,A,P)→ R
d×R

q and the regular version Q of
the conditional distribution operator of X given Y , defined on every bounded or non-negative Borel
function f : Rd → R, by

Qf(y) = E
(
f(X) |Y = y

)
.

Then, Qf is a Borel function on R
d. We define the Lipschitz ratio of a function f : Rd → R by

[f ]Lip = supx 6=y
|f(y)−f(x)|

|x−y| ≤ +∞. We make the following Lipschitz continuity propagation assumption

on Q: there exists [Q]Lip∈ R+ such that

∀ f : Rd → R, Borel function, [Qf ]Lip ≤ [Q]Lip[f ]Lip. (1.14)

Proposition 1.2. Assume that the conditional distribution operator Q of X given Y satisfies the above
Lipschitz continuity propagation property (1.14). Let ΓX ⊂ R

d and ΓY ⊂ R
q be two quantization grids

of X and Y respectively.

(a) Quadratic case. Assume X, Y ∈ L2(P). Let f : Rd → R be a Lipschitz continuous function and
let g : Rd → R be a Borel function with linear growth. Then

∥∥E
(
f(X) |Y

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)∥∥2
L2(P)

≤ [Qf ]2Lip
∥∥Y − Ŷ ΓY

∥∥2
L2
Rq

(P)
+
∥∥f(X)− g(X̂ΓX )

∥∥2
L2(P)

so that if g = f ,

∥∥E
(
f(X) |Y

)
− E

(
f(X̂ΓX ) | Ŷ ΓY

)∥∥2
L2
Rq

(P)
≤ [Qf ]2Lip

∥∥Y − Ŷ ΓY
∥∥2
L2(P)

+ [f ]2Lip
∥∥X − X̂ΓX

∥∥2
L2(P)

.

(b) Lp-case. Assume X, Y ∈ Lp(P), p∈ [1,+∞) and let f and g be like in (a). Then

∥∥E
(
f(X) |Y

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)∥∥
Lp

Rq
(P)
≤ (2− δp,2)[Qf ]Lip

∥∥Y − Ŷ ΓY
∥∥
Lp(P)

+
∥∥f(X)− g(X̂ΓX )

∥∥
Lp(P)

where δp,p′ denotes the Kronecker symbol. In particular, if g = f , one has

∥∥E
(
f(X) |Y

)
− E

(
f(X̂ΓX ) | Ŷ ΓY

)∥∥
Lp(P)

≤ (2− δp,2)[Qf ]Lip
∥∥Y − Ŷ ΓY

∥∥
Lp

Rq
(P)

+ [f ]Lip
∥∥X − X̂ΓX

∥∥
Lp(P)

.

Proof. (a) We decompose E
(
f(X) |Y

)
− E

(
f(X̂ΓX ) | Ŷ ΓY

)
into two (L2(P)-orthogonal) terms

E
(
f(X) |Y

)
− E

(
f(X̂ΓX ) | Ŷ ΓY

)
=

(
E
(
f(X) |Y

)
− E

(
E(f(X) |Y

)
| Ŷ ΓY

)
︸ ︷︷ ︸

(1)

)

+
(
E
(
E(f(X) |Y

)
| Ŷ ΓY

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)
︸ ︷︷ ︸

(2)

)
.

To check the announced L(
P)-orthogonality, we note that (2) is σ(Ŷ ΓY )-measurable; hence, the

characterization of conditional expectation given Ŷ ΓY impliesE (1)× (2) = 0. On the other hand, the
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very definition of conditional expectation given Ŷ ΓY as the best approximation in L2
Rq(P) by a square

integrable σ(Ŷ ΓY )-measurable random vector implies in turn

E (1)2 = E
(
Qf(Y )− E(Qf(Y ) | Ŷ ΓY )

)2 ≤ E
(
Qf(Y )−Qf(Ŷ ΓY )

)2

≤ [Qf ]2Lip
∥∥Y − Ŷ ΓY

∥∥2
L2(P)

.

On the other hand, using that Ŷ ΓY is σ(Y )-measurable, we first derive from the chain rule for condi-
tional expectation that

(2) = E
(
f(X) | Ŷ ΓY

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)
= E

(
f(X)− g(X̂ΓX ) | Ŷ ΓY

)
.

Using now that conditional expectation is an L2-contraction, we deduce that

E (2)2 ≤ ‖f(X)− g(X̂ΓX )‖2L2(P) ≤ ‖f(X)− g(X̂ΓX )‖2L2
Rq

(P).

When g = f , the conclusion is straightforward.

(b) We start from the classical Minkowski Inequality

∥∥E
(
f(X) |Y

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)∥∥
Lp(P)

≤
∥∥Qf(Y )− E(Qf(Y ) | Ŷ ΓY )

∥∥
Lp(P)

+
∥∥E
(
f(X) | Ŷ ΓY

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)∥∥
Lp(P)

where we used like in (a) that E
(
Qf(Y ) | Ŷ ΓY

)
= E

(
f(Y ) | Ŷ ΓY

)
. Now, still owing to Minkowski’s

Inequality

∥∥Qf(Y )− E(Qf(Y ) | Ŷ ΓY )
∥∥
Lp(P)

≤
∥∥Qf(Y )−Qf(Ŷ ΓY )

∥∥
Lp(P)

+
∥∥E
(
Qf(Ŷ ΓY )−Qf(Y ) | Ŷ ΓY

)∥∥
Lp(P)

so that

∥∥Qf(Y )− E(Qf(Y ) | Ŷ ΓY )
∥∥
Lp(P)

≤ 2
∥∥Qf(Y )−Qf(Ŷ ΓY )

∥∥
Lp(P)

≤ 2[Qf ]Lip
∥∥Y − Ŷ ΓY

∥∥
Lp

Rq
(P)
.

Note that when p = 2 the above coefficient 2 can be cancelled using again, like in (a), that conditional
expectation given Ŷ ΓY is the best approximator in L2(P) by σ(Ŷ ΓY )-measurable square integrable
random vectors. On the other hand,

∥∥E
(
f(X) | Ŷ ΓY

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)∥∥
Lp(P)

≤
∥∥f(X)− g(X̂ΓX )

∥∥
Lp(P)

.

The case g = f follows immediately. This completes the proof. �

To conclude this section, we make the connection between these cubature formulas and the L1-
Wasserstein distance W1 defined by

W1(µ, ν) = inf
{
EP|X − Y |, X, Y : (Ω,A,P)→ R

d, X
d
= µ, Y

d
= ν

}

where
d
= denotes the identity in distribution.
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Proposition 1.3. Let X∈ Lp
Rd(P), p∈ (0, 1], with distribution µ and let Γ = {x1, . . . , xN

}.
(a) For every p∈ (0, 1], ‖X − X̂Γ‖pLp(P) = sup

[F ]p≤1
|EF (X) − EF

(
X̂Γ
)∣∣ where [F ]p = supx 6=y

|F (x)−F (y)|
|x−y|p

denotes the p-Hölder coefficient of the function F : Rd → R.

(b) If PN denotes the set of probability measures with a support having at most N points in R
d, then

W1(µ,PN ) = e1,N (µ).

Proof. (a) The inequality sup
[F ]p≤1

∣∣EF (X) − EF
(
X̂Γ
)∣∣ ≤ ‖X − X̂Γ‖pLp(P) is straightforward (set e.g.

α = p and β = 0 in (1.11) and note [F ]p = 1
3 [F ]p,0). The equality follows by noting that the function

Fp defined for every ξ∈ R
d by Fp(ξ) = min1≤i≤N |ξ − xi|p is p-Hölder with [F ]p = 1.

(b) LetX : (Ω,A,P)→ R
d with distribution P

X
= µ. It is clear, as already seen, that if Y : (Ω,A,P)→

R
d is such that ΓY = Y (Ω) has at most N values then |X − Y | ≥ dist(X,ΓY ) = |X − X̂ΓY | so that
‖X − X̂ΓY ‖1 ≤ E|X − Y |. As a consequence e1,N (µ) ≤ W1(µ,PN

). Conversely, it follows from the
definition of e1,N (µ) in (1.3) that e1,N (µ) ≥ W1(µ,PN

) since it is defined as an infimum over less
random vectors (only those of the form Y = q(X) of X where q : Rd → R takes at most N values)
that the L1-Wasserstein distance. This completes the proof. �

1.4 Application to Numerical Analysis (Automatic meshing)

1.4.1 Representation of the solution of parabolic equation, Feynman-Kac’s formula

Let b : [0, T ]×R
d → R

d and a : [0, T ]×R
d → S+(d,R) be two continuous functions with at most linear

and quadratic growth in x, uniformly with respect to t ∈ [0, T ], respectively (S+(d,R) denotes the
set of d × d symmetric non-negative matrices). Let f : Rd → R be a Borel function with polynomial
growth. We want to solve numerically the following parabolic partial differential equation (PDE),
either by a Monte Carlo simulation or by a quadrature formula

∂u

∂t
+ Lu = 0, u(T, .) = f (1.15)

where, denoting by (.|.) the canonical inner product on R
d,

Lu = (b|∇u) + 1

2
Tr(a∇2u). (1.16)

⊲ Step 1 (The Feynman-Kac representation formula). This fundamental connection between diffusion
process and (parabolic) PDEs is summed up in the following theorem.

Theorem 1.2 (Feynman-Kac’s representation formula). Assume (for simplicity) that the functions
b and a are such that the above PDE (1.16) has a unique C1,2([0, T ] × R

d) solution u whose gradient
∇xu has polynomial growth in x, uniformly in t∈ [0, T ]. Let σ : Rd →M(d, q) (3) such that a = σσ∗

(where ∗ stands for matrix transposition). Assume that b and σ are continuous on [0, T ]×R
d and, at

least, Lipschitz continuous in x, uniformly in t∈ [0, T ].

(a) Then the function u admits the following representation as an expectation:

∀x∈ R
d, ∀ t∈ [0, T ], u(t, x) = E f(Xt,x

T
)

3matrices with d rows and q columns.

13



where (Xx,t
s )s∈[t,T ] denotes the unique solution to the Stochastic Differential Equation (SDE)

dXt,x
s = b(s,Xt,x

s )ds+ σ(s,Xt,x
s )dWs, X

t,x
t = x, s∈ [t, T ], (1.17)

(starting from x ∈ R
d at time t ∈ [0, T ] and defined on [t, T ]) where W is a q-dimensional standard

Brownian motion defined on a probability space (Ω,A,P).
Owing to the Markov property, an alternative formulation is given by

∀ t∈ [0, T ], E
(
f(X

T
) |Xt

)
= u(t,Xt) a.s.

for any solution (Xt)t∈[0,T ] of the above SDE defined over the whole interval [0, T ] starting at a finite
random vector X0 independent of W . In particular u(t, x) = E

(
f(X

T
) |Xt = x

)
(in the sense that it

is a regular version of the conditional expectation as x varies).

(b) Time homogeneous diffusion coefficients: If b(t, x) = b(x) and σ(t, x) = σ(x) (no dependence of b
and σ in t), then the representation can be written

∀x∈ R
d, ∀ t∈ [0, T ], u(t, x) = E f(X0,x

T−t
). (1.18)

Proof. (a) Itô’s formula applied to the function u and the process (s,Xt,x
s )s∈[t,T ] between t and T

yields

u(T,Xt,x
T

) = u(t, x) +

∫ T

t

(∂u
∂t

+ Lu
)
(s,Xt,x

s )
︸ ︷︷ ︸

=0

ds+

∫ T

t

(
∇xu(s,X

t,x
s )|σ(s,Xt,x

s )dWs

)
.

The integral in “ds” is zero since u satisfies the parabolic PDE (1.15) and one easily establishes that
the local martingale null at 0 defined by the Brownian stochastic integral is a true martingale, null at
0, owing to the growth control assumption made on ∇xu. Then, one gets

Eu(T,Xt,x
T

) = u(t, x).

(b) One writes Itô’s formula between 0 and T − t to u(T − t,X0,x
t ) and proceeds as above. �

Remark. In the time homogeneous case, one can proceed by verification. Under smoothness assump-
tion on b and σ, say C2 with bounded existing derivatives and Hölder second order partial derivatives,
one shows, using the tangent process of the diffusion, that the function u(t, x) defined by (1.18) is C1,2
in (t, x). Then, the above claim (b) shows the existence of a solution to the parabolic PDE (1.15).

⊲ Step 2a (Monte Carlo simulation). Assume for the sake of simplicity that we want to compute a
numerical approximation of u(0, x) = E f(X0,x

T
) i.e. that t = 0. At this stage, the idea is to replace

the diffusion by its Euler scheme with step T
n (n ≥ 1) starting at x: let tnk = kT

n , k = 0, . . . , n be the
uniform mesh of [0, T ] with step T

n . It is recursively defined as follows (to alleviate notations, we drop
the dependance in 0,x of the Euler scheme):

X̄n
tn
k+1

= X̄n
tn
k
+
T

n
b(tnk , X̄

n
tn
k
) +

√
T

n
σ(tnk , X̄

n
tn
k
)U

(n)
k+1, k = 0, . . . , n X̄n

tn0
= X̄n

0 = x

where (U
(n)
k )k=1,...,n is an i.i.d. sequence of N (0; Iq)-distributed random vectors representative of the

Brownian increments i.e.

Wtn
k
−Wtn

k−1
=

√
T

n
U

(n)
k , k = 1, . . . , n.
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The quantity Ef(X̄n
T
) (have in mind that T = tnn) is the counterpart of E f(XT

) for the Euler scheme.
Assume that b and σ are Lipschitz continuous in (t, x). Then, on the one hand,

sup
n≥1

∥∥∥ max
0≤k≤n

|X̄n
tn
k
|
∥∥∥
Lp(P)

+
∥∥∥ max
t∈[0,T ]

|Xt|
∥∥∥
Lp(P)

≤ κp,b,σ,T
(
1 + |x|

)
(1.19)

and, on the other hand, the discrete time Euler scheme strongly converges to X for the sup norm in

every Lp(P) at rate
√

1
n in the following sense

∥∥∥ max
k=0,...,n

|X̄n
tn
k
−Xtn

k

∥∥∥
Lp(P)

≤ Cp,b,σ,T

√
T

n

(
1 + |x|

)
.

As a consequence, E f(X̄n
T
) → E f(X

T
) with a O

(√
1
n

)
-rate as the step T

n goes to 0 (i.e. n → +∞)

if f is Lipschitz continuous (or even locally Lipschitz continuous with polynomial growth). The
convergence still holds, without rate, if f is continuous with polynomial growth.

In fact if b, σ and f are smooth enough then the so-called weak error E f(X̄n
T
) − E f(X

T
) can be

investigated directly by more analytic methods. As a result, a (faster) O
(
1
n

)
-ate can be established

(see [72]). This rate can be extended to bounded Borel functions f provided σ satisfies a uniform
ellipticity property (or even a hypo-ellipticity assumption “à la Hörmander” for a modified Euler
scheme) as proved in a celebrated Bally-Talay’s paper (see [7]). This yields

u(0, x) = E f(X0,x
T

) = E f(X̄n
T
) +O

( 1
n

)
.

The point of interest at this stage is of course that the expectation E f(X̄n
T
) can be computed by

simulation since the Euler scheme can be straightforwardly simulated as soon as b and σ are computable
functions (andX0 itself can be simulated). So, we can implement a Monte Carlo simulation to compute
Ef(X̄n

T
) i.e. simulate M i.i.d. copies

(
(X̄n

T
)m
)
m=1,...,M

of the above Euler scheme at time T = tnn and

approximate E f(X̄n
T
) by the strong Law of Large Numbers

E f(X̄n
T
) ≈ 1

M

M∑

m=1

f
(
(X̄n

T
)m
)

(simply because a.s. convergence holds as M → +∞). This second error (known as the Monte Carlo
or the statistical error) is of order O( 1√

M
) owing to the Central Limit Theorem which provides (asymp-

totic) confidence intervals for an a priori prescribed given confidence level involving the asymptotic
variance

Var
(
f(X̄n

T
)
)
= E

(
f(X̄n

T
)− E f(X̄n

T
)
)2

= Ef(X̄n
T
)2 −

(
E f(X̄n

T
)
)2
.

In turn, this quantity can be expressed by expectations of functions of X̄n
T
, consequently it can be

computed on line as a companion parameter of the Monte Carlo simulation. (By the way note that
one often has Var

(
f(X̄n

T
)
)
≈ Var

(
f(X

T
)), either because f is continuous or because the diffusion

is “elliptic enough”, see above). For more details on these elementary aspects of the Monte Carlo
method, we refer to classical textbooks devoted Monte Carlo simulation and Numerical Probability
(see [41] for a more PDE oriented introduction to Monte Carlo method or [30, 65] for more connections
with Finance, among many others).

The main asset of this approach is that it is dimension free, in the sense that its complexity grows
more or less linearly with the dimension d of the random vector of interest and with little influence of
the ellipticity of the function a, at least when the function f is regular as we saw before.
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⊲ Step 2b (Quantization based cubature formula). If one has many computations to carry out with
the same operator L, i.e. for various functions f , it may be interesting to replace the Monte Carlo
simulation by a cubature formula based on an optimal quantization of X̄n

T
. To perform this quanti-

zation, as it will be seen further on in Section 3, one can rely on a stochastic optimization procedure
which can be viewed as a kind of compressed Monte Carlo simulation. In that perspective, one faces
now the following chain of approximations

u(0, x) = E f(X0,x
T

) ≈ E f(X̄n
T
) ≈ E f

( ̂̄Xn
T

Γ(N))
.

where Γ(N) is an optimal (quadratic) quantization grid for the random vector X̄n
T
.

⊲ Toward automatic meshing An alternative to the direct quantization procedure is to consider the
grid Γ(N) as a starting point to produce an optimized mesh for the numerical solving of the original
PDE by deterministic schemes like finite element or finite volumes methods, etc. In such an approach,
an optimal grid needs to be produced at each discretization time tnk . This approach has been widely
investigated by Gunzberger’s group in Florida (USA) (see e.g. [24] and the references therein). More
recently, a new concept of quantization (dual quantization, see [61]) has refined this point for view by
switching from Voronoi diagram to a direct approach of Delaunay triangulation which provides grids
better fitted to deterministic numerical analysis methods in medium dimensions.

1.4.2 From optimal stopping theory to variational inequalities

Discrete time optimal stopping theory in a Markov framework. We consider a standard
discrete time Markovian framework: let (Xk)0≤k≤n be an R

d-valued (Fk)0≤k≤n-Markov chain defined
on the filtered probability space (Ω,A, (Fk)0≤k≤n,P) with transitions

Pk(x, dy) = P
(
Xk+1 ∈ dy |Xk = x

)
, k = 0, . . . , n− 1,

so that for every bounded or non-negative Borel function f : Rd → R, Pkf(x) =
∫
Rd f(y)Pk(x, dy) and

E
(
f(Xk+1) | Fk

)
= E

(
f(Xk+1) |Xk

)
= Pk(f)(Xk).

From now on, we denote by F the filtration (Fk)0≤k≤n. Intuitively, Fk is a σ-field of A which
represents the observable (or available) information at time k. Let Z = (Zk)0≤k≤n be an F-adapted
obstacle/payoff sequence of non-negative integrable random variables of the form

0 ≤ Zk = fk(Xk)∈ L1(Ω,Fk,P), k = 0, . . . , n.

In term of modeling, this can be understood as follows: an agent plays a stochastic game. Each round
of the game takes place at time k∈ {0, . . . , n}. The random variable Zk represents the reward when
leaving the game at time k. The question: “Is there an optimal way to quit the game in order to
maximize the gain?”

By “quitting the game” we mean leaving possibly at a random time τ : Ω→ {0, . . . , n} but always
honestly i.e. in such a way that, for every ℓ∈ {0, . . . , n}, the event

{τ = ℓ} =
{
ω∈ Ω | τ(ω) = ℓ

}
∈ Fℓ.

This means that if the agent adopts this strategy τ , all the information that leads him/her to leave
the game at a time ℓ is available at time ℓ = τ(ω) after having observed the history of the game
up to time ℓ i.e. (Xk(ω))0≤k≤τ(ω). Such a strategy is reasonable provided that the payoff sequence
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(Zℓ)ℓ=0,...,n has been supposed adapted to the filtration F as we did. Such a random variable is called
an F-stopping time.

Imagine that the agent enters the game at time k∈ {0, . . . , n}. The aim of the agent is to attain
the optimal possible mean gain given the available information at time k, namely

Uk = P-esssup
{
E
(
fτ (Xτ ) | Fk

)
, τ : (Ω,A)→ {k, . . . , n}, F-stopping time

}
(1.20)

with an optimal mean gain given by EUk. The next question is to know whether there is an optimal
stopping time, when starting the game at time k, i.e. a {k, . . . , n}-valued F-stopping time τk satisfying

Uk = E
(
Zτk | Fk

)
.

For more details on this topic we refer to [51] or [40] (Chapter 2) or, more recently, [42].

The sequence U = (Uk)0≤k≤n is known as the (P,F)-Snell envelope of the sequence (Zk)0≤k≤n.
From a numerical point of view, we want to compute, or at least approximate, this Snell envelope,

especially at time 0 and the related optimal stopping time τ0 (if any).

The first important result of discrete time optimal stopping theory is the following Backward
Dynamic Programming Principle (BDPP ).

Proposition 1.4. (a) The (P,F)-Snell envelope (Uk)0≤k≤n satisfies the following BDDP :

Un = Zn and Uk = max
(
Zk,E

(
Uk+1 | Fk

))
, k = 0, . . . , n− 1, (1.21)

and τk = min
{
ℓ∈ {k, . . . , n} |Uℓ = Zℓ

}
is an optimal stopping time at time k i.e.

Uk = E
(
Zτk | Fk

)
.

(b) Furthermore, for every k∈ {0, . . . , n}, there exists a Borel function uk : Rd → R such that

Uk = uk(Xk), k = 0, . . . , n,

where the sequence (uk)0≤k≤n satisfies

un = fn and uk = max
(
fk, Pkuk+1

)
, k = 0, . . . , n− 1.

Proof. (a) We prove this claim by a backward induction on k. The fact that Un = Zn is obvious
since τn = n is the only {n}-valued stopping time (hence optimal at time n).

Now let k∈ {0, . . . , n − 1}. Assume that τk+1 = min
{
ℓ∈ {k + 1, . . . , n} |Uℓ = Zℓ

}
is an optimal

F-stopping time at time k + 1 i.e.

Uk+1 = E
(
Zτk+1

| Fk+1

)
.

It follows that

E
(
Uk+1 | Fk

)
= E

(
E
(
Zτk+1

| Fk+1

)
| Fk

)

= E
(
Zτk+1

| Fk

)

≤ Uk

since τk+1 ≥ k + 1 is in particular a {k, . . . , n}-valued F-stopping time. It implies the inequality in
the last line owing to the definition (1.20) of the Snell envelope. Since Uk ≥ Zk, by considering the
deterministic stopping time τ = k, we finally get

Uk ≥ max
(
Zk,E

(
Uk+1 | Fk

))
.
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To prove the reverse inequality and establish the BDPP at time k, we consider a {k, . . . , n}-valued
F-stopping time τ . Then, using that {τ ≥ k + 1} = c{τ ≤ k}∈ Fk,

E
(
Zτ | Fk

)
= Zk1{τ=k} + E

(
Zτ∨(k+1) | Fk

)
1{τ≥k+1} P-a.s.

Now, using that τ ∨ (k + 1) is a {k + 1, . . . , n}-valued F-stopping time,

E

(
Zτ∨(k+1) | Fk

)
= E

(
E

(
Zτ∨(k+1) | Fk+1

)
| Fk

)
P-a.s.

≤ E

(
Uk+1 | Fk

)
P-a.s.

by the definition (1.20) of Uk+1. As a consequence,

E
(
Zτ | Fk

)
≤ Zk1{τ=k} + E

(
Uk+1 | Fk

)
1{τ≥k+1}

≤ max
(
Zk,E

(
Uk+1 | Fk

))
.

Taking the P-esssup over all such {k, . . . , n}-valued F-stopping times, we get

Uk ≤ max
(
Zk,E

(
Uk+1 | Fk

))
P-a.s.

which in turn implies that the Snell envelope satisfies (1.21) at time k. Let us deal now with the
optimal stopping time. One checks from its definition that

τk = k1{Uk=Zk} + τk+11{Uk 6=Zk}.

Using that both events {Uk = Zk} and {Uk 6= Zk} lie in Fk and that {Uk 6= Zk} ⊂
{
E(Uk+1|Fk) = Uk

}
,

we get the following string of equalities

E
(
Zτk | Fk

)
= Zk1{Uk=Zk} + E

(
Zτk+1

| Fk

)
1{Uk 6=Zk} P-a.s.

= Uk1{Uk=Zk} + E

(
E
(
Zτk+1

| Fk+1

)
| Fk

)
1{Uk 6=Zk} P-a.s.

= Uk1{Uk=Zk} + E

(
Uk+1 | Fk

)
1{Uk 6=Zk} P-a.s.

= Uk1{Uk=Zk} + Uk1{Uk 6=Zk} P-a.s.

= Uk.

(c) This straightforwardly follows from the fact that, owing to the definition of the Markov transitions,
if Uk+1 = uk+1(Xk+1) for k∈ {0, . . . , n− 1},

E
(
Uk+1 | Fk

)
= E

(
Uk+1 |Xk

)
= Pkuk+1(Xk) P-a.s.

so that Uk = max
(
fk(Xk),E

(
Uk+1 | Fk

))
= max

(
fk(Xk), Pkuk+1(Xk)

)
= uk(Xk). �

Remarks. • Note that claims (a) and (b) do not make use of the Markov property so that they
remain true for any F-adapted integrable sequence Z = (Zk)0≤k≤n of non-negative random variables.

• The above optimal stopping times may be not unique but it can be shown that τk as defined above
is always the lowest stopping time for the game starting at time k (in the sense that another optimal
stopping time τ̃k for the game starting at k satisfies τ̃k ≥ τk a.s.). Moreover it follows from the above
proof that the sequence of optimal stopping times (τk)0≤k≤n satisfies the dual backward dynamic
programing principle

τk = k1{Uk=Zk} + τk+11{Uk 6=Zk}. (1.22)

This second backward dynamic programming principle – sometimes called dual – is often used in
regression methods to compute the Snell envelope (see e.g. Longstaff-Schwarz’s paper [44]).
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Approximation of the Snell envelope by a quantization tree. The starting idea of the quan-
tization tree method originally introduced in [2] is to approximate the whole Markovian dynamics
of the chain X = (Xk)0≤k≤n using a sequence of quantizations (Xk)0≤k≤n to produce a skeleton of
the distribution of X supported by the tree made up by the quantization grids Γk = {xk1, . . . , xkNk

}
of Xk, k = 0, . . . , n and the transitions weights wk

ij between states xki and xk+1
j defined for every

k∈ {0, . . . , n− 1} by

wk
ij = P

(
X̂k+1 = xk+1

j | X̂k = xki
)
, 1 ≤ i ≤ Nk, 1 ≤ j ≤ Nk+1.

Although we will rely on these transitions below, it is important to have in mind that the sequence of
quantizations (X̂k)0≤k≤n is not a Markov chain in general.

At this stage, the idea is to mimic the BDPP (1.21) satisfied by the Snell envelope (Uk)0≤k≤n

by replacing Xk by its Γk-quantization X̂k. For every k ∈ {0, . . . , n}, we replace Xk by a function
X̂k = πk(Xk) of Xk taking values in a grid Γk, (where πk : Rd → Γk is a Borel function).

We will see in the next section an optimal way to specify the function πk (including its value “grid”
Γk = πk(R

d)) by minimizing the induced Lp-mean quadratic error ‖Xk − X̂k‖Lp(P).

The key point, keeping in mind as it has already been emphasized that the sequence (X̂k)0≤k≤n

has no reason to share a Markov property, is to force this Markov property in the BDPP . Doing so,
we introduce a Quantized Backward (pseudo-)Dynamic Programming Principle for the sequence of
quantized payoff/obstacle (fk(X̂k))0≤k≤nreading

(QBDPP ) ≡ Ûn = fn(X̂n), Ûk = max
(
fk(X̂k),E

(
Ûk+1 | X̂k

))
. (1.23)

The forcing of the Markov property is obtained by directly conditioning by the single random vector
X̂k rather than by the σ-field F̂k := σ(X̂ℓ, 0 ≤ ℓ ≤ k).

Then it is straightforward by a backward induction that, for every k∈ {0, . . . , n},

Ûk = ûk(X̂k), ûk : Rd → R+, Borel function.

Then, from a computational point of view, (1.23) reads

ûn(x
n
i ) = fn(x

n
i ), 1 ≤ i ≤ Nn,

ûk(x
k
i ) = max

(
fk(x

k
i ),

Nk+1∑

j=1

wk
ij ûk+1(x

k+1
j )

)
, 1 ≤ i ≤ Nk, 1 ≤ j ≤ Nk+1, 0 ≤ k ≤ n− 1, (1.24)

where Γk = {xk1, . . . , xkNk
}, k = 0, . . . , n. See subsection 2.3.4 for details on the practical implementa-

tion, including the computation by Monte Carlo simulation of the transition weights wk
ij .

Error bounds. The following theorem establishes the control on the approximation of the true Snell
envelope (Uk)0≤k≤n by the quantized pseudo-Snell envelope (Ûk)0≤k≤n using the Lp-mean approxima-

tion errors ‖Xk − X̂k‖Lp(P).

Theorem 1.3 (see [2] (2001), [61] (2011)). Assume that all functions fk : Rd → R+ are Lipschitz con-
tinuous and that the transitions Pk(x, dy) = P(Xk+1∈ dy|Xk = x) propagate Lipschitz continuous i.e.

[Pk]Lip = sup
[g]Lip≤1

[Pkg]Lip < +∞, k = 0, . . . , n.
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Set [P ]Lip = max
0≤k≤n−1

[Pk]Lip and [f ]Lip = max0≤k≤n[fk]Lip.

Let p∈ [1,+∞). We assume that
n∑

k=1

‖Xk‖Lp(P) + ‖X̂k‖Lp(P) < +∞.

(a) For every k∈ {0, . . . , n},

‖Uk − Ûk‖Lp(P) ≤ 2[f ]Lip

n∑

ℓ=k

(
[P ]Lip ∨ 1

)n−ℓ‖Xℓ − X̂ℓ‖Lp(P).

(b) If p = 2, for every k∈ {0, . . . , n},

‖Uk − Ûk‖L2(P) ≤
√
2[f ]Lip

(
n∑

ℓ=k

(
[P ]Lip ∨ 1

)2(n−ℓ)‖Xℓ − X̂ℓ‖2L2(P)

) 1
2

. (1.25)

Remark. In fact the error bounds established in this theorem remain mathematically true as soon as
the “quantizations” X̂k are simply σ(Xk)-measurable i.e. when X̂k = πk(Xk) where πk : Rd → R

d is
a Borel functions of Xk for every k∈ {0, . . . , n}, provided the integrability assumptions on X̂k which
give sense to the QBDPP as defined in (1.23) are satisfied. If the functions πk take countably many
values, even (1.24) still makes sense; otherwise sums should be replaced by integrals with respect to
conditional measures and the computational tractability is usually lost.

Proof. Step 1. First, we control the Lipschitz constants of the functions uk. It follows form the
elementary inequality | supi∈I ai − supi∈I bi| ≤ supi∈I |ai − bi|, ai, bi∈ R, i∈ I, that

[uk]Lip ≤ max
(
[fk]Lip, [Pkuk+1]Lip

)

≤ max
(
[f ]Lip, [Pk]Lip[uk+1]Lip

)

with the convention [un+1]Lip = 0. A straightforward backward induction yields

[uk]Lip ≤ [f ]Lip
(
[P ]Lip ∨ 1

)n−k
. (1.26)

Step 2. We focus on claim (b) (quadratic case p = 2). First, we derive from Proposition 1.2(a)
applied to X = Xk+1 and Y = Xk, Q = Pk and f = uk+1, g = ûk+1 and h = ûk that

∥∥∥E
(
Uk+1|Xk

)
−E
(
Ûk+1|X̂k

)∥∥∥
2

L2(P)
≤ [Pkuk+1]

2
∥∥Xk−X̂k

∥∥2
L2(P)

+
∥∥uk+1(Xk+1)− ûk+1(X̂k+1)

∥∥2
L2(P)

. (1.27)

Now, it follows from both original and quantized dynamic programming formulas that

|Uk − Ûk| ≤ max
(
|fk(Xk)− fk(X̂k)|,

∣∣E
(
Uk+1|Xk

)
− E

(
Ûk+1|X̂k

)∣∣
)

so that
|Uk − Ûk|2 ≤ |fk(Xk)− fk(X̂k)|2 +

∣∣E
(
Uk+1|Xk

)
− E

(
Ûk+1|X̂k

)∣∣2.
Taking expectation and plugging (1.27) in the above inequality yields for every k∈ {0, . . . , n− 1},

∥∥Uk − Ûk

∥∥2
L2(P)

≤
(
[f ]2Lip + [P ]2Lip[uk+1]

2
Lip

)∥∥Xk − X̂k

∥∥2
L2(P)

+
∥∥Uk+1 − Ûk+1

∥∥2
L2(P)

still with the convention [un+1]Lip = 0. Now, using (1.26), we obtain

[f ]2Lip + [P ]2Lip[uk+1]
2
Lip ≤ [f ]2Lip + [P ]2Lip

(
1 ∨ [P ]Lip

)2(n−(k+1))

≤ 2[f ]2Lip
(
1 ∨ [P ]Lip

)2(n−k)
.
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Consequently

∥∥Uk − Ûk

∥∥2
L2(P)

≤ 2
n−1∑

ℓ=k

[f ]2Lip
(
1 ∨ [P ]Lip

)2(n−ℓ)∥∥Xℓ − X̂ℓ

∥∥2
L2(P)

+ [f ]2Lip
∥∥Xn − X̂n

∥∥2
L2(P)

≤ 2[f ]2Lip

n∑

ℓ=k

(
1 ∨ [P ]Lip

)2(n−ℓ)∥∥Xℓ − X̂ℓ

∥∥2
L2(P)

which completes the proof.

Claim (a) can be established following the above lines and Claim (b) of Proposition 1.2. �

Example of application: the Euler scheme. Let (X̄n
tn
k
)0≤k≤n be the Euler scheme with step

T
n of the d-dimensional diffusion (X0,x

t )t∈[0,T ], solution to the SDE (1.17). It defines a homogeneous
Markov chain with transition

P̄n
k g(x) = E g

(
x+

T

n
b(tnk , X̄

n
tn
k
) + σ(tnk , X̄

n
tn
k
)

√
T

n
Z

)
, Z

L∼ N (0, Iq).

If f is Lipschitz continuous,

∣∣P̄n
k g(x)− P̄n

k g(x
′)
∣∣2 ≤ [g]2LipE

∣∣∣x− x′ + T

n

(
b(tnk , x)− b(tnk , x′)

)
+

√
T

n

(
σ(tnk , x)− σ(tnk , x′)

)
Z
∣∣∣
2

≤ [g]2Lip

(∣∣∣x− x′ + T

n

(
b(tnk , x)− b(tnk , x′)

)∣∣∣
2
+
∥∥∥σ(tnk , x)− σ(tnk , x′)

∥∥∥
2T

n

)

≤ [g]2Lip|x− x′|2
(
1 +

T

n
[σ]2Lip +

2T

n
[b]Lip +

T 2

n2
[b]2Lip

)

where ‖A‖ =
√

Tr(AA∗), Tr stands for the trace of a square matrix, A∗ stands for the transpose
of the d × q-matrix A. The coefficient [σ]Lip should be understood as the Lipschitz coefficient of
σ : (Rd, | . |)→ (M(d, q,R), ‖ .‖). As a consequence

[P̄n
k g]Lip ≤

(
1 +

Cb,σ,TT

n

)
[g]Lip, k = 0, . . . , n− 1,

where Cb,σ,T = [b]Lip +
1

2

(
[b]2LipT + [σ]2Lip

)
i.e.

[P̄n]Lip ≤ 1 +
Cb,σ,TT

n
.

Let (Ūk)0≤k≤n denote the (FW
tn
k
)0≤k≤n-Snell envelope of the payoff process

(
fk(X̄

n
tn
k
)
)
0≤k≤n

and

(Ûk)0≤k≤n the quantized pseudo-Backward Dynamic Principle associated to a quantized version of

this payoff process (̂̄Xn
tn
k
)0≤k≤n as defined by (1.23). Applying the control established in claim (b) of

the above theorem yields with obvious notations

∥∥Uk − Ûk

∥∥
L2(P)

≤
√
2[f ]Lip

(
n∑

ℓ=k

(
1 +

Cb,σ,TT

n

)2(n−ℓ)∥∥Xℓ − X̂ℓ

∥∥2
L2(P)

) 1
2

≤
√
2[f ]Lip

(
n∑

ℓ=k

e2Cb,σ,T (T−tn
ℓ
)
∥∥Xℓ − X̂ℓ

∥∥2
L2(P)

) 1
2

(1.28)

≤
√
2[f ]Lipe

Cb,σ,TT

(
n∑

ℓ=k

∥∥Xℓ − X̂ℓ

∥∥2
L2(P)

) 1
2

. (1.29)
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The fact of interest concerning the upper bounds(1.29) and (1.29) that should be emphasized is that
the real constants involved in them only depend on b, σ and T but not on n (except for the sum itself
of course). We will see further on that the penultimate inequality can be used to “calibrate” the sizes
of the quantization grids associated to the X̂k (see section 2.3.4).

Finally note that the above computations hold more generally for the Euler scheme of a diffusion
driven by a Lévy processes Z with Lévy measure ν satisfying ν(z2) < +∞ (i.e. Zt ∈ L2 for every
t∈ [0, T ]).

Connection with parabolic variational inequalities. We consider the parabolic variational
inequality on [0, T ]× R

d defined by

max

(
f − u, ∂u

∂t
+ Lu

)
(t, x) = 0, (t, x)∈ [0, T )× R

d, u(T, . ) = f(T, . ) (1.30)

where L is the operator introduced in (1.16) (which is for the probabilist the generator of the diffu-
sion (1.17)). We assume that f : [0, T ]×R

d → R+ is (at least) continuous with polynomial growth in
the space variable x, uniformly in t∈ [0, T ].

From now on we will switch to a completely heuristic reasoning in order to highlight in a simpler way
the connection between the above variational inequality and optimal stopping theory in continuous
time. This connection holds through a probabilistic representation formula involving the diffusion
process (1.17) in the same spirit as that which holds for parabolic PDEs through the Feynman-
Kac formula. A probabilistic representation of this variational inequality (1.30) is provided, under
appropriate conditions that we will not detail here (see [6, 5] or, more recently, [42] and the references
therein for a rigorous presentation in various settings), by the continuous time optimal stopping
problem, related to the diffusion process (Xx,t)s∈[t,T ] solution to Equation (1.17) and the obstacle

process Zt := f(t,Xx,0
t ), t ∈ [0, T ]. This obstacle process is FW -adapted and continuous (hence

predictable) where FW denotes the augmented filtration of the Brownian motion W . The function f
having polynomial growth in x uniformly in t∈ [0, T ], then supt∈[0,T ] Zt∈ L1(P). We define the P-Snell
envelope (Ut)t∈[0,T ] by

Ut = P-esssup
{
E
(
f(τ, Zτ ) | Ft

)
, τ ∈ T W

t,T

}
(1.31)

where T W
t,T denotes the set of FW -stopping times τ : (Ω,A,P)→ [0, T ] i.e. [t, T ]-valued random times

satisfying
∀ s∈ [t, T ], {τ ≤ s}∈ FW

s .

(This definition implies that for every s∈ [t, T ], {τ = s}∈ FW
s but the converse – which is required

for technical reasons – is usually not true since [0, T ] is not countable.) One shows (see e.g. [71])
that under these conditions, there exists a function u : [0, T ] × R

d → R+ such that Ut = u(t,Xx,0
t ),

t∈ [0, T ], and, in terms of réduite,

u(t, x) = sup
{
E f(τ,Xx,t

τ ), τ ∈ T W
t,T

}
, t∈ [0, T ], x∈ R

d.

Unfortunately, even in simple frameworks, this function u is not smooth enough, say C1,2([0, T ]×Rd,R),
to apply Itô’s formula.

We consider again the uniform mesh of [0, T ] of step T
n , t

n
k = kT

n , k = 0, . . . , n. We can approximate
the sequence (Utn

k
)0≤k≤n by the sequence (Un

tn
k
)0≤k≤n defined by replacing in (1.31) the set Tt,T by its

subset T n
k,n of FW -stopping times taking values in {tnk , k = 0, . . . , n} of [0, T ]. Stopping times of T n

k,n

are of discrete nature and are subsequently characterized by the simpler property

T n
k,n if and only if {τ = tnk}∈ FW

tn
k
, k = 0, . . . , n.
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As a consequence, Un
tn
k
is defined for evry k∈ {0, . . . , n} by

Un
tn
k
= P-esssup

{
E
(
f(τ, Zτ ) | Ftn

k

)
, τ ∈ T n

k,n

}
.

The sequence (Un
tn
k
)0≤k≤n is nothing but the P-Snell envelope of (Ztn

k
)0≤k≤n viewed as a discrete time

optimal stopping problem associated to the Markov chain (Xx,0
tn
k
)0≤k≤n. Its transitions are given by

Pk(ξ, dy) = P(Xtn
k+1
∈ dy |Xtn

k
= ξ), k = 0, . . . , n − 1. They are usually not explicit and, more

important in practice, even not simulatable: more generally, exact simulation of time samples of a
d-dimensional diffusion process is impossible (at a reasonable cost) as soon as d ≥ 2.

Then, keeping in mind that Un
tnn

= Un
T
, the sequence (Un

tn
k
)0≤k≤n satisfies the following BDPP

Un
tnn

= f(T,Xx,0
T

), Un
tn
k
= max

(
f(X0,x

tn
k
),E
(
Un
tn
k+1
|X0,x

tn
k

))
, 0 ≤ k ≤ n− 1.

Consequently, one may consider that Utn
k
is close enough to Un

tn
k
so that the sequence (Utn

k
)0≤k≤n

approximately satisfies

U
T
= f(T,Xx,0

T
), max

(
f(Xx,0

tn
k
)− Utn

k
,E
(
Utn

k+1
|Xx,0

tn
k

)
− Utn

k

)
≈ 0

or equivalently

u(T,Xx,0
T

) = f(T,Xx,0
T

), 0 = max
(
f(X0,x

tn
k
)− u(tnk , Xx,0

tn
k
),E
(
u(tnk+1, X

x,0
tn
k+1

) |X0,x
tn
k

)
− u(tnk , Xx,0

tn
k
)
)
.

If, as a second step, we assume that, in fact, the function u has the requested regularity C1,2 to apply
Itô’s Lemma between tnk and tnk+1, and, moreover, that u has polynomial growth in x, uniformly in
t∈ [0, T ]. Then one obtains

u(tnk+1, X
x,0
tn
k+1

) = u(tnk , X
x,0
tn
k
) +

∫ tn
k+1

tn
k

(
∂u

∂t
+ Lu

)
(s,Xx,0

s )ds+

∫ tn
k+1

tn
k

(
∇xu |σ

)
(s,Xx,0

s

)
dWs

where the stochastic integral with respect to W is a true martingale under our assumptions on b, σ
(linear growth) and f (polynomial growth). As a consequence,

E
(
u(tnk+1, X

x,0
tn
k+1

) |Xtn
k

)
− u(tnk , Xx,0

tn
k
) = E

(∫ tn
k+1

tn
k

(
∂u

∂t
+ Lu

)
(s,Xx,0

s )ds

)
P-a.s.

≈
(∂u
∂t

+ Lu
)
(tnk , X

x,0
tn
k
)
T

n
P-a.s.

Finally, this leads to

u(T,Xx,0
T

) = f(T,Xx,0
T

), max

(
f(Xtn

k
)− u(tnk , Xx,0

tn
k
),
(∂u
∂t

+ Lu
)
(tnk , X

x,0
tn
k
)

)
≈ 0 P-a.s..

Letting n→ +∞, one may reasonably guess, switching back to continuous time that, P-a.s.,

u(T,Xx,0
T

) = f(T,Xx,0
T

), max

(
f(Xt)− u(t,Xx,0

t ),
(∂u
∂t

+ Lu
)
(t,Xx,0

t )

)
= 0.

If the support of Xx,0
t is the whole space R

d for every t∈ (0, T ), this suggests that u is a solution to
the above variational inequality (1.30).
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The simplest setting in which the above heuristic reasoning is not trivial can be made rigorous is
when Xx,0

t = x+Wt, relying on distribution theory and extended versions of Itô’s lemma (see [42] for
a rigorous variational approach using distribution theory).

In practice, this approach is usually used in a backward way as a verification theorem: starting
from a solution u to (1.30) (possibly in a viscosity sense) with enough regularity, one checks that
(u(t,Xx,0

t ))t∈[0,T ] is the P-Snell envelope of the payoff/obstacle process Zt = f(t,Xx,0
t ) (see again [42]

and [6]).

From a numerical point of view, this connection suggests numerical methods to solve (1.30), at least
in higher dimension when deterministic schemes become inefficient due to the curse of dimensionality:
any probabilistic method devised to compute the réduite of a discrete time optimal stopping problem
with a Markov structure process can be viewed as a way to solve (1.30). Having in mind that, in
these probabilistic methods, the discrete time Markov process needs to be simulated at a moment
or another, so we cannot rely on a sample (Xtn

k
)0≤k≤n of the diffusion process itself at least when

d ≥ 2 (4), with of course, the noticeable exception of diffusion processes of the form Xx,0
t = ϕ(t, x,Wt)

like e.g. the Black-Scholes model.
Consequently, for numerical purposes, an additional step is necessary : one has to introduce

the discrete time Euler scheme X̄n,x,0 = (X̄n,x,0
tn
k

)0≤k≤n with step T
n (with obvious notations) of the

diffusion (Xx,0
t )t∈[0,T ] and the Snell envelope Ūn = (Ūn

tn
k
)0≤k≤n related to the payoff/obstacle process

Z̄n
tn
k
= f(tnk , X̄

n,x,0
tn
k

), k = 0, . . . , n.

All these approximations of the “true” original Snell envelope have been investigated in full details
in [3], depending on the regularity of the payoff function and of the coefficients b and σ (or a = σσ∗).

Note that for the sake of simplicity, we did not take into account a zero order term in (1.30). This
is done in the cited literature and corresponds to a discounting factor appearing in the payoff/obstacle
process.

The resulting convergence rates are of the form O(n−
1
2 ) between (Ūn

tn
k
)0≤k≤n and (Un

tn
k
)0≤k≤n and,

under a quasi-convexity assumption (in the space variable) on f , O(n−1) between (Un
tn
k
)0≤k≤n and

(Utn
k
)0≤k≤nThis holds for various type of convergence (on compacts set with respect to x or in Lp(P)).

Conversely, we must of course emphasize that in low dimension (say d ≤ 3), the numerical strategy
is the exact converse of what precedes: one relates the optimal stopping theorem to the parabolic
variational inequality and implement a deterministic solver based on finite difference or finite ele-
ments/volume methods. So is the case for the seminal paper on the computation of American Put
option in a Black-Scholes model, see [37] (see also [74] for exchange options). For an overview of PDE
methods for option pricing, we refer to [1].

2 Optimal vector quantization

As emphasized in what precedes, whatever the application fields are, we need to have “good” and, if
possible, “optimal”, quantization grids at various levels N . This section is devoted to the existence of
optimal quantizers (via the proof of Proposition 1.1(b)) and their properties as well as the numerical
methods to compute them.

4When d = 1 an exact (and efficient) simulation method has been devised for diffusion processes in [9]; unfortunately
it deeply depends on the scalar feature of the diffusion.
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2.1 Existence of optimal quantization grids (proof of Proposition 1.1(a))

First assume that p∈ (0,+∞) and X ∈ Lp
Rd(P). We will proceed by induction on the level N . First

we note that, for every level N ≥ 1, the Lp-mean quantization error function defined by

(x1, . . . , xN
) 7−→

∥∥∥ min
1≤i≤N

|X − xi|
∥∥∥
Lp(P)

is clearly 1-Lipschitz continuous with respect to the ℓ∞-norm on (Rd)N defined by |(x1, . . . , xN
)|ℓ∞ :=

max1≤i≤N |xi|. This is a straightforward consequence of Minkowski’s inequality and the more elemen-
tary inequality |min1≤i≤N ai−min1≤i≤N bi| ≤ max1≤i≤N |ai−bi|. As a consequence, the Lp-distortion
function defined for every x1, . . . , xN

)∈ (Rd)N by

Gp,N (x1, . . . , xN
) =

∥∥ min
1≤i≤N

|X − xi|
∥∥p
Lp(P)

is continuous.

If p∈ (0, 1], on directly shows that Gp,N is p-Hölder continuous.

⊲ N = 1. The non-negative continuous function Gp,1 clearly goes to +∞ as |x1| → +∞. Hence,
Gp,1attains a minimum at a so-called Lp-median x(1) (which is clearly unique when p > 1 by a strict

convexity argument). So {x(1)1 } is an optimal quantization grid at level 1.

⊲ N ⇒ N + 1. Assume there exists x(N) ∈ (Rd)N such that Gp,N (x(N)) = min(Rd)N Gp,N . Set

Γ(N) = {x(N)
i , i = 1, . . . , N}. Then, either supp(µ) \ Γ(N) = ∅ and any N + 1-tuple of (Rd)N which

“exhausts” the grid Γ(N) makes the function Gp,N+1 equal to 0 which is its lowest possible value, or

there exists ξN+1∈ supp(µ) \ {x(N)
i , i = 1, . . . , N}.

In the second case, let Γ∗ = Γ(N)∪{ξN+1} and let (C∗
i (Γ

∗))1≤i≤N+1 be an induced Voronoi partition

where
◦
CN+1 (Γ∗) is the Voronoi cell of ξN+1. As ξN+1 /∈ Γ(N), it is clear that

◦
CN+1 (Γ∗) 6= ∅ and

that |X − ξN+1| < min1≤i≤N |X − x(N)
i | on the interior of this cell. Furthermore, P(X∈ C(Γ∗)N+1) =

µ
( ◦
CN+1 (Γ∗)

)
> 0 since ξN+1∈

◦
CN+1 (Γ∗) and ξN+1 lies in the support of µ. Note that everywhere

on (Rd)N , one has |X − ξN+1| ∧ min1≤i≤N |X − xi| ≤ min1≤i≤N |X − xi|, so that, combining both
inequalities yields

λN+1 = E
(
|X − X̂Γ∗ |p

)
= E

(
|X − ξN+1|p ∧ min

1≤i≤N
|X − xi|p

)
< E

(
min

1≤i≤N
|X − xi|p

)
= ep,N (X)p.

Hence, the set

KN+1 =
{
x ∈ (Rd)N : Gp,N (x) ≤ λN+1

}

is non-empty since it contains all the N + 1-tuples which “exhaust” the elements of Γ∗ and closed
since Gp,N is continuous. In fact, we will show that it is also a bounded subset of (Rd)N . Let
x(k) = (x(k)1, . . . , x(k)N+1), k∈ N, be a KN+1-valued sequence of N +1-tuples. Up to at most N +1
extractions, one may assume without loss of generality that there exists a subset I ⊂ {1, . . . , N + 1}
such that for every i∈ I, xi(k)→ xi(∞)∈ R

d and for every i /∈ I, |xi(k)| → +∞. By a straightforward
application of Fatou’s Lemma

lim inf
k
Gp,N+1(x(k)) ≥ lim inf

k

∥∥∥min
i∈I
|X − xi(∞)|

∥∥∥
p

Lp(P)
≥ ep,|I|(X)p.

The fact that the sequence
(
x(k)

)
k∈N is KN+1-valued implies that ep,|I|(X) ≤ λN+1 < eN (X). In

turn, this implies that |I| = N + 1 i.e. the sequence of N + 1-tuples
(
x(k)

)
k≥0

is bounded. As a
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consequence, the set KN+1 is compact and the function Gp,N+1 attains a minimum over KN+1 which
is obviously its absolute minimum. �

Remarks. • The proof of Claim (b) and (c) are as follows: if N ≥ 2 and P
(
PX ∈ Ci(Γ

(N)
)
= 0 for

some index i, then ep,N (X) = ep,N−1(X) which is impossible by the above proof if supp(µ) has at
least N points. Moreover, if (z

N
)N≥1 is an everywhere dense sequence in R

d, then 0 ≤ ep,N (X) ≤
ep
(
{z1, . . . , zN }

)
→ 0 as N → +∞ by the Lebesgue dominated convergence theorem.

• This existence result admits many extensions, in particular in infinite dimension when R
d is replaced

by a separable Hilbert space or, more generally, a reflexive Banach space. It holds true for L1-spaces
as well (see [34] or Section 2.3.2 for a brief introduction to functional quantization).

• When d ≥ 2, argminGp,N is never reduced to a single N -tuple, simply because argminGp,N is left
stable under the action of the permutations of {1, . . . , N}. Even from a geometrical viewpoint, as
soon as d ≥ 2, uniqueness of the corresponding quantization grid usually fails, e.g. because of the
transformations leaving the distribution µ of X invariant. So is the case for the normal distribution
N (0; Id) which is invariant by all orthogonal transforms. But there are also examples (see [32]) for
which optimal grids at level N do not even make up a “connected” set.

However, in 1-dimension, it has been proved (see e.g. [38]) that, as soon as µ is absolutely continuous
with a log-concave density, there exists exactly one optimal quantizer at level N (characterized by its
stationarity, see the next section). Such distributions recalled strictly unimodal.

2.2 Stationary quantization grid

Throughout this section, we still consider a random vector X : (Ω,A,P)→ R
d with distribution µ on

(Rd,Bor(Rd)).

Definition 2.1. A (quantization) grid Γ = {x1, . . . , xN
} ⊂ R

d of size N is µ-stationary if the following
two conditions are satisfied





(i) µ-negligibility of the boundary of the Voronoi diagram : µ
( ⋃

1≤i≤N

∂Ci(Γ)
)
= 0.

(ii) Self-consistency of the centroids : ∀ i∈ {1, . . . , N}, xi =
∫
Ci(Γ)

ξµ(dξ)

µ(Ci(Γ))
.

Note that item (ii) is equivalent to

X̂Γ = E
(
X | X̂Γ

)
. (2.32)

We will see further on in Section 3.1 (see Corollary 3.1 and the comments that follow) that L2-
optimal grids are always stationary since they satisfy condition (i) (see Theorem 4.3, p.38, in [32]), and
are consequently critical points of the quadratic distortion function G2,N which implies condition (ii).

Note that almost all numerical algorithms devised to search for (at least locally) optimal quantizers
at a given level N are based on this stationary property (see Section 3).

Remark. This property is important for applications but is unfortunately satisfied by few quantizers.
A new notion of quantization, called dual quantization has been recently developed (see [61] for a
theoretical introduction and [60, 62] for applications to Numerical Probability) in which a reverse
stationarity property is satisfied by all dual quantizers. Typically for dual quantization, one has

X = E
(
X̂Γ,dual |X

)
.

This dual quantization requires the introduction of an exogenous noise and relies on the Delaunay
triangulation rather than on the Voronoi diagram (hence its name “dual”).
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2.2.1 Application to quantization based cubature formula (II): second order

Proposition 2.1. Let Γ be a µ-stationary quantizer and let X : (Ω,A,P) → R
d be a µ-distributed

random vector such that E |X|1+α < +∞ with distribution µ with moment 1 + α. Let F : Rd → R be
a C1 function with an α-Hölder gradient ∇F . We denote by [∇F ]α its α-Hölder ratio. Then

∥∥E
(
F (X) | X̂Γ

)
− F (X̂Γ)‖1 ≤ [∇F ]α

∥∥X − X̂Γ
∥∥1+α

L1+α(P)

so that, by taking expectation,

∣∣EF (X)− EF (X̂Γ)
∣∣ ≤ [∇F ]α

∥∥X − X̂Γ
∥∥1+α

L1+α(P)
(2.33)

In particular, if ∇F is Lipschitz continuous

∣∣EF (X)− EF (X̂Γ)
∣∣ ≤ [∇F ]Lip

∥∥X − X̂Γ
∥∥2
L2(P)

.

Remark. Since we know from Claim (c) in Proposition 1.1 that e2,N (X) ↓ 0 as N → +∞, it
is clear that if we consider optimal quadratic (hence stationary) grids Γ(N) satisfying e2,N (X) =∥∥X − X̂Γ(N)∥∥L2(P) which implies that

∥∥X − X̂Γ(N)∥∥1+α

L2(P)
= o

(∥∥X − X̂Γ(N)∥∥
L2(P)

)
as N → +∞. So,

the error bounds in the above cubature formulas become infinitely smaller than those obtained in
Section 1.3.2. Moreover, a sharp convergence rate of convergence for e2,N (X) is proved in Section 2.3
below (Theorem 2.1, Zador’s Theorem).

Proof. It follows from a second order Taylor expansion that

∣∣F (X)− F (X̂Γ)−
(
∇F (X̂Γ)|X − X̂Γ

)∣∣ ≤ [∇F ]α
∣∣X − X̂Γ

∣∣1+α
.

The stationarity property reads X̂Γ = E
(
X | X̂Γ) and, as ∇F (X̂Γ) is σ(X̂Γ)-measurable, we obtain

E

((
∇F (X̂Γ)|X − X̂Γ

)
| X̂Γ

)
=
(
∇F (X̂Γ)|E

(
X − X̂Γ

)
︸ ︷︷ ︸

=0

| X̂Γ)
)
= 0. �

2.2.2 Application to convex functions

If F : Rd → R is convex and X, F (X)∈ L1(P), then for every stationary quantization grid, one has

EF (X̂Γ) = EF
(
E
(
X | X̂Γ

))
≤ E

(
E
(
F (X) | X̂Γ

))
= EF (X).

This shows that quantization based cubature formulas provide lower bounds for the true expectation
when F is convex. It should be noticed, that, one has the reverse inequality by the dual quantization
based cubature formula

EF (X) ≥ EF
(
X̂Γ,dual

)

(see [61]) which can be implemented with the same stationary grid Γ.

2.3 Optimal quantization rate

2.3.1 Rate results

This rate is ruled by two results: the first one is asymptotic and is known as Zador’s Theorem (see [32]),
the second one is non-asymptotic and, in some way, universal.
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Theorem 2.1. (a) Zador’s Theorem (asymptotic rate, see [32]). Let X ∈ Lp+η
Rd (P) for some η > 0,

with distribution P
X

= µ. Let | . | denote (here) any norm on R
d. We define ϕ = dµ

dλd
(where λd

denotes the Lebesgue measure on (Rd,Bor(Rd))) the density of the non-singular part of µ. Then

lim
n
N

1
d ep,N (X) = J̃p,d‖ϕ‖

1
p

L
p

p+d (λd)

where J̃p,d = infN≥1N
1
d ep,N

(
U([0, 1]d)

)
∈ (0,+∞) (depends on the current norm). When this norm

is the canonical Euclidean norm on R
d, one has J̃2,2 =

√
5

18
√
3
and (5)

J̃p,d ∼
(

d

2πe

) 1
2

as d→ +∞. (2.34)

(b) Extended Pierce’s Lemma (non-asymptotic rate, see [47]). Let p, η > 0. There exists a real
constant κd,p,η∈ (0,+∞) such that, for every R

d-valued random vector X : (Ω,A,P)→ R
d,

∀N ≥ 1, ep,N (X) ≤ κd,p,η σp+η(X)N− 1
d (2.35)

where, for every r∈ (0,+∞), σr(X) = infa∈Rd ‖X − a‖Lr(P) denotes the Lp-standard deviation of X.

Claim (a), known as Zador’s Theorem, was first established in [75] for the uniform distribution on
the unit hypercube [0, 1]d, using a self-similarity argument “à la Hammersley”. The extension to more
general distributions is due to Bucklew and Wise in [15], with a gap in the proof for non-compactly
supported distributions. This gap was filled in [32], Chapter II, Theorem 6.2, p.78, where the most
general case (“Lp+”-integrable random vectors) has been finally rigorously established.

When µ is purely singular, the above result remains true but the above asymptotics is not the
right one since the limit in this normalization is 0. Other asymptotics can emerge e.g. for (uniform)
distributions on fractal sets, leading to the definition of a quantization dimension (see again [32],
Chapter III, for an introduction to quantization on fractal sets).

2.3.2 Comments and first applications

⊲ Comments. (a) A natural question is to compare optimal quantization methods with “standard”
square grid methods on [0, 1]d when N = md, m∈ N

∗ (such values of N are the only ones for which it
is possible to implement the square grid cubature formulas). Let

Γd(m) =

d∏

ℓ=1

(
2iℓ − 1

2m

)

1≤iℓ≤m

be a hyper-cubic “product quantization” grid. This grid induces, when p = 2, owing to the Pythagorus
Theorem and the formula (1.4) for the uniform distribution U([0, 1]) on the unit interval, a mean
quadratic quantization error given by

e2,N
(
Γd(m), U([0, 1]d)

)2
= d

(
1

2
√
3m

)2

=
d

12m2

so that

e2,N
(
Γd(m), U([0, 1]d)

)
=

√
d

12
N− 1

d .

5where ak ∼ bk means that ak = ukbk with limk uk = 1.
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If we consider that d is large enough so that, by (2.34), J̃p,d ≈
(

d
2πe

) 1
2 , one derives by the above Zador

Theorem,

e2,N
(
U([0, 1]d)

)
≈
√

d

2πe
N− 1

d ≈
√

d

17.0795
N− 1

d .

This shows that, as d grows to infinity, the ratio between true optimal and optimal product quantiza-

tion remains (asymptotically) bounded and, in fact, very close to 1 since
√

2πe
12 ≈ 1.1930 . . . ! But the

main difference between these two points of view is that optimal quantization grids do exist for every
size/level N whereas product grids become increasingly sparse in higher dimensions.

(b) If ΓN = {x(N)
1 , . . . , x(N)

N
, N ≥ 1, denotes a sequence of (Lp, µ)-optimal N -quantizers, we saw in

Equation (1.12) that the weighted distribution µ̂
N
of X̂Γ(N)

weak converges to the original distribution
µ of X. But what about the regular empirical measures

µ̃
N
=

1

N

N∑

i=1

δ
x
(N)
i

, N ≥ 1 ?

The answer is provided by the empirical measure theorem established by Graf & Luschgy in [32] (see
Theorem 7.5, p.96) and [21].

Theorem 2.2. If X∈ Lp+η(P) for some η > 0, then, with the notations of Zador’s Theorem, if ϕ 6≡ 0,

µ̃
N

(w)−→ µ̃ =
ϕ

d
d+p

∫
Rd ϕ

d
d+pdλd

.λd as N → +∞.

where
(w)−→ denotes weal convergence of probability measures.

Remark. In fact the theorem holds true for (sub-)sequences of asymptotically optimal quantizers in
the sense that they satisfy Zador sharp rate).

⊲A brief look back at Information theory. LetX : (Ω,A,P)→ R
d be a (static) square integrable

random vector/signal X with a non-singular distribution µ. We consider an optimal quadratic quanti-
zation grid Γ(N) of size N for µ. Let µ̂

N
denote the distribution of its optimal quadratic quantization

X̂Γ(N)
We saw in Section 1.2 that the mean transmission cost κµ̂

N
, when coded by an appropriate in-

stantaneous code, satisfies the two-sided inequality (1.6)-(1.7) involving the dyadic entropy of H2(µ̂N
)

of µ̂
N
.

⊲ A universal asymptotic bound. Let w
(N)
i = µ̂

N

(
x
(N)
i

)
, i = 1, . . . , N , be the weights attached to

the distribution µ̂
N
. We know, by classical optimization arguments, that

H2

(
µ̂

N

)
= −

N∑

i=1

w
(N)
i log2w

(N)
i ≤ log2N

so that we derives that 2
κµ̂

N
−1 ≤ N ≤ 2

κµ̂
N . Now, let κ > 0 be a prescribed mean transmission

cost. Plugging this universal bound in (2.1) with N = ⌈2κ−1⌉, we derive that the quadratic mean
transmission error

∥∥X − X̂Γ
N

∥∥
L2(P)

satisfies

L2-mean transmission error(κ) - J̃2,d
∥∥ϕ
∥∥ 1

2

L
d

d+2 (λd)
2−

κ−1
d as κ→ +∞.
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In particular, expressed in terms of quantization level, we get this coarser equivalent

− log2

(
L2-mean transmission error(N)

)
∼ κ(N)

d
as N → +∞.

This provides the flavor of Shannon’s Source Coding Theorem (for a general formulation and a proof
in a more general framework, we refer to [22]).

⊲A sharper, but heuristic, bound. It is commonly shared in the Information Theory community
(see [29]) that an absolutely distribution µ with a continuous bounded density ϕ > 0 satisfies (ϕ logϕ
is bounded and)

w
(N)
i ∼ c

N

ϕ
d

d+2 (x
(N)
i )

N
as N → +∞

uniformly over the elementary quantizers x
(N)
i lying in a fixed compact set, where cN is a normalizing

constant. Partial results in that direction have been recently established in [35] for a wide class
of absolutely continuous distributions (including among many others normal distributions, gamma
distributions, hyper-exponential distributions).

It follows from the empirical measure theorem (2.2) that

lim
N
cN =

(∫

Rd

ϕ
d

d+2 (ξ)dξ

)−1

.

If we assume a sharper result, namely w
(N)
i − c

N

ϕ
d

d+2 (x
(N)
i )

N → 0 as N → +∞, uniformly on compact
sets, elementary computations based on repeated applications of Theorem 2.2 – the empirical mean
theorem – yield that

Cµ = − lim
N

(
H2

(
µ̂

N

)
− log2N

)
= log

(∫

Rd

ϕ
2

d+2dλd

)
+

d

d+ 2

∫

Rd

ϕ log2 ϕdλd.

Noting that

∫

Rd

ϕ
2

d+2dλd =

∫

Rd

ϕ− d
d+2dµ and applying Jensen’s Inequality to the distribution µ and

the concave function log imply that Cµ > 0 (in accordance with the fact that the uniform distribution
µUnif

N
over {1, . . . , N} or any set of size N has the highest possible entropy equal to log2N). This

finally yields the slightly sharper bound for the quadratic mean signal transmission error

L2-mean transmission error(κ) - J̃2,d
∥∥ϕ
∥∥ 1

2

L
d

d+2 (λd)
2

1−Cµ
d 2−

κ
d as κ→ +∞.

⊲ From vector to functional quantization. Most questions raised in the former sections can be
formulated in an infinite dimensional setting where R

d is replaced by a separable Hilbert space or
more generally a (reflexive or not) separable Banach space (E, | . |

E
). From a more probabilistic point

of view E is often a functional space like L2
R
([0, T ], λ) or C([0, T ],R). This corresponds to the path

space of a bi-measurable stochastic process (Xt)t∈[0,T ] defined on a probability space (Ω,A,P) so that
for every ω∈ Ω, X(ω) = (t 7→ Xt(ω))∈ E: viewing things that way makes X an E-valued (infinitely
dimensional) random vector. For this reason, the quantization problem in infinite dimension is often
known as functional quantization. Thus, existence of optimal quantizers can be established in the
case of reflexive Banach spaces like Lp

R
([0, T ], dt), 1 < p < +∞, following the proof of Proposition 1.1,

using this time a weak continuity lower semi-continuity argument (see e.g. [20, 45, ?]). it also holds
true for the L1

R
(dt) space, but not in full flu generality for the space C([0, T ],R).

However, no such general rate result as Zador’s Theorem is available, but optimal quantization
rates (sometimes sharp) can be established for various classes of stochastic processes, including the
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(fractional) Brownian motion and the Brownian bridge, scalar Brownian diffusions processes, etc,
viewed as random variables having values on their path spaces. We refer to [45, 46, 23, 47, 34] and the
references therein for results in that direction. It turns out that in many situations these convergence
rates for optimal functional quantization error “lives” in a (logN)−r scale (r = 1

2 for the standard
Brownian motion and bridge, diffusion processes, r = H for the fractional Brownian motion with
Hurst constant H, r = m+ 1

2 for the m-fold integrated Brownian motion, etc).
More generally, when dealing with Gaussian processes this quantization rate is closely related to

the rate of decay of the eigenvalues of its covariance operator (Karhunen-Loève eigen-system). For
more general stochastic processes, a connection can be made between the mean Lp([0T ), dt)-functional
quantization rate and the regularity of the mapping t 7→ Xt from [0, T ] to Lp([0, T ], dt).

Numerical applications have also been devised, mostly based on the cubature formulas (see below)
which can be straightforwardly extended to Hilbert or Banach frameworks (see e.g. [56] for applications
to the pricing and hedging of path-dependent options). But we will not go further in that direction
in this paper.

2.3.3 Numerical integration (III): rates

Assume X∈ L2
Rd(P) (still with a distribution µ). The above results show that, provided one has access

to quadratic optimal quantization grids Γ
N

for various levels/sizes, it is possible to produce cubature
formulas with respect to µ which have the following properties.

⊲ α-Hölder functions, α∈ (0, 1]. An α-Hölder function F : Rd → R can be integrated using the N -
point cubature formula (1.10) with an accuracy (upper-bounded by) ‖X− X̂Γ

N ‖L1(P) owing to (1.12).

Let Γ(N) be an optimal quadratic quantization grid at level N for the distribution µ and that
X∈ L2+η

Rd (P) for some η > 0. We use that ‖X− X̂Γ
N ‖L1(P) ≤ ‖X− X̂Γ(N)‖L2(P) = e2,N (µ) ≤ Cd,µN

− 1
d

where Cd,µ is a real constant only depending on the dimension d and the ((2 + η)-pseudo standard
deviation of) distribution µ given by (2.35) in Theorem 2.1 (b).

⊲ Locally α-Hölder functions. Let us come back to the general error bound (1.11) for α-Höder functions
with α + β-polynomial growth at infinity. If α + β ≥ 1 then β

1−α ≥ 1 so that, combining stationarity
and Jensen’s inequality, we get

‖X̂Γ(N)‖
L

β
1−α (P)

=
∥∥E
(
X | X̂Γ(N))∥∥

L
β

1−α (P)
≤
∥∥X
∥∥
L

β
1−α (P)

which makes the right hand side of (1.11) only depending on (norms of) X, namely

∣∣EF (X)− EF (X̂Γ(N)
)
∣∣ ≤ [F ]α,βCd,µ

(
1 + 2‖X‖β

L
β

1−α (P)

)
N−α

d .

⊲ Functions with α-Hölder gradient. If F is continuously differentiable on R
d with an α-Hölder

gradient α∈ (0, 1] and X∈ L2+η
Rd (P), note that in the cubature formula (2.33), one has

‖X − X̂Γ(N)‖L1+α(P) ≤ ‖X − X̂Γ(N)‖L2(P) = e2,N (µ) = O
(
N− 1

d )

since the grid Γ(N) is stationary (i.e. satisfies (2.32)) so that

∣∣EF (X)− EF (X̂Γ
N )
∣∣ ≤ Cd,µ[∇F ]αN− 1+α

d . (2.36)

This last result somewhat extends the one established in [50] for compactly supported absolutely
continuous distributions µ on R

d.

⊲ Numerical tests. For various numerical tests carried out on these cubature formulas, including the
spatial Richardson-Romberg extrapolation not developed here, we refer to [56] and the survey [59].
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2.3.4 Application of (quadratic) optimal quantization to optimal stopping problems

Assume that the characteristics of the quantization tree (Γk, w
k)0≤k≤n related to the Markov chain

(Xk)0≤k≤n is made up with grids such that Γk = Γ
(Nk)
k of size Nk is L2-optimal for the marginal

distribution µk of Xk at every time k∈ {0, . . . , n}. Let

N = N0 + · · ·+Nn

denote the total number of points (or nodes) used in the quantization tree.

If one sets Nk = N̄ := N
n+1 , (or

N−1
n if X0 is deterministic), it follows from the upper-bound (1.25)

that the (optimally) quantized approximation of the Snell envelope related to the optimal stopping
problem (1.31) and their related réduites satisfy

∣∣E û0(X̂Γ0
0 )− Eu0(X0)

∣∣ ≤ ‖Û0 − U0‖L2(P) ≤ CX

√
nN̄− 1

d .

In the special case where the Markov chain is the Euler scheme (X̄n
tn
k
)0≤k≤n with step T

n of a
diffusion process with drift b and diffusion coefficient σ, then the constant CX = Cb,σ,T does not
depend on the time discretization parameter n. In particular, if X0 = x0 ∈ R

d (with the obvious
notations un and ûn) we have

∣∣ûn0 (x0)− un0 (x0)
∣∣ ≤ Cb,σ,T (N − 1)−

1
dn

1
d
+ 1

2 .

Although we will not discuss this point here in details, we must have in mind that the time
discretization error bounds established in [2] behave under Lipschitz assumption on b, σ and f (in x
uniformly in t∈ [0, T ]) is O(n−α) with α = 1

2 when the discrete time approximating Markov chain is
the Euler scheme. When the discrete time approximating Markov chain is the sampled process itself
(Xtn

k
)0≤k≤n and the function f is quasi-convex with linear growth in x uniformly in t ∈ [0, T ], the

rate holds with α = 1 (this class of functions includes convex functions f with linear growth in x and
functions having a Lipschitz continuous gradient ∇xf (in x) uniformly in t in both cases).

In fact, especially in a diffusion framework, it is important for practical purposes to optimize
the quantization tree, especially the sizes Nk of the grids, subject to the above global constraint∑

0≤k≤nNk = N by taking advantage of the non asymptotic bound (2.35) for the mean quadratic
quantization error i.e.

min
N0+···+Nn=N

n∑

k=0

N
− 2

d

k

∥∥X̄n,x
tn
k

∥∥2
L2+η(P)

(with the additional constraint that all theNks are non-zero positive integers). In practice,
∥∥X̄n

tn
k

∥∥
L2+η(P)

is not known explicitly and one may replace this quantity by its classical upper bound, atypically∥∥X̄n,x
tn
k

∥∥
2+η
≤ eCb,σ,T tn

k (1 + ‖X0‖L2+η(P)) which holds true as soon as both functions b and σ satisfy

a linear growth assumption (in x, uniformly in t ∈ [0, T ]): this follows from (1.19) after integrating
the starting value with respect to the distribution of X0 (see [11, 65] among others for details). This
(approximately) leads to

Nk =

 a
2d
d+2

k

∑n
ℓ=0 a

2d
d+2

ℓ

N

 ∨ 1,

where ak is a known upper-bound of
∥∥X̄n,x

tn
k

∥∥
L2+η(P)

for every k = 0, . . . , n. The resulting bound is of

the form

∣∣ûn0 (x0)− un0 (x0)
∣∣ ≤ Cb,σ,TN

− 1
d

(
n∑

k=0

a
2d
d+2

k

) 1
2
+ 1

d

.
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⊲ Numerical tests: Extensive numerical experiments on quantization based schemes for pricing Amer-
ican options, but also non-linear filtering, stochastic control have been carried out, including the
introduction and analysis of a Richardson-Romberg extrapolation method which dramatically im-
proves the convergence rate. For more details we refer to [2, 3, 4, 62] (the last reference is devoted to
both Voronoi and dual vector quantization applied to the the pricing of American style derivatives)
and [59, 66, 18] (for non-linear filtering, stochastic control applied to Finance) and the references
therein.

3 How to get optimal (quadratic) quantization?

The foundation of almost every numerical method devoted to the computation of optimal quantizers
is to establish the differentiability of the Lp-distortion function Gp,N (at level N). In what follows

∂A = Ā\
◦
A denotes the boundary of A ⊂ R

d.

3.1 Differentiability of the (quadratic) distortion function

Proposition 3.1. Let X∈ L2
Rd(P) with distribution P

X
= µ. If x = (x1, . . . , xN

)∈ (Rd)N has pairwise

distinct components (i.e. xi 6= xj, i 6= j) and P
(
X ∈

⋃

1≤i≤N

∂Ci(x)
)
= 0 (with an obvious abuse of

notation concerning the Voronoi cells), the L2-distortion function G2,N is (finite and) differentiable at
x and

∇G2,N (x) = 2

(∫

Ci(x)
(xi − ξ)µ(dξ)

)

1≤i≤N

= 2
(
E1{X∈Ci(x)}(xi −X)

)
1≤i≤N

. (3.37)

Note that the µ-stationarity property is also known in the (statistical) literature as the self-
consistency property and such quantizers as self-consistent prototypes (see [73]). Moreover, this also
gave rise to a new terminology (borrowed from statistics) to emphasize that each xi is the µcentre of
mass of its Voronoi cell: one speaks of the points xi as the centroids of their Voronoi cells.

Proof. First note that, as the N -tuple x has pairwise distinct components, all the interiors
◦
Ci (x),

i = 1, . . . , N , of the Voronoi cells induced by x are non-empty. For every ξ /∈ ⋃1≤i≤N ∂Ci(x), i.e
µ(dξ)-a.s., one has for every i∈ {1, . . . , N},

∂

∂xi

(
min

1≤j≤N
|xj − ξ|2

)
= 1

{ξ∈
◦
Ci(x)}

∂|xi − ξ|2
∂xi

= 21
{ξ∈

◦
Ci(x)}

(xi − ξ).

On the other hand, for every x, x′∈ (Rd)N , the function G2,N is locally Lipschitz continuous since

|G2,N (x′)− G2,N (x)| ≤
∫

Rd

∣∣ min
1≤j≤N

|xj − ξ| − min
1≤j≤N

|x′j − ξ|
∣∣( min

1≤j≤N
|xj − ξ|+ min

1≤j≤N
|x′j − ξ|

)
µ(dξ)

≤ max
1≤j≤N

|xj − x′j |
∫

Rd

(
max

1≤j≤N

(
|xj |+ |ξ|

)
+
(

min
1≤j≤N

|xj |+ |ξ|
))
µ(dξ)

≤ Cµ|x− x′|∞
(
1 + |x|∞ + |x′|∞

)
.

As a consequence, G2,N is differentiable at x by the local interchange Lebesgue differentiation Theo-
rem. �
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Remarks. • In fact, when p > 1, the Lp-distortion function (with respect to an Euclidean norm) is
also differentiable at N -tuple having pairwise distinct components with gradient

∇Gp,N (x) = p

(∫

Ci(x)

xi − ξ
|xi − ξ|

|xi − ξ|p−1µ(dξ)

)

1≤i≤N

= p

(
E

(
1{X∈Ci(x)}

xi −X
|xi −X|

|xi −X|p−1
))

1≤i≤N

.

An extension to the case p∈ (0, 1] does exist under appropriate continuity and integrability assump-
tions on the distribution µ so that µ({a}) = 0 for every a and the function a 7→

∫
Rd |ξ − a|p−1µ(dξ)

remains bounded on compact sets of R
d. More generally, a differentiation result exist for strictly

convex smooth norms (see Lemma 2.5, p.28 in [32]).

This leads to the following corollary which is the starting point of all numerical methods to compute
optimal (or at least locally optimal) quantizers.

Corollary 3.1. Let X∈ L2
Rd(P) with distribution µ. Any grid Γ(N) attached to an N -tuple x(N) which

minimizes the quadratic distortion function G2,N is a stationary quantizer (at level card(Γ(N)) ≤ N).

By “attached” we mean that Γ(N) = {x(N)
i , 1 ≤ i ≤ N}.

(b) Any grid Γ
N

attached to a critical point x(N) of G2,N and whose induced Voronoi partition has a
µ-negligible boundary is a stationary quantizer at level (at most) N .

Its main consequence is the following: if card(supp(µ)) ≥ N , any optimal grid has full size N by
Proposition 1.1(b) and can be reduced, up to a permutation, to an N -tuple x(N). Moreover, owing

to Theorems 4.1 and 4.2 in [32] (p.37-38), we know that µ
( ⋃

1≤i≤N

∂Ci(x)
)
= 0 and µ

(
Ci(x

(N))
)
> 0,

i = 1, . . . , N , i.e. the boundaries of its Voronoi partition is µ-negligible. Then, one easily checks that
x(N) is in fact a both global and local minimum of G2,N and G2,N is differentiable at x(N) and

∇G2,N
(
x(N)

)
= 0

i.e.

∀ i∈ {1, . . . , N},
∫

Ci(x(N))

(xi − ξ)µ(dξ) = 0

or equivalently

x
(N)
i =

∫
Ci(x(N)) ξµ(dξ)

µ(Ci(x(N)))
= E

(
X |X∈ Ci(x

(N))
)

which in turn can be rewritten

X̂Γ(N)
= E

(
X | X̂Γ(N))

where Γ(N) =
{
x
(N)
i , i = 1, . . . , N

}
. (3.38)

3.2 Competitive Learning Vector Quantization

The Competitive Learning Vector Quantization (CLV Q) is a stochastic gradient descent deriving
from the quadratic distortion G2,N , viewed as a potential function to be minimized. In a deterministic
approach, the associated gradient descent is a zero search of its gradient ∇G2,N . It formally reads

x(k + 1) = x(k)− γk+1∇G2,N
(
x(k)

)
, x(0)∈

(
Hull

(
supp(µ)

))N
, (3.39)

where Hull
(
supp(µ)

)
denotes the closed convex hull of the support of the distribution µ. The sequence

(γk)k≥1 is a sequence of positive step parameters satisfying the so-called decreasing step assumptions
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∑
k≥1 γk = +∞ and

∑
k≥1 γ

2
k < +∞. When (or if) ∇G2,N is itself differentiable (enough) one can

replace this step γk+1 by the inverse of the Hessian of G2,N , leading to the classical Newton-Raphson
procedure (opening the door to many of its variants like Levenberg-Markardt algorithm, etc).

The procedure is (mathematically) well-defined if µ assigns no mass to hyperplanes and x(0) has
pairwise distinct components. Indeed, when these conditions are fulfilled, one shows that xi(k+1) lies
in the interior of the Voronoi cell of xi(k) which prevents the components to get stuck as a result of
an iteration. Thus, the existence of ∇G2,N for the next iteration is preserved.

Unfortunately lim infmaxi |xi|→+∞ G2,N (x) < +∞ (one only has lim inf
mini |xi|→+∞

G2,N (x) = +∞), hence,

the function G2,N is not a standard potential function for optimization purposes and the classical
convergence results existing for this class of zero search procedures (and their variant involving the
Hessian like Newton-Raphson) do not apply here: the boundedness of the sequence (x(k))k≥0 cannot
be established, except when the distribution µ has a compact support (so that its closed convex hull
is compact too).

In fact, there is an upstream problem: beyond dimension d ≥ 2 or 3, an accurate computation
of the components of G2,N (x) for a given x ∈ (Rd)N becomes too costly to be used in such a recur-
sive procedure as soon as µ has an infinite support (especially if it is atomless/continuous). When
computing simple integrals on R

d, it is well-known that; as the dimension d increases, one has to
switch from cubature formulas to Monte Carlo simulations, provided µ can be simulated. For the
same reason and, in the same spirit, we will switch from the above (deterministic) gradient descent to
its stochastic counterpart, taking advantage of its representations (3.37) as an expectation, provided
the distribution µ can be simulated at reasonable low cost.

Such a stochastic gradient descent formally reads in our setting (the factor 2 is dropped on purpose)

x(k + 1) = x(k)− γk+1

(
1{Xk+1∈Ci(x)}(xi(k)−Xk+1)

)
1≤i≤N

, x(0)∈
(
Hull

(
supp(µ)

))N
,

x(0) having pairwise distinct components. We simply replaced mutatis mutandis the expectation
operator E by a sequence of independent copies (Xk)k≥1. The iterates (x(k))k≥0 are now random
vectors (though we will still denote them by script letters). When µ assigns no mass to hyperplanes,
one shows that the algorithm is well defined i.e. no components of x(k+1) get stuck as a result of an
iteration. As could be expected from the deterministic framework, and for the same reason induced by
the behavior of G2,N at infinity, it is again – we should say all the more! – hopeless to apply the classical
counterpart convergence theorems for stochastic gradient like those established e.g. in [26, 39, 8]. Of
course, its main asset is that it can be implemented very easily when µ is simulatable. In fact, under
various names (k-means, Competitive Learning Vector Quantization algorithm, nuŕes dynamiques,
etc), it has been widely implemented for years in the communities of Artificial Neural Networks, Data
Mining and, more recently, Machine Learning, etc, as a clustering procedure producing prototypes
and an automatic classifier (see below).

Note however that when µ is the empirical measure of a dataset (ξk)1≤k≤n, the standard/original
“deterministic” gradient descent (3.39) at a given level N ≪ n can always be implemented since
each computation of ∇G2,N will require finitely many operations involving a known function (the
one appearing inside the expectation operator in (3.37)). In this form, the procedure is also known
as Forgy’s algorithm or batch k-means procedure. However, in practice, it can be too much time
consuming when the size n of the dataset is too large. As an alternative, practitioners often come
back to the above stochastic gradient by sampling at random uniformly in the dataset the input datum
at each iteration.

When implemented at level N ≥ 1 for optimal classification purposes, the resulting procedure
is designed to – hopefully - converge toward a(n at least local) minimum of G2,N or equivalently the
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quadratic mean quantization error
√
GN ,∈. If so, it produces N prototypes of the dataset (the resulting

N -quantizer). The classification is finally obtained by assigning to each datum of the dataset the label
of its Voronoi cell among the prototypes.

At this stage, let us describe more precisely what this CLV Q algorithm really does from a geometric
point of view at each iteration.

Stochastic Gradient Descent formula (Quantizer updating). Still starting from a starting

N -tuple x(0) =
(
x1(0), . . . , xN (0)

)
in
(
Hull

(
supp(µ)

))N
, we update the procedure from k to k+1 in a

two fold procedure which can be analyzed and interpreted as follows: let x(k) :=
(
x1(k), . . . , xN (k)

)
∈

(Rd)N be the value of the state vector of the algorithm at the kth iteration (the running vector of
“prototypes”).

⊲ Competition phase: This phase is also known as the winner selection stage; it amounts to solving
the following nearest neighbour search

iwin(k + 1) ∈ argmini∈{1,...,N}
∣∣xi(k)−Xk+1

∣∣.

When the input Xk+1 falls in a general position (i.e. not on a median hyperplane), iwin(k + 1) is
uniquely defined. In case of conflict, when Xk+1 falls on a median hyperplane and has subsequently (at
least) two nearest neighbours, a rule to determine the winner has to be defined. Picking up iwin(k+1)
at random among all the nearest neighbours seems the most natural rule. Note that when µ assigns
no mass to hyperplanes (e.g. because it is absolutely continuous) this situation P-a.s. never occurs.

⊲ Learning phase: During this phase, the current set of prototypes x(k) = (xi(k))i=1,...,N is up-
dated to incorporate the information provided by the input Xk+1. As a result the nearest neighbour
xiwin(k+1)(k) is moved closer to k + 1 by a dilatation centered at Xk+1 with a ratio lower than 1. To
be more precise 




xiwin(k+1)(k + 1) = Dilat(Xk+1, 1− γk+1)(xiwin(k+1)(k))

xi(k + 1) = xi(k) for every i 6= iwin(k + 1).

where Dilat(ξ, ρ) denotes a dilation centered at ξ with ratio ρ∈ [0, 1] defined by

Dilat(ξ, ρ)(u) = ξ + ρ(u− ξ), u∈ R
d.

First note that, if for every k∈ N
∗, the step γk∈ (0, 1) then xiwin

(k+1) is a convex combination of
xiwin

(k) and Xk+1. Consequently, as the (pairwise distinct) components of x(0) lie in Hull
(
supp(µ)

)
,

a straightforward induction shows that so will be the case of all the iterations x(k), k ≥ 0.
As a consequence all these clustering procedures (batch or stochastic) are always implemented

under the step assumption
∀ k∈ N

∗, γk∈ (0, 1).

One deduces that, if the N -tuple x(k) has pairwise distinct components, this feature is preserved
by the learning phase. So that the above procedure is well-defined, up to the convention to be made
in case of conflict between several components xj(k) in the competitive phase.

The name of the procedure – Competitive Learning Vector Quantization algorithm – is a synthesis
of these two basic phases.

The heuristics, rigorously proved in few situations (e.g. when d = 1 and µ has a log-concave density
on a bounded interval) is that the procedure a.s. converges, toward an at least local minimum of G2,N .
But one must have in mind that, as soon as the structural dimension d increases, the “landscape”
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of the potential function G2,N – the quadratic distortion – has many local minima and various kinds
of saddle points. For (partial) theoretical results on the convergence of the CLV Q algorithm, we
may refer to [53] (in the special case where X has a compactly supported distribution) and to [67]
for a weak rate of convergence (a Central Limit Theorem under the assumption that the algorithm
converges toward the global minimum).

Several Lp-variants have also been investigated more recently, in particular the k-median case
corresponding to p = 1 (see [16]).

Adaptive on line computation of the “companion parameters”. Assume that the above

CLV Q procedure a.s. converges toward an N -tuple x(N,∗) =
(
x
(N,∗)
1 , . . . , x(N,∗)

N

)
having values in

Hull
(
supp(µ)

)
. One can compute on line the associated weights and the resulting mean quadratic

quantization error:

• Weights w
(N,∗)
i = P(X̂x∗

= x
(N,∗)
i ), i = 1, . . . , N : for every i = 1, . . . , N ,

wi[k + 1] := (1− γk+1)wi[k] + γk+11{iwin=i}
a.s.−→ w

(N,∗)
i on the event

{
x(k)→ x(N,∗)

}
.

• Quadratic Distortion error G2,N (x) =
∥∥min1≤i≤N |X − xi|

∥∥
2
:

GN [k+1] := (1−γk+1)GN [k]+γk+1|xiwin(k+1)(k)−Xk+1|2 a.s.−→ G2,N (x(N,∗)) on the event
{
x(k)→ x(N,∗)

}
.

Note that, since the “ingredients” involved in the above companion procedures are those used in
the competition learning phase, they add (almost) no extra C.P.U. time cost, especially if one has
in mind (see below) that the costly part of the algorithm (as well as that of the Lloyd I procedure
described below) lies in the nearest neighbour search of the “competition phase”. For the convergence
of the online adaptive version of the companion procedures, we refer to [2].

In some way the CLVQ algorithm can be seen as a Non Linear Monte Carlo Simulation devised
to design an optimal skeleton of the distribution µ of X, this skeleton being the distribution of X̂x(N,∗)

(with an obvious abuse of notation), that is the N -tuple x(N,∗) itself and its companion weight vector(
w

(N,∗)
i

)
1≤i≤N

.

3.3 A fixed point algorithm: Lloyd I procedures

⊲ The original Lloyd I procedure. This time, we start directly from the stationary Equation (3.38).
The idea is to use this identity to devise a fixed point procedure. Let Γ(0) ⊂ Hull

(
supp(µ)

)
(with N

pairwise distinct elements). Then for every integer k ≥ 0, one updates the current grid Γ(k) as follows:





(i)Centroid updating: X̃Γ(k+1) = E
(
X | X̂Γ(k)

)
=

E

(
X1{X∈Ci(Γ(k)}

)
P(X∈Ci(Γ(k)))

,

(ii)Voronoi cell updating: X̂
Γ(k+1) ← X̃Γ(k+1).

(3.40)

This procedure clearly lives in Hull
(
supp(µ)

)
by a convexity argument. Note that (i) can re-written

(with obvious notations) as

xi(k + 1) = E
(
X | X̂Γ(k) = xi(k)

)
, i = 1, . . . , N.

As set, this procedure is a pseudo-algorithm since: it cannot be implemented as long as we do not
know explicitly the quantities E

(
X1{X∈Ci(Γ(k))}

)
and P

(
X∈ Ci(Γ(k))

)
at each step k.
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⊲ Practical implementation: the randomized Lloyd I procedure.

– When µ is the empirical measure of a dataset, the above procedure can be implemented: one
computes the expectation and the probability appearing in the ratio (3.40).

– If the distribution µ has an infinite support (e.g. because µ has a density) the situation becomes
more involved. When d = 1, it is often possible to compute the two quantities of interest which appear
in the conditional expectation of (3.40)(i) since both are terms of the ratio are 1-dimensional integrals.
This is sometimes still possible in low dimension, say d = 2, still using appropriate cubature formulas
for numerical integration (see e.g. the algorithms available on the website

www.qhull.org

and the references therein). Nevertheless, as d increases, the above procedure becomes rapidly in-
tractable: to compute both expectations in (3.40)(i) there is no alternative to the Monte Carlo
method (or Quasi-Monte Carlo). One replaces the distribution of X by the empirical measure of
a large M -sample of (independent copies) (Xm)1≤m≤M of X defined a probability space (Ω,A,P),
namely

µ = P
X
← 1

M

M∑

m=1

δXm(ω),

considering that, for large values ofM , both distributions are P(dω)-a.s. get close enough. Then phase
(i) (centroid updating) becomes Γ(k + 1) =

{
xi(k + 1,M), i = 1, . . . , N

}
where

(i)
M
≡ xi(k + 1,M) =

∑M
m=1X

m1{Xm∈Ci(Γ(k))}
card

(
{1 ≤ m ≤M, Xm ∈ Ci(Γ(k))}

) , i = 1, . . . , N. (3.41)

This algorithm is often called randomized Lloyd’s I algorithm. Like for the CLV Q algorithm,
the convergence results for the Lloyd I procedure are still partial, even in its original (deterministic)
form (3.40) (see e.g. [64]).

Two examples of (nearly) optimal quadratic quantizations are reproduced in Figures 2 and 3. They
have been obtained by a hybrid stochastic optimization procedure mixing the randomized Lloyd I
algorithm and the CLV Q algorithm. Furthermore, it relies on a “splitting approach” that is a level-
by-level computation of the grids (see [56] as concerns the normal distribution).

For more details about these numerical stochastic optimization procedures used to produce optimal
quantizers at levelN , we refer e.g. to [8, 56] for CLV Q, [38, 24, 64] for (randomized) Lloyd’s I procedure
or more applied textbooks like [29].

3.4 Nearest neighbor search: how to speed it up. . .

In both above described procedures – CLV Q and randomized Lloyd’s I procedures – above, the most
time consuming phase is by far the nearest neighbour search which determines the Voronoi cell in
which the new input Xk+1 falls at step k + 1. This nearest neighbour search is well-known to have
an exploding complexity when d and N are large. Its reduction or at least its control is known as a
highly challenging problem in computer science.

There are several methods to speed it up, at least in medium dimension. We consider in what
follows, either an M -sample (Xm(ω))m=1,...,M obtained by simulation of the distribution µ or a true
dataset denoted in both cases by (ξm)m=1,...,M to alleviate notations.

⊲ Partial Distance Search principle (PDS, Chen). This idea is quite simple and very efficient: a
nearest neighbour search amounts to check, in an Euclidean framework, whether a squared norm
|ξ|2 = |(ξ1, . . . , ξd)|2 = (ξ1)2 + · · ·+ (ξd)2 is lower than a record value, say δ2rec.
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Figure 2: Optimal N -quantizer (N = 500) of the bi-variate Normal distribution depicted with its
Voronoi tessellation (with J. Printems).

Figure 3: Optimal N -quantization (N = 500) of
(
W1, supt∈[0,1]Wt

)
depicted with its Voronoi tessella-

tion, W standard Brownian motion (with B. Wilbertz).
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To test the inequality |ξ|2 < δ2rec, one proceeds by induction on the coordinates as described in
Algorithm 1 below.

Algorithm 1 (Chen’s Partial Distance Search protocol)

record = true;
aux = 0;
ℓ = 1
while aux+ (ξℓ)2 < δ2rec do
ℓ := ℓ+ 1;

end while
if ℓ = d+ 1 then
record = false;

end if

The testing procedure is stopped as soon as the partial computation of the squared norm is
higher than the record value. This procedure is known as Chen’s Partial Distance Search protocol.
Adaptation to other common norms is straightforward. It can still be improved in medium dimensions,
say up to d = 10, by storing the data in a tree structure as described below.

⊲ Space partitioning tree (see [28]). As a first step, one divides the dataset into two subsets of size
M
2 according to the median of the first coordinate. Then, one divides again each sub-sample following
the second coordinate and so on. At each step, the procedure is applied either to a new coordinate or,
when the dimension is exhausted, to the one with the highest index. Each leaf of the resulting tree is
labelled. The data are coded in the tree by their leaf label and a local index inside its assigned leaf.
After this pre-processing phase, whose complexity is O(M logM), the search cost of a single datum in
the tree is O(logM). It is commonly shared by users that the depth of the tree should be fixed to 7 to
get the best compromise. In many situations of interest, this choice seems more or less independent
of the size of the dataset and its structure.

⊲ Principal Axis Tree (McNames, see [49]). The additional improvement brought by this approach
lies in a preliminary Principal Component Analysis (PCA) inducing a change of coordinates which
make the search more efficient, especially in view of applying the PDS principle: in the new basis
induced by the PCA the absolute value of coordinates tends to decrease when the coordinate index
increases implying that Chen’s PDS procedure stops sooner in average.

⊲ Rough Self-Quantization (Corlay, see [17], chapter 1). The underlying idea is completely different
and competes with the PAT approach when designing the search tree. It consists of a cascade of
rough pre-quantizations of the dataset with N0 (N0 ≈ 7) prototypes (or classes) at each level. This
again speeds up Chen’s PDS principle of course.

A different approach, not detailed here, is to devise approximate nearest neighbor search procedures,
often based on some anchor points (see [29] for examples and the references therein).

3.5 Where to download optimal quantization grids?

Optimized quadratic quantization grids of the d-dimensional normal distributions N (0; Id), computed
on the occasions of various numerical experiments (pricing of multi-asset American style option, port-
folio management, nonlinear filtering, swing option pricing, etc) by the hybrid “splitting method”
described above can be downloaded from the website

www.quantize.maths-fi.com
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for N = 1 up to 104 and d = 1, . . . , 10. The precise procedure is described in a companion which can
be downloaded. On this website are also made available functional quantization grids of the standard
Brownian motion over the interval [0, 1], the Brownian bridge, as well as a detailed procedure to
compute grids for the (normalized) Ornstein-Uhlenbeck process and its bridge (6).

4 Greedy quantization

4.1 What is greedy quantization?

We still consider p∈ (0,+∞) and X : (Ω,A,P) → R
d an Lp-integrable random vector. The starting

idea of optimal greedy quantization is to determine a sequence (aN )N≥1 of points of R
d which is

recursively optimal step by step or level by level with respect to the Lp-mean quantization criterion.
We mean that, if we denote a(N) = {a1, . . . , aN

}, N ≥ 1, then the points a
N

are recursively defined
by a(0) = ∅ and

aN+1∈ argminξ∈Rdep
(
a(N) ∪ {ξ}, X

)
, N ≥ 0. (4.42)

Note that this section is no longer amide survey but is made of new material, developed in an extended
version in [48]. A priori the sequence is not uniquely defined since the above function may attain its
minimum at several points of Rd. Note that if N = 0, a1 is simply the Lp-median of the distribution
µ of X and is subsequently unique whenever p > 1 by a strict convexity argument. This idea to
design not only optimal N -tuples but an optimal sequence which, hopefully, will produce N -tuples
with a rate optimal behaviour as N → +∞ is very natural and can be compared to sequences with low
discrepancy in Quasi-Monte Carlo methods. In fact such sequences have already been investigated but
only in an L1 setting when X has a compact support as a model of short term planning (by contrast
with long term planning, see [12]). Our aim in this section, which is made of new results, is to solve
this greedy optimization problem for general distributions µ = P

X
in any Lp-space in two directions:

first establish the existence of such Lp-optimal greedy sequences and then evaluate the rate of decay
of ep(a

(N), X) to 0 as the quantization level N goes to infinity.

For convenience, we will introduce for every subset A ⊂ R
d and every ξ ∈ R

d, the notation
dist(ξ, A) = infa∈A |ξ−a| for the distance between ξ and A, where | . | denotes the canonical Euclidean
norm in what follows (however, except for algorithmic aspects the results that follow are true with
any norm on R

d). B(ξ, r) will denote the closed ball centered at ξ∈ R
d with radius r > 0.

Proposition 4.1. (a) If X ∈ Lp
Rd(P), then the sequence of optimization problems (4.42) admits at

least one solution (aN )N≥1 where a1 is the Lp-median of the distribution µ. Moreover, the sequence(
ep(a

(n), X)
)
1≤n≤N

is (strictly) decreasing as long as N ≤ |supp(µ)| (so that an /∈ a(n−1), 1 ≤ n ≤ N).

(b) Any solution (aN )N≥1 to (4.42) satisfies lim
N
ep(a

(N), X) = 0 i.e.

lim
N→+∞

∫

Rd

min
1≤i≤N

|ξ − ai|pµ(dξ) = 0.

Such a solution is called an Lp-optimal greedy quantization sequence.

Proof. (a) We proceed by induction. When N = 1, the existence of a1 obviously follows from the fact
that a 7→ E(|X − a|p) is continuous and goes to infinity as |a| → +∞. Assume there exists a1, . . . aN

such that ep(a
(k), X) = mina∈Rd ep(a

(k−1) ∪ {a}, X) for k = 2, . . . , N .
If supp(µ) ⊂ {a1, . . . , aN

} then for every a∈ R
d, ep(a

(N) ∪ {a}, X) = ep(a
(N), X). Otherwise, let

ξ∗ ∈ supp(µ) \ {a1, . . . , aN
}. It is clear that |ξ − ξ∗| < dist(ξ, a(N)) on the ball B

(
ξ∗, 14dist(ξ

∗, a(N))
)

6All downloads for scientific and non-commercial purposes are free of charges.
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which satisfies µ
(
B
(
ξ∗, 14dist(ξ

∗, a(N))
))
> 0. Consequently, ep(a

(N) ∪ {ξ∗}, X) < ep(a
(N), X). Now

let
K0

N+1 =
{
ξ∈ R

d | ep(a(N) ∪ {ξ}, X) ≤ ep(a(N) ∪ {ξ∗}, X)
}
.

This is a closed non-empty set of Rd. Now let (ξk)k≥1 be a sequence of elements of K0
N+1 such that

|ξk| → +∞. as k → +∞. It follows from Fatou’s Lemma that

lim inf
k

ep(a
(N) ∪ {ξk})p ≥

∫

Rd

lim inf
k

min
(
dist(ξ, a(N))p, |ξ − ξk|p

)
µ(dξ)

=

∫

Rd

dist(ξ, a(N))pµ(dξ)

= ep(a
(N), X)p > ep(a

(N) ∪ {ξ∗}, X)p.

This yields a contradiction which in turn implies that K0
N+1 is a compact set. On the other hand,

ξ 7→ ep(a
(N) ∪ {ξ}, X) is clearly Lipschitz continuous on R

d, hence it attains its minimum on K0
N+1

which is clearly its absolute minimum.

(b) It is clear that, for every ξ∈ R
d, min1≤i≤N |ξ−ai| is non-increasing and converges toward inf

N≥1
|ξ−a

N
|

so that by the Lebesgue dominated convergence theorem (|ξ − a1|∈ L1(µ)), one has

ep(a
(N), X)p ↓ ℓ∞ :=

∫

Rd

inf
N≥1
|ξ − aN |pµ(dξ).

Let a(∞) = {a
N
, N ≥ 1}. If ℓ∞ 6= 0, then there exists ξ0∈ supp(µ) such that ε0 = dist(ξ0, a

(∞)) > 0
and, for every ξ∈ B(ξ0,

ε0
4 ), dist(ξ, a

(N)) ≥ 3
4ε0 so that

∫

B(ξ0,
ε0
4
)
dist

(
ξ, a(∞)

)p
µ(dξ) ≥ η0 with η0 =

(
3ε0
4

)p

µ
(
B(ξ0,

ε0
4
)
)
.

Let N0 be a positive integer such that,
∫

Rd

dist
(
ξ, a(N0)

)p
µ(dξ) ≤ ℓ∞ +

η0
2

(
1− 1

3p

)
.

We consider the (N0 + 1)-quantizer a(N0) ∪ {ξ0}. On the one hand,

∫

B(ξ0,
ε0
4
)
dist

(
ξ, a(N0) ∪ {ξ0}

)p
µ(dξ) ≤

(ε0
4

)p
µ
(
B(ξ0,

ε0
4
)
)
=
η0
3p

and, on the other hand,
∫

cB(ξ0,
ε0
4
)
dist

(
ξ, a(N0) ∪ {ξ0}

)p
µ(dξ) ≤

∫

cB(ξ0,
ε0
4
)
dist

(
ξ, a(N0)

)p
µ(dξ)

≤
∫

Rd

dist
(
ξ, a(N0)

)p
µ(dξ)−

∫

B(ξ0,
ε0
4
)
dist

(
ξ, a(N0)

)p
µ(dξ)

≤ ℓ∞ +
η0
2

(
1− 1

3p

)
− η0.

so that ∫

Rd

dist
(
ξ, a(N0) ∪ {ξ0}

)p
µ(dξ) ≤ ℓ∞ +

η0
2

(
1− 1

3p

)
− η0 +

η0
3p

< ℓ∞

which yields a contradiction. Hence ℓ∞ = 0 which completes the proof. �
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4.2 Greedy quantization is rate optimal

In this section we answer the question whether a greedy sequence may be rate optimal i.e. that
ep(a

(N), X) goes to zero at the same rate as a sequence of optimal quantizers at levelN whenN → +∞.
Following [33], we define for every b∈ (0,+∞) the b-maximal function associated to a greedy sequence
(aN )N≥1 by

∀ ξ∈ R
d, Ψb(ξ) = sup

N≥1

λd
(
B(ξ, bdist(ξ, a(N)))

)

µ
(
B(ξ, bdist(ξ, a(N)))

) ∈ [0,+∞].

It is clear that Ψb(ξ) > 0 for every ξ 6= a1 (Lp-median).

Note that this notion of maximal function (originally introduced in [33]) can be naturally defined
with respect to a sequence of grids (ΓN )N≥1 where ΓN has size N . The theorem below yields a
criterion based on the integrability of the maximal function Ψb which implies that an Lp-optimal
greedy quantization sequence is Lp-rate optimal (in the sense of Zador’s theorem). More practical and
easy-to-check criterions are given further on.

Theorem 4.1. Let p∈ (0,+∞) and let µ = P
X

be such that

∫

Rd

|ξ|pµ(dξ) < +∞. Assume that there

exists b∈ (0, 12) such that Ψb∈ L
p

p+d (µ). Then

lim sup
N

N
1
d ep(a

(N), X) < +∞.

Proof. First, if µ is a Dirac mass δa for some a ∈ R
d, then a1 = a and ep(a

(N), X) = 0 for every
integer N ≥ 1. Otherwise, we rely on the following micro-macro inequality established inWe rely on
the following micro-macro inequality established in [33] (see Equation (3.4) in the proof of Theorem 2).

∀ ξ∈ R
d, dist(ξ, a(N))p ≤ Cp,b

µ
(
B(y, bd(y, a(N)))

)
(
ep(a

(N), X)p − ep(a(N) ∪ {ξ}, X)p
)

where b∈ (0, 12) and Cp,b is a positive real constant depending on p and b. Then, it follows that

ep(a
(N) ∪ {ξ}, X)p ≤ ep(a(N), X)p − 1

Cp,b

µ
(
B(ξ, bdist(ξ, a(N)))

)

λd
(
B(ξ, bdist(ξ, a(N)))

)bddist(ξ, a(N))p+dVd

where Vd denotes the hyper-volume of the unit ball with respect to the current norm on R
d i.e.

Vd = λd
(
B| . |(0; 1)

)
. This implies that

ep(a
(N) ∪ {ξ}, X)p ≤ ep(a(N), X)p − 1

C̃p,b,d

1

Ψb(ξ)
dist(ξ, a(N))p+d

where C̃p,b,d = Cp,b/(b
dVd)∈ (0,+∞). Note that µ({a1}) < 1 since µ is not a Dirac mass, so that

∫

Rd

Ψ
p

p+d

b dµ > 0.

Consequently, as Ψb ∈ L
p

p+d (µ), we can define the probability distribution ν = κb,p,dΨ
p

p+d

b .µ (where

κb,p,d =
( ∫

Rd Ψ
p

p+d

b dµ
)−1
∈ (0,+∞) is a normalizing real constant). Then, integrating the above

inequality with respect to ν yields
∫

Rd

ep
(
a(N) ∪ {ξ}, X

)p
ν(dξ) ≤ ep(a(N), X)p − 1

C̃p,b,d

∫

Rd

dist(ξ, a(N))p+d ν(dξ)

Ψb(ξ)
.

43



Jensen’s Inequality applied to the convex function u 7→ u
1+ d

p yields

∫

Rd

dist(ξ, a(N))p+d ν(dξ)

Ψb(ξ)
≥

(∫

Rd

dist(ξ, a(N))p
ν(dξ)

Ψb(ξ)
p

p+d

)1+ d
p

= κ
1+ d

p

b,p,d

(∫

Rd

dist(ξ, a(N))pµ(dξ)

)1+ d
p

= κ
1+ d

p

b,p,d ep
(
a(N), X

)p+d
.

On the other hand, it is clear that

ep
(
a(N+1), X

)p ≤
∫

Rd

ν(dξ)ep
(
a(N) ∪ {ξ}, X)

)p

so that, finally, if we set A
N

= ep(a
(N), X)p, N ≥ 1, this sequence satisfies for every integer N ≥ 1,

the recursive inequality

A
N+1 ≤ AN

− κ̃b,p,dA
1+ d

p

N

where κ̃b,p,d = κ
1+ d

p

b,p,d/C̃r,b,d. The sequence (A
N
)N≥1 being non-negative, one classically derives the

announced conclusion. �

Remark. When µ has no absolutely continuous part with respect to the Lebesgue measure, it is likely
that, like for standard optimal vector quantization in Zador’s Theorem, this rate is not optimal. The
natural conjecture should be that greedy quantization sequence(s) go to 0 at the same rate as that

obtained for sequences of optimal quantizers which is not N− 1
d when the distribution µ is singular

(see e.g. [32]).

We produce below easy-to-check criterions that can be straightforwardly borrowed (and slightly
adapted) from [33] which ensure that Ψb has the required integrability property so that any greedy
sequence is rate optimal.

The case of compactly supported distributions.

Lemma 4.1 (see Lemma 1 in [33]). If X∈ Lp
Rd(P) has a distribution µ having an absolutely continuous

component and if (ΓN )N≥1 is a sequence of N -quantizers such that
∫
Rd dist(ξ,ΓN

)pµ(dξ)→ 0 then the
maximal functions Ψb lie in all Lr

loc(µ) for every r∈ (0, 1) i.e.

∀ r∈ (0, 1), ∀ b∈ (0,+∞), ∀R∈ (0,+∞),

∫

{|ξ|≤R}
ψb(ξ)

rµ(dξ) < +∞.

By combining this result (with r = p
p+d) with Proposition 4.1, we derive the following proposition

which generalizes the one stated in [12] for absolutely continuous distributions µ having a convex
support on R

d.

Proposition 4.2 (Compact support). If X has a distribution µ with compact support, then any greedy
Lp-optimal sequence (a

N
)N≥1 is rate optimal i.e. satisfies

lim sup
N

N
1
d ep(X, a

(N)) < +∞.

44



The case of non-compactly supported distributions with radial density functions

Lemma 4.2 (see Corollary 3 in [33]). If X ∈ Lp+η
Rd (P) for some η > 0 with an essentially radial

distribution µ = ϕ.λd in the sense that

ϕ = h(| . |0) on B| . |0(0, R)
c with h : (R,+∞)→ R+, non-increasing and | . |0 a norm on R

d. (4.43)

Let (ΓN )N≥1 be a sequence of N -quantizers such that
∫
Rd dist(ξ,ΓN

)pµ(dξ)→ 0. If there exists a real
constant c > 1 such that

∫

Rd

ϕ(c ξ)
− p

p+dµ(dξ) =

∫

Rd

ϕ(c ξ)
− p

p+dϕ(ξ)dξ < +∞ (4.44)

then Ψb∈ L
p

p+d (µ).

In fact Corollary 3 in [33] is stated to be used only with Lp-optimal quantizers so the above for-
mulation includes minor modifications. Combining this lemma with Theorem 4.1 yields the following
proposition.

Proposition 4.3 (Non-compact support with radial density). If X ∈ Lp+η
Rd (P) for some η > 0 with

an essentially radial distribution in the sense of (4.43). If, furthermore, ϕ satisfies (4.44), then any
greedy Lp-optimal sequence (a

N
)N≥1 is rate optimal i.e. satisfies

lim sup
N

N
1
d ep(X, a

(N)) < +∞.

This case includes e.g. all the (centered) hyper-exponential distributions of the form µ = ϕ.λd with

ϕ(ξ) = κa,b,c|ξ|c0 e−a|ξ|b0 , ξ∈ R
d, a, b > 0, c > −d

and | . |0 denotes any norm on R
d and subsequently all hyper-exponential distributions distributions

since Lp-mean-quantization errors is invariant by translation of the random vector X. In particular,
this includes all normal and Laplace distributions

Remark. In one dimension, (4.43) can be replaced mutatis mutandis by a one-sided variant: if there
exists R0, R

′
0∈ R, R′

0 ≥ R0 such that

supp(µ) ⊂ [R0,+∞) and f|[R′
0,+∞) is non-increasing. (4.45)

This criterion is e.g. satisfied by the gamma distributions on R+ (including the exponential distri-
butions).

A criterion for non-radial density functions can also be derived from Corollary 4 in [33], see [48]
for details.

From now on in this section, we denote by
(
a
N,p

)
N≥1

an (Lp, µ)-optimal greedy quantization

sequence f and
(
a(N),p

)
N≥1

the resulting sequence of N -quantizers.

Further comments and provisional remarks. • If E|X|p+η < +∞ for some η > 0 µ = P
X

has a non-zero absolutely continuous component ϕ.λd with respect to the Lebesgue measure, Zador’s
Theorem implies

lim inf
N

N
1
d ep(a

(N), X) ≥ lim
N
N

1
d ep(X) = J̃p,d‖ϕ‖

1
p

L
p

p+d (λd)
> 0.
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In that setting, we derive that ep(a
(N), X) ≍ N− 1

d as N → +∞.

• About the sharpness of optimal greedy sequences. It is pointed out in [12] (see Theorem 4.10) that,
by contrast with what is observed with regular (i.e. global) optimization at level N (Zador’s The-

orem), N
1
d ep(a

(N), X) usually does not converge when (a
N
)N≥1 is a greedy Lp-optimal sequence.

The counter-example is exhibited in the one-dimensional framework for the uniform distribution
U([0, 1]) where an L1-optimal greedy sequence (a

N,1)N≥ is analyzed. It is shown that for this sequence

Nep
(
a(N),1, U([0, 1])

)
does not converge as N goes to infinity and 1 < lim infN

e1
(
a(N),1, U([0,1])

)

e1,N

(
U([0,1])

) <

lim supN
e1
(
a(N),1,U([0,1])

)

e1,N

(
U([0,1])

) < +∞. Other numerical experiments reproduced below in the quadratic

case p = 2, still with U([0, 1]), on the one hand and, on the other hand, in [48], with the scalar
and bivariate normal distributions N (0; 1) and N (0; I2) (which have an unbounded support), strongly
suggest that, for more general absolute continuous distributions µ on (Rd,Bor(Rd)), (Lp, µ)-optimal
greedy sequence(s) (a

N,p
)N≥1 satisfy

lim inf
N

ep
(
a(N),p, µ

)

ep,N
(
µ
) > 1.

However, no proof of this fact is known to us so far. As a consequence, owing to Theorem 2.2
(and the remark that follows), this would prove that no subsequence extracted from an (Lp, µ)-greedy
optimal sequence (a

N,p
)N≥1 can produce a (subsequence)

(
a(N

′),p)N≥1 of asymptotically Lp-optimal
N ′-quantizers for µ.

• Rate optimality of non-greedy sequences. Another natural question arises at this stage: “Are there
rate optimal sequences for the Lp-mean quantization error which are not solution to the greedy pro-
blem?”

To answer – positively – to this question, let us consider the celebrated dyadic Van der Corput
(VdC ) sequence, viewed as a quantization sequence rather than a sequence with low discrepancy. Let
us recall that the VdC sequence is defined by

∀N ≥ 1, ξN =

r∑

k=0

nk
2k+1

where N = nr2
r + · · ·+ n0, ni∈ {0, 1}, i = 1, . . . , r. (4.46)

⊲ L1-mean quantization problem. Elementary computations carried out with the L1-mean quan-
tization error modulus, not reproduced here, show that

lim inf
N

Ne1(ξ1, . . . , ξN , [0, 1]) =
1

4
= J̃1,1 and lim sup

N
Ne1(ξ1, . . . , ξN , [0, 1]) =

9

32
=

9

8
× J̃1,1

where J̃1,1 = limN e1,N
(
U([0, 1])

)
. This lim inf is achieved by the subsequence N ′ = 2n−1, n ≥ 1,

and the lim sup with the subsequence N = 3
2 .2

n = 3.2n−1. So we can answer to the first question: it
does exist rate optimal sequences for the L1-mean quantization error which are not solutions to the
greedy problem (4.42). In fact this example shows that it even exists rate optimal sequences (ξN )N≥1

containing subsequence of quantizers (ξ(N
′))N≥1 which are asymptotically L1-rate optimal quantizers:

so is the case of the Van der Corput sequence with the above subsequence N ′ = 2n−1.

On the other hand he sequence
(
a(N),1

)
N≥1

has been investigated in in [12], numerical computations
carried out in this paper still suggest that

lim inf
N

Ne1(a
(N),1, U([0, 1])) ≈ 1, 02× J̃1,1
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and
lim sup

N
Ne1(a

(N),1, U([0, 1])) ≈ 1, 09× J̃1,1

The second inequality the sequence
(
aN,1

)
N≥1

outperforms the VdC sequence from the lim sup crite-

rion since 1.09 < 1.125 = 9/8.

⊲ L2-mean quantization problem. The same phenomenons are confirmed in the quadratic case
since

lim inf
N

Ne2(ξ1, . . . , ξN , [0, 1]) =
1

2
√
3
= J̃2,1 and lim sup

N
Ne2(ξ1, . . . , ξN , [0, 1]) =

3
√
5

4
× J̃2,1

where J̃2,1 = lim
N
Ne2,N (U([0, 1])) = inf

N
Ne2,N (U([0, 1])). Using the greedy Lloyd I procedure briefly

described in the next Section 4.3, we observe numerically that

lim inf
N

Ne2(a
(N),2, U([0, 1])) ≈ 1.02732× J̃2,1 > J̃2,1

and
lim sup

N
Ne2(a

(N),2, U([0, 1])) ≈ 1.13401× J̃2,1.

As for the lim inf, one checks again that no subsequence of
(
a(N),2

)
N≥1

can be asymptotically

L2-optimal.
As for the lim sup, one checks again that the quadratic optimal greedy sequence

(
aN,2

)
N≥1

out-

performs the VdC sequence from the lim sup criterion since 1.13401 < 1.67706 = 3
√
5

4 .

Both these results and numerical experiments naturally lead to two open theoretical questions, left
for further investigations:

(1) Does it exist distributions µ (with a non-countable support) for which an Lp-optimal greedy
sequence (a

N,p
)N≥1 produces a sequence of asymptotically optimal N -quantizers(a(N),p)N≥1 i.e. such

that
ep(a(N),p,µ)

ep,N (µ) → 1 as N goes to +∞; or at least subsequences (a(N
′),p)N≥1 having this property ?

(2) Does an (Lp, µ)-optimal greedy sequence for a distribution µ on R
d produce the lowest possible

value for
lim supN N

1
d ep,N

(
a(N),p, µ

)
among all Rd-valued sequences (ξN )N≥1 ?

The answer to the first question is probably negative (based on our numerical experiments) whereas
the second one remains more uncertain.

4.3 Algorithmic aspects

We adopt notations of Sections 3. Practical computation of an optimal greedy sequence of quantizers
relies on obvious variants of the historical algorithms (CLV Q and Lloyd I) implemented recursively:
to switch from level N to N + 1, one first adds a (N + 1)th point (sampled from the support of the
distribution µ) to the N -tuple (a1, . . . , aN

) computed during the first N stages of the optimization
procedure. This makes up the starting (N + 1)-tuple for the modified CLV Q or Lloyd I procedure.
Then, one implements one of these two optimization procedures with the following restriction: all
formerly computed components ai, 1 ≤ i ≤ N , are frozen, and only the new point is moved, following
the standard rules. Thus, if implementing a greedy CLV Q algorithm, when the (N +1)th component
is the “winner” in the competition phase (i.e. this (N + 1)th component at the mth is the nearest
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neighbour to the new input stimulus, say Xm+1). For Lloyd’s I procedure, this (N + 1)th component
is the only one to be updated following (3.41), the other N components remaining frozen as well.

For more details about these greedy variants, especially Lloyd’s I, we refer to [48] where convergence
proofs are provide (compete in 1-diemsnion, partial in hgher dimension).

We reproduce in Figure 4 the graph of the N 7→ Ne2,N
(
a(N), U([0, 1])

)
where (aN )N≥1 is an

L2-optimal greedy quantization sequence for the uniform distribution U([0, 1]).
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, N = 1, . . . , 10 000, (a

N,2)N≥1 L
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1
2
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3
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4.4 Greedy quantization versus Quasi-Monte Carlo?

Of course, for every integer N ≥ 1, the weights induced by the µ-mass of the Voronoi cells associated
to a(N) define canonically a sequence of N -tuples which usually cannot be “arranged” into a sequence,
even up to a re-scaling. When considering the unit hypercube [0, 1]d as a state spaces in d dimension,
it is easy natural to compare an optimal greedy sequence with respect to the uniform distribution
U([0, 1]d) and the so-calleduniformly distributed sequences usually implemented in the Quasi-Monte
Carlo method.

Let us recall that a sequence (ξ
N
)N≥1 is uniformly distributed over [0, 1]d if the empirical measures

ν
N
=

1

N

N∑

i=1

δξi , N ≥ 1, weakly converges toward the Lebesgue measure λd on [0, 1]d. In particular this

means that, for every bounded λd-a.s. continuous function f : [0, 1]d → R,
1

N

N∑

i=1

f(ξi)→
∫

[0,1]d
fdλd =

∫

[0,1]d
f(u)du. This means that the weights associated to a uniformly distributed sequence are by

definition equal to 1
N (i.e. are equal to 1 up to the normalization factor 1/N). We will see that the

cost induced by considering these uniform weights 1
N is essentially logN . This follows from Proinov’s

Theorem (see [68]) recalled below, which evaluates precisely the rate of convergence of these sequences
on Lipschitz continuous functions.

In the Quasi-Monte Carlo (QMC) method, the performance of an N -tuple (ξ1, . . . , ξN )∈ ([0, 1]d)N

is measured by the Kolmogorov-Smirnov distance between the d-dimensional cumulative distribution
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function of its empirical measure ν
N
and the uniform distribution U([0, 1]d), namely the so-called star

discrepancy defined by

D∗
N (ξ1 . . . , ξN ) = sup

u∈[0,1]d

∣∣∣∣∣
1

N

N∑

i=1

1{ξi∈[[0,u]]} − λd
(
[[0, u]]

)
∣∣∣∣∣ (4.47)

where [[0, u]] =
∏d

ℓ=1[0, u
ℓ], u = (u1, . . . , ud)∈ [0, 1]d.

Several sequences ξ = (ξN )N≥1 have been exhibited (see [52]) whose star discrepancy at the origin
satisfy for a real constant C(ξ)∈ (0,+∞),

∀N ≥ 1, D∗
N (ξ1 . . . , ξN ) ≤ C(ξ)

(1 + logN)d

N
. (4.48)

Among them, in 1-dimension, the dyadicVdC sequence as defined by (4.46) (and its p-adic general-
izationsVdC (p), p ≥ 2) and, in d-dimension, the Halton sequences (made up withVdC (pi) sequences
where the bases pi, i = 1, . . . , d are the first d prime numbers), the Faure sequences, the Sobol’ se-
quences and the unifying framework developed by Niederreiter [52]. For definitions of these sequences
and numerical tests on various numerical integration problems we refer to [11, 52, 63, 65]. Although
such a rate has never been proved to be the lowest possible, its optimality is a commonly shared
opinion in the QMC community (however see [52] for a review of existing lower bounds).

The striking fact with these sequences satisfying (4.48), called sequences with low discrepancy, is
that, when implemented on the class of functions with finite variation on [0, 1]d, the Koksma-Hlawka
inequality implies that, for every such function f : [0, 1]d → R

∣∣∣∣∣

∫

[0,1]d
fdλd −

1

N

N∑

i=1

f(ξi)

∣∣∣∣∣ ≤ V (f)D∗
N (ξ1 . . . , ξN )

where V (f) denotes the variation of the function f . So it induces for this specific class of functions

a rate of numerical integration of order O
(
(logN)d

N

)
. In one dimension (d = 1), the above notion of

finite variation coincides with the standard definition of finite variation in real analysis. When d ≥ 2,
several definitions can be given, the most popular being the finite variation in the Hardy & Krause
sense (as described e.g. in [52]). Another – slightly less general but more elementary – being the finite
variation in the signed measure sense developed in [11] (see also [65]). Unfortunately, as the dimension
d increases, the set of functions with finite variation (in any of the above senses) becomes somewhat
“sparse” among the set of all real-valued Borel functions defined on [0, 1]d. So, one may have doubts
about this striking performance when dealing with practical simulation problems. This is confirmed
by their behaviour on the more natural space of Lipschitz continuous functions which is ruled by the
following Proinov Theorem.

Theorem 4.2. (Proinov, [68]) Assume Rd is equipped with the ℓ∞-norm |(ξ1, . . . , ξd)|∞ = max1≤i≤d |ξi|.
For every continuous function f : [0, 1]d → R, let

w(f, δ) := sup
ξ, ξ′∈[0,1]d, |ξ−ξ′|∞≤δ

|f(ξ)− f(ξ′)|, δ∈ (0, 1).

denote the related uniform continuity modulus of f (with range δ).

(a) Let (ξ1, . . . , ξN ) ∈ ([0, 1]d)N . For every continuous function f : [0, 1]d → R and every integer
N ≥ 1, ∣∣∣∣∣

∫

[0,1]d
fdλd −

1

N

N∑

i=1

f(ξi)

∣∣∣∣∣ ≤ Cdw
(
f,D∗

N
(ξ1, . . . , ξN )

1
d

)
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where Cd ∈ (0,+∞) is a universal optimal real constant only depending on d. In particular, if the

function f : [0, 1]df → R is Lipschitz continuous with coefficient [f ]Lip := supx,y∈[0,1]d
|f(x)−f(y)|
|x−y|∞ , then

∣∣∣∣∣

∫

[0,1]d
fdλd −

1

N

N∑

i=1

f(ξi)

∣∣∣∣∣ ≤ Cd [f ]LipD
∗
N
(ξ1, . . . , ξN )

1
d .

If d = 1, Cd = 1 and if d ≥ 2, Cd∈ [1, 4].

(b) In particular if (ξN )N≥1 is a sequence with low discrepancy in the above sense, then for every
integer N ≥ 1, ∣∣∣∣∣

∫

[0,1]d
fdλd −

1

N

N∑

i=1

f(ξi)

∣∣∣∣∣ ≤ Cd [f ]LipC(ξ)
1 + logN

N
1
d

.

Remark. As the function he function fξ : u 7→ min1≤i≤N |u−ξi| defined on [0, 1] is 1-Lipschitz contin-
uous and equal to 0 on {ξ1, . . . , ξN }, Proinov’s inequality in (a) implies that e1

(
ξ1, . . . , ξN , U([0, 1])

)
≤

D∗
N (ξ1, . . . , ξN ).

The above claim (b) emphasizes the fact that considering uniform weights 1
N induces the loss of

a logN factor compared to an (L1, U([0, 1]))-optimal greedy (or simply rate optimal) sequence since,
for such a greedy sequence (a

N
)N≥1, one has, for every N ≥ 1,

∣∣∣∣∣

∫

[0,1]d
fdλd −

N∑

i=1

w
(N)
i f(ai)

∣∣∣∣∣ ≤ κ(a) [f ]Lip
1

N
1
d

.

Of course the practical implementation of such greedy sequences is more demanding since one needs

to have access to the attached N -tuples of weights w(N) = (w
(N)
1 , . . . , w(N)

N
). However, by contrast,

one checks that the cubature formulas based on optimal quantization turn out to be efficient for much
lower values of N than sequences with low discrepancy (see e.g. the numerical experiments carried out
in [56] for the pricing of European derivatives).

Acknowledgement: The author thanks B. Jourdain and the referee for their careful reading of the manuscript.
All errors are mine.
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