Graph-based inter-subject pattern analysis of fMRI data

Abstract : In brain imaging, solving learning problems in multi-subjects settings is difficult because of the differences that exist across individuals. Here we introduce a novel classification framework based on group-invariant graphical representations, allowing to overcome the inter-subject variability present in functional magnetic resonance imaging (fMRI) data and to perform multivariate pattern analysis across subjects. Our contribution is twofold: first, we propose an unsupervised representation learning scheme that encodes all relevant characteristics of distributed fMRI patterns into attributed graphs; second, we introduce a custom-designed graph kernel that exploits all these characteristics and makes it possible to perform supervised learning (here, classification) directly in graph space. The well-foundedness of our technique and the robustness of the performance to the parameter setting are demonstrated through inter-subject classification experiments conducted on both artificial data and a real fMRI experiment aimed at characterizing local cortical representations. Our results show that our framework produces accurate inter-subject predictions and that it outperforms a wide range of state-of-the-art vector- and parcel-based classification methods. Moreover, the genericity of our method makes it is easily adaptable to a wide range of potential applications. The dataset used in this study and an implementation of our framework are available at http://dx.doi.org/10.6084/m9.figshare.1086317.
Liste complète des métadonnées

Littérature citée [89 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01027769
Contributeur : Sylvain Takerkart <>
Soumis le : mardi 22 juillet 2014 - 12:11:51
Dernière modification le : lundi 11 février 2019 - 11:12:03
Document(s) archivé(s) le : mardi 11 avril 2017 - 16:06:22

Fichier

takerkart_plosone2014_gsvc_hal...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Sylvain Takerkart, Guillaume Auzias, Bertrand Thirion, Liva Ralaivola. Graph-based inter-subject pattern analysis of fMRI data. PLoS ONE, Public Library of Science, 2014, 10.1371/journal.pone.0104586. 〈10.1371/journal.pone.0104586〉. 〈hal-01027769〉

Partager

Métriques

Consultations de la notice

749

Téléchargements de fichiers

193