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WHITEHEAD GROUPS OF LOOP GROUP SCHEMES OF

NULLITY ONE

V. CHERNOUSOV, P. GILLE, AND A. PIANZOLA

Abstract. We define and study the Whitehead group of isotropic (al-
most) simple simply connected group schemes over Laurent polynomial
rings k[t±1], where k is a field of characteristic 0. Our motivation for
doing this comes from infinite dimensional Lie theory.
Keywords: Reductive group scheme, Kac-Moody groups, Whitehead
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1. Introduction

Let L be an isotropic absolutely almost simple simply connected algebraic
group over a field k. Soulé and Margaux [Mg, Cor. 3.6] have given a precise
description of the Whitehead group of the constant group scheme L ×k A

1
k

over an affine line A1
k. The main purpose of this note is to replace the affine

line by the punctured affine line Spec(R) with R = k[t±1], and then study the
structure of the Whitehead group of an arbitrary simple simply connected
group schemes over R. We emphasize that our groups need not be constant,
i.e. that they need not come from k-groups by base change to R.

Recall that for such an L, the Whitehead group W (k,L) is the quotient
W (k,L) = L(k)/L(k)+ where L(k)+ stands for the subgroup of L(k) gener-
ated by the k-points of the unipotent radicals Ru(Q)(k) and Ru(Q

−)(k) of
two opposite proper parabolic subgroups Q and Q− of L. It is worth notic-
ing that L(k)+ is automatically a normal subgroup of L(k), hence W (k,L)
carries a natural group structure. Furthermore, it is known that W (k,L)
does not depend on the choice of a pair of opposite parabolic subgroups Q
and Q−.

Our motivation for looking at this problem for group schemes over R
comes from infinite dimensional Lie theory (where groups and algebras over
Laurent polynomial rings play a prominent role. See [CGP1], [CGP2], [GP1]
and [GP2] for details). Recall that for proving conjugacy of Cartan subal-
gebras in extended affine Lie algebras (which are infinite dimensional Lie

Date: July 22, 2014.
V. Chernousov was partially supported by the Canada Research Chairs Program and

an NSERC research grant.
P. Gille was supported by the Romanian IDEI project PCE−2012-4-364.
A. Pianzola wishes to thank NSERC and CONICET for their continuous support.

1



2 V. CHERNOUSOV, P. GILLE, AND A. PIANZOLA

algebras over a ground field k) it is important to describe their automor-
phism groups.

Given an extended affine Lie algebra E we can consider its corresponding

centreless core Ẽ (from which E can be reconstructed). We can view Ẽ as
either a Lie algebra (infinite dimensional) over k or over its centroid R. It

is known that Ẽ is a “simple” Lie algebra over R1 and that R is isomorphic
to a Laurent polynomial ring in finitely many variables. One can prove that

there exists a natural homomorphism Aut(E) → Autk(Ẽ) and one would

like to show that it is surjective. The group Autk(Ẽ) is generated by its

subgroups AutR(Ẽ) and Autk(R). The connected component of the group

AutR(Ẽ) is a simple adjoint group scheme G over R. Elements of unipotent
radicals of parabolic subgroups of G can be written using exponential map
and the same exponential map provides us with their liftings to Aut(E).
This is why it is important to understand how far the subgroup of G(R)
generated by unipont elements is from the group G(R) itself.

The concept of Whitehead group for arbitrary (isotropic simple simply
connected) group schemes has not been defined in the literature yet. Defin-
ing this object (under certain assumptions) is our first task. Consider a
connected ring R and a simple simply connected group scheme G over R.2

We will throughout assume that G is isotropic, i.e. that it has a closed sub-
group isomorphic to the multiplicative group Gm,R over R, or equivalently
it has a proper parabolic subgroup.

We admit that, even under these assumptions, it is not clear a priori what
the “correct” definition of Whitehead groups should be. Mimicking the field
case, we could take a pair (P,P−) of opposite proper parabolic subgroup
schemes of G and define WP(R,G) as before, i.e. as the set of left (right)
cosets of G(R) modulo the “elementary” subgroup EP(R) of G(R) generated
by Ru(P)(R) and Ru(P

−)(R). Note that WP(R,G) depends only on P, but
not on the choice of an opposite parabolic subgroup P− [PS, §1], and that
WP(R,G) has no group structure in general case [Su].

Since we wish to work with a normal subgroup of G(R), we will consider
the normal subgroup Est

P (R) of G(R) generated by EP(R) and we call the
quotient group

W st
P (R,G) = G(R)/Est

P (R)

the stable Whitehead group of G relative to P.
If G contains a split torus G2

m,R = Gm,R×Gm,R or, more generally, if the

fibers G ×R (R/m) are of relative (split) rank ≥ 2 for all maximal ideals m
of R it is known that EP(R) = Est

P (R) and that this normal subgroup does

1This is true except for a well-understood family of absolute type A given by quantum
tori with “generic” entries.

2We remind the reader that this means that, for all x ∈ Spec(R), the geometric fiber Gx

of G is an (almost) simple and simply connected algebraic group over the corresponding

algebraic closure of residue field k(x). Because the base is assumed to be connected, the
type of this simply connected group is unique (i.e. independent of x).



3

not depend on the choice of P (Petrov-Stavrova [PS, Theorem 1]). Hence
in this case the stable Whitehead group is an invariant of G.

We assume henceforth that k is a field of characteristic 0, and let R =
k[t±1] be the corresponding ring of Laurent polynomials. Let G be a split
almost simple simply connected algebraic group over k and let G be a twisted
form of the R-group G×k R, namely G is a group scheme over R such that
G ×R S ≃ G ×k S for some faithfully flat and finitely presented extension
S/R. Thus G corresponds to a torsor over R under Aut(G). Since Aut(G)
is smooth, we may assume that S/R is étale.

Recall that according to [GP2, Theorem 5.1] and (ibid, Cor. 6.3) any
such G is loop reductive. For the definitions of loop cocycles, loop group
schemes and their properties we refer to § 2. Here we recall only that G can
be realized as a twist of G ×k R by a loop cocycle η and that η gives rise
to a connected reductive algebraic group H over k and a closed immersion
H ×k R →֒ G. In many cases one can think of H as being a “maximal”
constant subgroup scheme of G.

We can now state our main result.

1.1. Theorem. (1) The group G(R) is generated by H(k) and Est
P (R).

(2) Assume that G is quasi-split. Then W st
P (R,G) = 1.

The interest of the result is for twisted non-split group schemes. Indeed
the split case follows from a general result of Steinberg on Chevalley groups
over euclidean rings [St1, Cor. 3, p. 115].

Under the conditions of the Petrov–Stavrova’s result quoted above we
have a stronger result.

1.2. Corollary. Assume that for each closed point s of Spec(R), the k(s)–
algebraic group G×R k(s) is of relative rank ≥ 2.

(i) G(R) = H(k) ·EP(R);

(ii) If G is quasi-split, then EP(R) = G(R).

(iii) If k is algebraically closed, then EP(R) = G(R).

Note that if k is algebraically closed, it is known [P2] that G is quasi-
split. Assertion (iii) is then a consequence of (ii). In turn, assertion (ii)
is a consequence of Theorem 1.1, part (2) and the above quoted result of
Petrov–Stavrova asserting that EP(R) = Est

P (R).
For k non algebraically closed, our result stated in Theorem 1.1 is not

enough to compute precisely the stable Whitehead group W st
P (R,G) in gen-

eral, but we have some conjectures as to its nature. Let R = k[t±1].

1.3. Conjecture. (1) EP(R) = Est
P (R);

(2) The natural maps

W st
P (R,G)→W (K,G ×R K)→W (F,G×R F )

are group isomorphisms where K = k(t) and F = k((t)) is the completion
of K at zero.
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(3) The map H(k)→ G(R) induces an isomorphism H(k)/R ≃W st
P (R,G).

Assertion (1) can be rephrased by saying that EP(R) is a normal subgroup
of G(R). In assertion (3), R stands for the R-equivalence relation for the
k–group H.

We can see then the quasi-split case as providing some evidence for the
conjecture (see Theorem 6.3).

Notation and conventions. Throughout this work k denotes a field of
characteristic 0 and k = ks an algebraic (separable ) closure of k. We also set
R = k[t±1], the ring of Laurent polynomials attached to k, and let K = k(t)
denote its fraction field.

By a k–group we will simply mean a group scheme over Spec(k). Similarly
for an R–group.

We will use bold roman characters, e.g. G, g, to denote k–groups and
their Lie algebras. The notation G and g will be reserved for R–groups
(which are usually not obtained from a k–group by base change) and their
Lie algebras. The (relative) rank of a reductive R-group G is the maximum
of the ranks of its split subtori T ⊂ G

2. The loop setting

For the reader’s convenience we recall the definition of loop group schemes.
Throughout this section X will denote a connected noetherian scheme over
k, and G a k–group which is locally of finite presentation.3

2.1. The algebraic fundamental group. Fix a geometric point a of X
i.e. a morphism a : Spec(Ω)→ X where Ω is an algebraically closed field.

Let Xfet be the category of finite étale covers of X, and F the covariant
functor from Xfet to the category of finite sets given by

F (X′) = {geometric points of X′ above a).

That is, F (X′) consists of all morphisms a′ : Spec (Ω) → X′ for which the
diagram

X′

��
Spec (Ω)

a′
99
t
t
t
t
t
t
t
t
t
t

a // X

commutes. The group of automorphisms of the functor F is called the
algebraic fundamental group of X at a, and is denoted by π1(X, a). The
functor F is pro-representable: there exists a directed set I, objects (Xi)i∈I
of Xfet, surjective morphisms ϕij ∈ HomX(Xj ,Xi) for i ≤ j and geometric
points ai ∈ F (Xi) such that ai = ϕij ◦ aj, and the canonical map f :
lim−→ HomX(Xi,X

′)→ F (X′) is bijective.

3The case most relevant to our work is that of the group of automorphisms of a reductive
k–group.



5

Since the Xi are finite and étale over X the morphisms ϕij are affine. Thus
the inverse limit

Xsc = lim←− Xi

exists in the category of schemes over X [EGA4, § 8.2]. For any scheme X′

over X we thus have a canonical map

HomPro−X(X
sc,X′)

def
= lim−→ HomX(Xi,X

′) ≃ F (X′)

obtained by considering the canonical morphisms ϕi : X
sc → Xi.

In computing Xsc = lim←−Xi we may replace (Xi)i∈I by any cofinal family.

This allows us to assume that the Xi are (connected) Galois, i.e. the Xi are
connected and the (left) action of AutX(Xi) on F (Xi) is transitive. We then
have

F (Xi) ≃ HomPro−X(X
sc,Xi) ≃ HomX(Xi,Xi) = AutX(Xi).

Thus π1(X, a) can be identified with the group lim←−AutX(Xi)
opp. Each group

AutX(Xi) is finite, and this endows π1(X, a) with the structure of a profinite
topological group.

Suppose now that our X is a geometrically connected k–scheme. We will
denote X ×k k by X. Fix a geometric point a : Spec(k) → X. Let a (resp.
b) be the geometric point of X [resp. Spec(k)] given by the composite maps

a : Spec(k)
a→ X → X [resp. b : Spec(k)

a→ X → Spec(k)]. Then by [SGA1,
Théorème IX.6.1]

π1
(
Spec(k), b

)
≃ Gal(k) := Gal(k/k)

and the sequence

(2.1.1) 1→ π1(X, a)→ π1(X, a)→ Gal(k)→ 1

is exact.

2.2. Example. Assume that X = Spec (R) where R = k[t±1] is the Laurent
polynomial ring with coefficients in k. The simply connected cover Rsc of R
is

R∞ = lim−→Rm

with Rm = ks[t
± 1

m ]. The “evaluation at 1” provides a geometric point that
we denote by a. The algebraic fundamental group is best described as

(2.2.1) π1(X, a) = Ẑ(1)⋊ Gal (k).

where Ẑ(1) denotes the abstract group lim←−m µµµm(k) equipped with the nat-

ural action of the absolute Galois group Gal(k).
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2.3. Loop torsors and groups. Because of the universal nature of Xsc we
have a natural group homomorphism

(2.3.1) G(k)−→G(Xsc).

The group π1(X, a) acts on k, hence on G(k), via the group homomor-
phism π1(X, a) → Gal (k). This action is continuous, and together with
(2.3.1) yields a map

H1
(
π1(X, a),G(k)

)
→ H1

(
π1(X, a),G(Xsc)

)
.

2.4. Definition. A torsor E over X under G is called a loop torsor if its
isomorphism class [E] in H1

ét(X,G) belongs to the image of the composite
map

H1
(
π1(X, a),G(k)

)
→ H1

(
π1(X, a),G(Xsc)

)
⊂ H1

ét(X,G).

We will denote byH1
loop(X,G) the subset ofH1

ét(X,G) consisting of classes

of loop torsors. They are given by (continuous) cocycles in the image of the
natural map Z1

(
π1(X, a),G(k)

)
→ Z1

ét(X,G), which we call loop cocycles.

2.5. Geometric and arithmetic part of a loop cocycle. We assume
henceforth that our geometric point a lies above a k-rational point of X.
This provides (see §3.3 of [GP2] for details) an action of Gal (k) on π1(X, a)
and natural splitting of the exact sequence (2.1.1). Thus

π1(X, a) = π1(X, a)⋊ Gal (k).

By means of this decomposition we can think of loop cocycles as being
comprised of a geometric and an arithmetic part, as we now explain.

Let η ∈ Z1
(
π1(X, a),G(k)

)
. The restriction η|Gal(k)

is called the arithmetic

part of η and it is denoted by ηar. It is easily seen that ηar is in fact a
cocycle in Z1

(
Gal(k),G(k)

)
. If η is fixed in our discussion, we will at times

denote the cocycle ηar by the more traditional notation z. In particular, for
s ∈ Gal(k) we write zs instead of ηars .

Next we consider the restriction of η to π1(X, a) that we denote by ηgeo

and called the geometric part of η.
We thus have a map

Θ : Z1
(
π1(X, a),G(k)

)
−−−−→ Z1

(
Gal(k),G(k)

)
×Hom

(
π1(X, a),G(k)

)

η 7→
(

ηar , ηgeo
)

The group Gal(k) acts on π1(X, a) by conjugation. On G(k), the Galois
group Gal(k) acts on two different ways. There is the natural action arising
for the action of Gal(k) on k, and there is also the twisted action given by
the cocycle ηar = z. Following standard practice to view the abstract group
G(k) as a Gal(k)–module with the twisted action by z we write zG(k).

2.6. Lemma. The map Θ described above yields a bijection between
Z1

(
π1(X, a),G(k)

)
and couples (z, ηgeo) with z ∈ Z1

(
Gal(k),G(k)

)
and

ηgeo ∈ HomGal(k)

(
π1(X, a), zG(k)

)
.
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Proof. See Lemma 3.7 of [GP2]. �

2.7. Remark. Assume that R = k[t±1] and X = Spec(R). It is easy to verify
that ηgeo arises from a unique k–group homomorphism

∞µµµ = lim←−µµµm → zG

2.8. Loop reductive groups. Let H be a reductive group scheme over X.
Since X is connected, for all x ∈ X the geometric fibers Hx are reductive
group schemes of the same “type” [SGA3, XXII, 2.3]. By Demazure’s theo-
rem there exists a unique split reductive group H0 over k such that H is a
twisted form (in the étale topology of X) of H0 = H0 ×k X. We will call H0

the Chevalley k–form of H. The X–group H corresponds to a torsor E over
X under the group scheme Aut(H0), namely E = Isomgr(H0,H). We recall
that Aut(H0) is representable by a smooth and separated group scheme
over X by [SGA3, XXII, 2.3]. It is well-known that H is then the contracted

product E ∧Aut(H0) H0 (see [DG] III §4 no3 for details).

2.9. Definition. We say that a group scheme H over X is loop reductive if
it is reductive and if E is a loop torsor.

2.10. Example. Let R = k[t±1]. According to [GP2] every reductive group
scheme G over R is loop reductive. Thus G is isomorphic to the twist

η(G×k R) of its Chevalley form G by a cocycle

η : π1(R)→ Aut(G)(Rsc)

which takes values in the subgroup Aut(G)(ks) of Aut(G)(Rsc).

3. Preliminaries

We keep the notation of the previous section. In particular, R = k[t±1] is
the ring of Laurent polynomials over a field k and G is a twisted R–form of
an almost simple split simply connected group G by a loop cocycle η.

3.1. The subgroup H. We fix a Killing couple (B,T) of G and denote
by ∆ the associated Dynkin diagram. For each subset I of ∆, we let TI =( ⋂
α∈I

ker(α)
)0

, LI = ZG(TI) and we denote by PI and P−
I the standard

parabolic subgroups attached to I.
Let It be the Tits index of G. By the Witt-Tits decomposition [GP2,

§ 8.2], we can assume additionally that η takes value in

AutIt(G)(ks) := Aut(G,PIt ,LIt)(ks).

Then the twisted subgroup scheme P = η(PIt ×k R) is a minimal parabolic
subgroup of G and we may consider the above defined subgroup EP(R) of
G(R).

Furthermore, since loop cocycles define “toral classes” [GP2, §6.1], we can
also assume that η takes values in

AutIt(G,T)(ks) := Aut(G,PIt ,LIt,T)(ks).
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Any such cocycle factorizes at finite level: there exists an integer m ≥ 1, a

finite Galois extension k̃ of k containing µµµm(ks) such that η is represented
by a cocycle

Γ→ AutIt(G,T)(k̃),

still denoted by η, where

Γ := Gal(k̃[t±
1
m ]/R) = µµµm(k̃)⋊Gal(k̃/k).

Let Y be a quasi-projective k–variety equipped with a left action of the
k–group AutIt(G,T). Then we can twist the k-variety Y by ηar [Se1, I.5.3]
and the R-scheme YR = Y×k R by η [M, I.5.3] The composition of natural
maps

ηgeo : µµµm −→ AutIt(ηar G, ηarT) −→ Aut(ηarY)

gives a natural action of µµµm on the variety ηarY and we denote by (ηarY)η
geo

the corresponding subvariety consisting of fixed points. It follows immedi-
ately from the twisting procedure that we now have a natural closed immer-
sion

j : (ηarY)η
geo ×k R →֒ η(YR).

This observation applied to Y = G gives rise to the k-algebraic group
H = (ηarG)η

geo

and the closed immersion j : H ×k R →֒ G. Note that
according to Steinberg’s connectedness theorem [St2, Theorem 8.1], H is a
(connected) reductive group. Thus we have natural embeddings H(k) →֒
H(R) →֒ G(R).

3.2. Example. Assume that G is a quasi-split form of G = SLn+1 which
does not come from k. The corresponding twisting cocycle η is determined
by the following data: a quadratic étale extension S = R(

√
u), u ∈ R×, of

R over which G becomes split, and an outer automorphism σ of SLn+1 of
order 2. Since G is not obtained from a k-group by base change we have

u = at for some a ∈ k×, hence ηar = 1. It follows that H = SL
〈σ〉
n+1.

We now note that the twisting data is determined uniquely (up to equiva-
lence) by the quadratic extension S/R. Indeed, any other choice of an outer
automorphism of SLn+1 of order 2 gives rise to a loop cocycle η′ which is
equivalent to η (because any two quasi-split R-forms of SLn+1 which are
split over S are isomorphic over R (see [SGA3, XXIV 3.11])).

It is known that if n+ 1 is even, say 2l, then over the algebraic closure k
there are two conjugacy classes of outer automorphisms of order two. They
are of the form x → (x−1)τ , x ∈ SLn+1 where τ is either a symplectic
involution of the matrix algebra Mn+1 or an orthogonal involution. In the
first case H ≃ Spl and in the second case H ≃ SOn+1. If n+ 1 is odd then
τ is automatically an orthogonal involution and hence H ≃ SOn+1. Note
that in the orthogonal case we may choose τ to be split, hence H = SOn+1

is also split.
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3.3. Parabolic subgroups of G. We now come to the description of par-
abolic subgroups of our R–group G. Recall that by our construction P =

η(PIt ×k R) is a minimal parabolic subgroup of G. The k–group

AutIt(G,T) = Aut(G,PIt ,LIt,T)

is a subgroup of Aut(G,T) and hence we have a natural mapping

AutIt(G,T)→ Aut(∆).

Pushing the 1-cocycle η by this map, we get a homomorphism

η∆ : Γ→ Aut(∆)

called sometimes the “star action”. As in the field case, the parabolic sub-
groups of G containing P are of the form η(PI ×k R) for I running over the
subsets of ∆ containing It and stable under the action η∆. These are called
the “standard parabolic subgroups” of G.

3.4. Proposition. Let Q be a parabolic subgroup of G. Then Q is G(R)–
conjugate to a unique standard parabolic subgroup of G.

Proof. The unicity is clear since the standard parabolic subgroups provide
distinct conjugacy classes.

Assume first that the parabolic subgroup Q is minimal and choose a Levi
R–subgroup M of Q (its existence is granted by [SGA3, XXVI.2.3]). Then
M is a loop reductive group scheme by [GP2, Theorem 5.1]. Furthermore
Theorem 15.1 of [CGP2] asserts that the couple (Q,M) is G(R)-conjugate
to (P = η(PIt ×k R), η(LIt ×k R)).

In the general case, let Qmin ⊂ Q be a minimal parabolic subgroup of
G. By the preceding case, we can assume that Qmin = P, so that Q is a
standard parabolic subgroup of G. �

3.5. Corollary. G(K) = P(K)G(R).

Proof. The set (G/P)(R) parametrizes R–parabolic subgroups of G which
are locally conjugate for the étale topology to P [SGA3, XXVI.3.20]. Propo-
sition 3.4 says that G(R) acts transitively on (G/P)(R), hence we have a
natural bijection

G(R)/P(R)
∼−→ (G/P)(R).

Similarly, by a theorem of Borel-Tits [BT65, th. 4.13] we have

G(K)/P(K)
∼−→ (G/P)(K).

But dim(R) = 1 and G/P is a projective R–scheme, hence (G/P)(R) =
(G/P)(K). This implies that the natural embedding G(R) →֒ G(K) induces
a bijection

G(R)/P(R)
∼−→ G(K)/P(K)

and the result follows. �
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3.6. Subgroups attached to roots. By our construction η(TIt ×k R) is
the centre of the Levi subgroup η(LIt ×k R) of the minimal parabolic sub-

group P of G. Let S be the maximal split subtorus of η(TIt ×k R) and Ŝ be
its character group. The torus S is also maximal split in G, since otherwise
P would not be a minimal parabolic subgroup of G. Note that SF is still
maximal split over F [GP2, Cor. 7.4.3]. The torus S acts by the adjoint
representation on g = Lie(G)(R) and we have the decomposition [SGA3,
XXIV.6]

g = g0 ⊕
⊕

α∈Ψ(G,S)

gα

where Ψ(G,S) ⊂ Ŝ is the set of roots of G with respect to S. This de-
composition can be extended to F and since SF is maximal split over F ,
Ψ(G,S) is nothing but the relative root system of GF with respect to SF .

The minimal parabolic subgroupP of G defines a basis ∆0 of the root sys-
tem Ψ(G,S) and an order on Ψ(G,S). We denote by W = NG(S)/ZG(S)
the relative Weyl group. It is a finite constant R–group, say W ≃ WR, and
for each root α ∈ Ψ(G,S) we denote by wα ∈ W = W(R) the associated
reflection.

For each simple root α ∈ ∆0 we denote by Pα = P+
α (resp. P−

α ) the
parabolic subgroup scheme [SGA3, XXVI.6.1] of G such that its Lie algebra
Lie(P+

α )(R) (resp. Lie(P−
α )(R)) is generated by g0, gβ for all positive (resp.

negative) roots β and all β ∈ Ψ(G,S)∩Q<0 ·α (resp. β ∈ Ψ(G,S)∩Q>0 ·α).
These two parabolic subgroups are opposite and share the common Levi
subgroup Zα = Pα ∩P−

α . We denote by Gα = D(Zα) the derived subgroup
of Zα [SGA3, XXII.6]. It is well-known that Gα is a semisimple R–group
scheme.

3.7. Lemma. (1) Sα = (S ∩Gα)
0 is a maximal split torus of the R–group

Gα. Furthermore, Sα is of rank one.

(2) If G is simply connected (resp. quasi-split), so is Gα.

Proof. (1) The F–group Gα,F is of relative rank one and Sα,F is its maximal
split subtorus over F . A fortiori, Sα is a maximal split torus of Gα of rank
1.

(2) The fact that the derived group of a Levi subgroup of a parabolic sub-
group scheme is simply connected can be checked on the geometric fibers.
The problem is thus reduced to the case when the base scheme is (the spec-
trum of) an algebraically closed field. We can now apply [SS, Cor. 5.8].

Next we assume that G is quasi-split. Then P is a Borel subgroup of
G. Since Zα is a Levi subgroup of Pα, the intersection Zα ∩ P is a Borel
subgroup of Zα [SGA3, XXVI.1.20]. Thus Zα is quasi-split and so is its
derived group Gα. �
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4. Proof of Theorem 1.1 (1)

Recall that G is assumed to be almost simple simply connected. The proof
that we provide is a refinement of the methods used by Soulé and Margaux.
It is based on a delicate analysis of group actions on Bruhat-Tits euclidean
(affine) buildings. At first glance, since Spec(k[t±1]) is obtained from the
projective line P1 by deleting 0 and ∞, it would seem more natural to look
at the action of G(R) on the twin building B(Gk((t))) × B(Gk((t−1))) as it
was done in [CGP1] and [GP2, §5.1]. This action is indeed well-understood
in the split case (Abramenko [A]) but, as it turns out, it would appear
to be ill-suited to deal with the twisted case. We work then separately
with the building at infinity B− = B(Gk((t−1))) and the building at zero
B+ = B(Gk((t))).

4.1. Buildings. Let Õ− = k̃[[t−
1
m ]], F̃− = k̃((t−

1
m )) and F− = k((t−1)) We

denote by B̃− the Bruhat–Tits euclidean building of G
F̃−

= G×k F̃− [BT2].

It is equipped with a natural action of

Γ = Gal
(
k̃[t±

1
m ]/k[t±1]) = Gal

(
F̃−/F−

)

and Aut(G(F̃−)). This allows us to consider the twisted action of Γ on B̃−
given by

γ ⋆ x = η(γ) · γ(x) γ ∈ Γ, x ∈ B̃−.
There exists a natural embedding B− →֒ B̃− and the Bruhat-Tits-Rousseau’s

descent theorem [Ro, V.1] states that B− ∼−→ (B̃−)⋆Γ where the notation ⋆Γ
means that we take the fixed points with respect to the twisted action of Γ.

The hyperspecial group G(Õ−) of G(F̃−) fixes a unique point φ̃− of

B̃− [BT1, §9.1.9.c]. This point φ̃− is ⋆Γ–stable because η takes values in
Aut

(
G(ks)

)
, hence it descends to a point φ− of B−.

Similarly, we set Õ+ = k̃[[t
1
m ]], F̃+ = k̃((t

1
m )) and the corresponding

buildings (resp. origins) will be denoted B+ and B̃+ (resp. φ+ and φ̃+).

The first step of the proof of Theorem 1.1 (1) is to see why it suffices to
deal with points of G(R) having only a pole at infinity.

4.2. Reduction to a single pole. We shall use here the preliminaries
considered in § 3.1. Consider the twisted action of Γ on the abstract groups

G(k̃[t
1
m ]) and G(k̃) by η. Since

G(k̃) ⊂ G(k̃[t
1
m ]) ⊂ G(k̃[t±

1
m ])

it follows that

H(k) = H0(Γ, ηG(k̃)) ⊂ H0
(
Γ, ηG(k̃[t

1
m ])

)
⊂ H0

(
Γ, ηG(k̃[t±

1
m ])

)
= G(R).

Clearly, the evaluation of t
1
m at 0

ev0 : G(k̃[t
1
m ])→ G(k̃)
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is a Γ-equivariant map (for the twisted action). It induces a map

H0
(
Γ, ηG(k̃[t

1
m ])

)
→ H0(Γ, ηG(k̃)) = H(k).

The composition of the natural mappings

H(k) →֒ H0
(
Γ, ηG(k̃[t

1
m ])

)
−→ H0(Γ, ηG(k̃)) = H(k)

is the identity map, hence

H0
(
Γ, ηG(k̃[t

1
m ])

)
= Θ⋊H(k),

where

Θ = Ker
(
H0

(
Γ, ηG(k̃[t

1
m ])

)
→ H(k)

)

which can also be thought of as H0(Γ, ηΘ̃) with

Θ̃ = Ker
(
G(k̃[t

1
m ])

ev0−→ G(k̃)
)
.

4.3. Lemma. (1) G
(
k((t))

)+
is an open (in the t-adic topology) normal

subgroup of G
(
k((t))

)
.

(2) G
(
k((t))

)
= H(k) ·G

(
k((t))

)+
.

(3) G(R) = H(k)ΘEP(R).

Proof. (1) The group G
(
k((t))

)+
is normal non-central in G

(
k((t))

)
, it is

then open by a result of Riehm, see [PR, §3.1, th. 3]. The above reference
is for p-adic fields but it also works here since the implicit function theorem
holds [Se2, LG III, §10.2].
(2) Let H be the canonical Bruhat-Tits k[[t]]-group scheme associated to φ+

[BT2]. Its generic fiber is Gk((t)) = η(G×k k((t))) and we have

H(k[[t]]) = StabG(k((t)))(φ+).

By Galois descent, this is also

StabG(k((t)))(φ+) = Stab
G(k̃((t

1
m )))

(φ̃+)∗
Γ = G

(
k̃[[t

1
m ]]

)
∗Γ.

In particular, arguing as above we obtain that the specialization map at

t
1
m = 0 defines a surjective map ev0 : H(k[[t]]) → H(k) and the decomposi-
tion

(4.3.1) H(k[[t]]) = J ⋊H(k)

where J is the kernel of ev0.

4.4. Claim. G
(
k((t))

)
= H(k[[t]]) ·G

(
k((t))

)+
.

We need to recall the construction of H done in [BT2, §5] which starts
with the construction of a smooth k[[t]]-group scheme Z with generic fiber
Z = ZGk((t))

(
Sk((t))

)
[BT2, §5.2.1] such that

Z
(
k[[t]]

)
=

{
g ∈ Z

(
k((t))

)
| χ(g) ∈ k[[t]]× ∀χ ∈ Homk((t))−gp(Z,Gm,k((t))

}
.
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The group Z is a k[[t]]-subgroup scheme of H and is connected (ibid, 5.2.3
and 5.2.5). Hence Z

(
k[[t]]

)
is a subgroup of H(k[[t]]), and it is enough to

show that Z
(
k[[t]]

)
generates the quotient G

(
k((t))

)
/G

(
k((t))

)+
.

Let C+ be a chamber of the apartment A(Sk((t))) associated to the max-
imal split torus Sk((t)) of Gk((t)). We know that C+ is a fundamental sim-

plicial domain for the action of G
(
k((t))

)
on B+ ([BT2, prop. 5.2.12] and

[BT1, cor. 2.1.6]), so that G
(
k((t))

)
is generated by the Stab

G
(
k((t))

)(x) for
x running over the points of the closure of C+ according to [So1].

Each point x ∈ A(Sk((t))) defines a canonical k[[t]]-group scheme Gx

such that Gx

(
k[[t]]

)
= Stab

G
(
k((t))

)(x). Since Gk((t)) is simply connected,

we know that Gx is connected [BT2, 5.2.9], hence the group Gx

(
k[[t]]

)
is

generated by its subgroup Z
(
k[[t]]

)
and Gx

(
k[[t]]

)
∩G

(
k((t))

)+
(ibid, 5.2.4).

In other words, the images of Gx

(
k[[t]]

)
and Z

(
k[[t]]

)
coincide in the quotient

G
(
k((t))

)
/G

(
k((t))

)+
. Given that the above holds for all x belonging to the

closure of C+, we get that Z
(
k[[t]]

)
generates G

(
k((t))

)
/G

(
k((t))

)+
, whence

the Claim.

It remains then to show that the image of the subgroup J of H(k[[t]]) in
W

(
k((t)),G

)
is also trivial. This group had been looked at in great detail

in the appendix of [CGP2] where we called it the pro-unipotent radical of
the group H(k[[t]]). We showed that it is an open subgroup of H(k[[t]]) and
then also of G(k((t))). By means of the congruence filtration, it admits a
fundamental system of neighbourhoods (Jn) where the Jn’s are closed and
open normal subgroups such that Jn/Jn+1 is a finite dimensional k-vector
space for each n ≥ 0.

By Part (1), there exists an integer N ≥ 1 such that JN ⊂ G
(
k((t))

)+
.

On the other hand there exists an integer d such that each element of
W

(
k((t)),Gk((t))

)
≃ G

(
k((t))

)
/R is of exponent dividing d [G, Rem. 7.6].

Here G
(
k((t))

)
/R is the group of R-equivalence classes. Arguing by induc-

tion on n we easily get that Jd maps onto J/Jn where Jd stands for the
(normal) subgroup of J generated by the d-powers. Therefore the image of

J = Jd · JN in W
(
k((t)),Gk((t))

)
is trivial. In other words J ⊂ G

(
k((t))

)+
,

hence decomposition (4.3.1) yields

G
(
k((t))

)
= H(k) ·G

(
k((t))

)+
.

(3) Let g ∈ G(R). Viewing g as an element of G(k((t))) and multiplying
it on the left by a suitable element of H(k), we may assume without loss

of generality that g ∈ G
(
k((t))

)+
. Let u1, . . . , un ∈ Ru(P)

(
k((t))

)
and

v1, . . . , vn ∈ Ru(P
−)(k((t))) be such that g = u1 v1 u2 v2 . . . un vn. Recall

that the group

H(k[[t]]) = H0
(
Γ, ηG(k̃[[t

1
m ]])

)



14 V. CHERNOUSOV, P. GILLE, AND A. PIANZOLA

is an open (in the analytic topology) subgroup of

H0
(
Γ, ηG(k̃((t

1
m )))

)
= G(k((t))).

Since the unipotent radicals Ru(P) and Ru(P
−) of P and P− are split

Ru(P)(R) and Ru(P
−)(R) are dense in Ru(P)(k((t))) and Ru(P

−)(k((t)))
respectively. Choose

u′1, . . . , u
′
n ∈ Ru(P)(R) and v′1, . . . , v

′
n ∈ Ru(P

−)(R)

such that

g0 := (u1 v1 u2 v2 . . . un vn)(u
′
1 v

′
1 u

′
2 v

′
2 . . . u′n v

′
n)

−1 ∈ H0
(
Γ, ηG(k̃[[t

1
m ]])

)
.

Then g = g0 u
′
1 v

′
1 u

′
2 v

′
2 . . . u′n v

′
n. Evidently

g0 ∈ H0
(
Γ, ηG(k̃[t

1
m ])

)
= Θ⋊H(k) = H(k) ·Θ

(because g and all u′i, v
′
i are in G(R)). Thus g ∈ H(k) ·Θ · EP(R). �

4.5. Buildings and fundamental domains. We work in this subsection

with the buildings B̃− and B− at infinity.

Let Ã− = φ̃− + (T̂)0 ⊗Z R be the apartment of B̃− associated to the

maximal split torus T ×k F̃− of G ×k F̃−. The canonical pairing 〈 , 〉 :

(T̂)0 × T̂→ Z extends to

〈 , 〉 : ((T̂)0 ⊗Z R)× (T̂⊗Z R)→ R.

We then define the sector (quartier)

Q̃ := φ̃− + D̃ where D̃ :=
{
v ∈ T̂

0 ⊗Z R | 〈v, b〉 ≥ 0 ∀ b ∈ ∆
}
.

The following is a quite formal consequence of Soulé’s theorem [So2].

4.6. Lemma. (a) For each point x ∈ Q̃, the decomposition G
(
k̃[t

1
m ]

)
=

Θ̃⋊G(k̃) induces a decomposition

StabΘ̃(x)⋊ Stab
G(k̃)

(x) ≃ Stab
G

(
k̃[t

1
m ]
)(x)

(b) The set G(k̃) · Q̃ is a simplicial fundamental domain for the action of

the group Θ̃ on B̃−.

Proof. (a) We need to show that the natural injective map

StabΘ̃(x)⋊ Stab
G(k̃)

(x)→ Stab
G

(
k̃[t

1
m ]
)(x)

is onto. If x = φ̃−, we have seen that

G(k̃) = Stab
G(k̃)

(x) = Stab
G

(
k̃[t

1
m ]
)(x),
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so we may assume that x 6= φ̃−. We recall that Stab
G

(
k̃[t

1
m ]
)(x) is also

the isotropy (or fixator) of the half line [x[ in Q̃ of direction
−−→
φ̃−x. Write

x = φ̃− + d with d ∈ D̃ and put

Ix =
{
α ∈ ∆ | 〈 d, α 〉 = 0

}
.

From [Mg, Prop. 2.5.(3)], we know that

Fix
G

(
k̃[t

1
m ]
)([x[) ⊂ UIx

(
k̃[t

1
m ]

)
⋊ LIx(k̃).

Since LIx(k̃) ⊂ Fix
G

(
k̃[t

1
m ]
)([x[) (ibid, lemma 2.3.(1)), it suffices to look at

the group Stab
UIx

(
k̃[t

1
m ]
)(x).

4.7. Claim. UIx(k̃) fixes x.

The claim yields that Stab
UIx

(
k̃[t

1
m ]
)(x) is generated by Stab

UIx (k̃)
(x)

and Stab
Θ̃
(x) ∩UIx

(
k̃[t

1
m ]

)
. Let us prove the Claim. The group UIx(k̃) is

generated by the Uα(k̃) with α ∈ ∆ satisfying 〈 d, α 〉 = 0. But Uα(k̃) fixes
[x[ for each such α (subgroups of type (II) in [Mg, page 396]) whence the
Claim.

(b) Soulé’s theorem states that Q̃ is a simplicial fundamental domain for the

action of the group G(k̃[t
1
m ]) on B̃−. In particular, we have

B̃− = G(k̃[t
1
m ]) · Q̃ =

(
Θ̃⋊G(k̃)

)
· Q̃ = Θ̃ · (G(k̃) · Q̃).

It remains to show that two points of G(k̃) · Q̃ which are in the same orbit

of Θ̃ are necessary equal. Let y1 = g1 x1, y2 = g2 x2 ∈ G(k̃) · Q̃ be such

that gg1x1 = g2x2 with g ∈ Θ̃. By Soulé’s theorem we have x1 = x2. Let
x = x1 = x2. Then

g−1
2 gg1 = (g−1

2 gg2)(g
−1
2 g1) ∈ Stab

G(k̃[t
1
m ])

(x).

Note that Θ̃ is a normal subgroup in G(k̃[t
1
m ]). By applying (a) we get that

g−1
2 g1 ∈ Stab

G(k̃)
(x). We conclude that

y1 = g1 · x = (g2 (g
−1
2 g1)) · x = g2 · x = y2,

as required. �

The major reason to use the groups Θ and Θ̃ is because they afford the
following very precise control on their subgroups stabilizing points on the

building B̃−.
4.8. Lemma. Let x be a point of B̃−.
(1) There exists a split unipotent k̃–group V such that V(k̃) = Stab

Θ̃
(x).

(2) Assume that x ∈ B−. Then H1
(
Γ, η(StabΘ̃(x))

)
= 1.
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Proof. (1) By Lemma 4.6 we can assume that x = q ∈ Q̃. Let q = φ̃− + d

with d ∈ D̃ and put

Iq =
{
α ∈ ∆ | 〈 d, α 〉 = 0

}
.

From [Mg, Prop. 2.5.(3)], we know that

Stab
G(k̃[t

1
m ])

(q) ⊂ UIq

(
k̃
[
t

1
m

])
⋊ LIq(k̃) ⊂ PIq

(
k̃
[
t

1
m

])

where UIq is the unipotent radical of PIq . Since

Θ̃ = Ker
(
G(k̃[t

1
m ])

ev0−→ G(k̃)
)

it follows that

(4.8.1) Stab
Θ̃
(q) ⊂ UIq(k̃[t

1
m ]).

Let Φ+
Iq

= {α ∈ Φ(G,T) | 〈 d, α 〉 > 0}. Clearly, every α ∈ Φ+
Iq

is a positive

root (because q ∈ Q̃) and the corresponding root subgroup Uα is contained
in UIq . By [So2, end of §1.1] there exist non-negative integers mα,q, α ∈ Φ+

Iq
such that

Stab
UIq (k̃[t

1
m ])

(q) =
〈
Uα(f) | α ∈ Φ+

Iq
, f ∈ k̃[t

1
m ], deg(f) ≤ mα,q

〉
.

Therefore Stab
UIq (k̃[t

1
m ])

(q) is the group of k̃-points of a connected split

unipotent group, say W. But

StabΘ̃(q) = ker
(
Stab

UIq (k̃[t
1
m ])

(q)→ UIq(k̃)
)
,

hence Stab
Θ̃
(q) = V(k̃) where V is a subgroup of W given by the additional

condition f(0) = 0 . Evidently V is split unipotent (because char(k) = 0).

(2) Let x ∈ B−. Since it is fixed by the twisted action of Γ, V(k̃) is Γ–stable

with respect to the twisted action of Γ by η. So we may view V(k̃) as a
Γ-module. The descending central sequence for V provides a filtration

1 ⊂ Vn ⊂ · · · ⊂ V1 ⊂ V0 = V

where Vi are k̃–subgroups of V such that Vi/Vi+1 is isomorphic to G
ri
a,k̃

.

Taking k̃-points we get a filtration

1 ⊂ Vn(k̃) ⊂ · · · ⊂ V1(k̃) ⊂ V0(k̃) = V(k̃)

which is the descending central sequence of V(k̃) = Stab
Θ̃
(x) satisfying

Vi(k̃)/Vi+1(k̃) ∼= (k̃)ri for i = 0, .., n− 1. All terms of the last filtration are
characteristic subgroups, so that they are stable with respect to the twisted

action of Γ on V(k̃). Since char(k̃) = 0 the abelian group Vi(k̃)/Vi+1(k̃) is
infinitely divisible. It follows that

H1
(
Γ, η(Vi(k̃)/Vi+1(k̃))

)
= 0
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for i = 0, ..., n − 1. By dévissage, we get

1 = H1
(
Γ, η(V(k̃))

)
= H1

(
Γ, η(StabΘ̃(x))

)
,

as required. �

4.9. Descent argument. Since η takes value in AutIt(G,T)(k̃), it follows

that G(k̃) and G(k̃) · Q̃ are stable under the twisted action of Γ. We put

J =
(
G(k̃) . Q̃

)
⋆Γ
.

4.10. Lemma. (1) J is a contractible subcomplex of B−.
(2) J is a fundamental simplicial domain for the action of Θ on B−.
Proof. (1) We are given a point x ∈ J and have to show that the facet Fx

in B− associated to x is included in J . By descent theory of Bruhat-Tits

building [Ro, V.1] we have Fx = (F̃x)⋆
Γ = F̃x ∩ B− where F̃x stands for the

facet of B̃− attached to x. Since G(k̃) · Q̃ is a subcomplex of B̃−, we have

F̃x ⊂ G(k̃) · Q̃. Taking the Γ–invariants we conclude Fx ⊂ J .
The contractibility can be established as follows. Given x ∈ J , the seg-

ment [φ−, x] is included in J . So the restriction of the standard contraction

of B̃− to φ̃− [BT1, Prop. 7.4.20.(v)] induces a contraction of J to φ−.

(2) According to Lemma 4.6, G(k̃) · Q̃ is a fundamental domain for the

action of the group Θ̃ on B̃−, hence two distinct points of J are not in the

same orbit of Θ̃. It remains to show that any point x ∈ B− is conjugate
under Θ to a point of J . Again by Lemma 4.6, there exists a unique point

q ∈ G(k̃) · Q̃ and g ∈ Θ̃ such that x = g · q. Since x, Θ̃ and G(k̃) · Q̃ are
Γ–stable, by unicity we get that q ∈ J . For each γ ∈ Γ, from γ ⋆ x = x we
have

x = γ ⋆ x = (γ ⋆ g) · q = g · q.
Hence γ 7→ aγ = g−1 (γ ⋆ g) is a 1-cocycle for Γ with value in η

(
Stab

Θ̃
(q)

)
.

According to Lemma 4.8 (2), we have H1(Γ, η
(
Stab

Θ̃
(q)

)
= 1. Hence

there exists g0 ∈ Stab
Θ̃
(q) such that

aγ = g−1 (γ ⋆ g) = g−1
0 (γ ⋆ g0)

for each γ ∈ Γ. We put g′ = gg−1
0 ∈ H0(Γ, ηΘ̃) = Θ. Then

x = g · q = g′ · (g0 · q) = g′ · q ∈ Θ · J
as desired. �

Thus, the subspace J of B− is contractible, hence connected and sim-
ply connected. Since it is a fundamental simplicial domain for the action
of Θ on B−, it follows that Θ is generated by the subgroups StabΘ(x) for
x running over J [So1]. Recall that according to Lemma 4.3 (2) we have
G(R) = H(k)ΘEP(R). The following lemma completes the proof of Theo-
rem 1.1 (1).
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4.11. Lemma. Let x ∈ J . Then there exists gx ∈ G(R) such that

StabΘ(x) ⊂ gx Ru(P)(R) g−1
x .

Proof. We write x ∈ J ⊂ G(k̃)·Q̃ in the form x = g·q where q = φ−+d ∈ Q̃,
d ∈ D̃ and g ∈ G(k̃). If q = φ−, then x = φ− and Stab

G(k̃[t
1
m ])

(φ) = G(k̃).

This implies that StabΘ̃(x) = 1 and a fortiori StabΘ(x) = 1 and there is
nothing to do.

We now assume that d 6= 0 and as in Lemma 4.8 (1) consider the set of
roots

Iq =
{
α ∈ ∆ | 〈 d, α 〉 = 0

}
.

Recall that by (4.8.1)

StabΘ̃(q) ⊂ UIq(k̃[t
1
m ]) ⊂ PIq(k̃[t

1
m ]).

Since x = g · q, we get

(4.11.1) Stab
Θ̃
(x) ⊂ (gUIqg

−1)(k̃[t
1
m ]) ⊂ (gPIqg

−1)(k̃[t
1
m ]) = Q(k̃[t

1
m ]).

where Q stands for the k̃–parabolic subgroups Q = gPIqg
−1 of G

k̃
.

We next want to show that Q is stable with respect to the twisted action
of Γ.

4.12. Claim. η(Γ) ⊂ Aut(G,Q)(k̃).

We need here the link Lφ−
which is nothing but the (combinatorial) spher-

ical building S(G
k̃
) (see [Mg, §2.4]) and which is equipped with the twisted

action of Γ (because φ− is Γ–stable). For n >> 0 the point qn = φ− + d
n

belongs to L
φ̃−

and defines then a k̃–parabolic subgroup of G which turns

out to be P
Iq,k̃

because Iq = Iqn . Similarly the point xn = φ− + g . d
n of L

φ̃−

defines the k̃–parabolic subgroups Q.
Note that by construction x = g · q = φ− + g · d is ⋆Γ–stable. Since φ−

is also ⋆Γ–stable, so is g · d and hence so is xn. Therefore the k̃–parabolic
subgroup Q of G is preserved by the twisted action of Γ, whence the claim.

Recall that G is the twist of GR = G ×k R by the 1-cocycle η. By the
claim, we see that the parabolic group Q×k R of GR defines by twisting an
parabolic subgroup Q of G. By Lemma 3.4, there exists gx ∈ G(R) such
that P ⊂ g−1

x Q gx of G. Clearly, g−1
x Ru(Q) gx ⊂ Ru(P). The inclusion

(4.11.1) reads then as

StabΘ̃(x) ⊂ Ru(Q)(k̃[t
±1
m ]) ⊂ gxRu(P)(k̃[t±

1
m ])g−1

x .(4.12.1)

Taking the fixed points under ⋆Γ yields the inclusion

StabΘ(x) ⊂ Ru(Q)(R) ⊂ gxRu(P)(R) g−1
x .

This concludes the proof. �
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5. Steinberg’s method

We maintain the notation introduced in § 3.6. To finish the proof of part
(2) of Theorem 1.1 we first reduce it to the case of groups of (relative) rank
1 and then we use the decomposition of G(R) in part (1). Our reduction to
quasi-split groups of rank 1 is based, to some extent, on Steinberg’s method
in [St2, § 8].

5.1. Proposition. Let w ∈ W and write w = wα1 · · ·wαl
with α1, · · · , αl ∈

∆0. Then

P(K)wP(K) ⊂ P(K)Gα1(R) · · ·Gαl
(R).

Proof. We reason by induction on l. Let first l = 1. Then we have

P(K)wαP(K) ⊂ P(K)wαP(K) ∪P(K) = P(K) 〈wα〉P(K) = Pα(K)

according to Tits’ system properties [Bor, §21.16]. We denote by radu(Pα)
the unipotent radical of Pα. According to [SGA3, XXVI.1.20], we have
P = radu(Pα) ⋊ Q where Q is a parabolic subgroup of Zα. Since Pα =

radu(Pα) ⋊ Zα, it follows that we have an isomorphism Zα/Q
∼−→ Pα/P

(both quotients are representable). Then (Zα/Q)K
∼−→ (Pα/P)K is the K–

variety of parabolic subgroups of (Zα)K of the same type as QK . According
to [SGA3, XXVI.1.19], it is also the K–variety of parabolic subgroups of the
derived group (Gα)K of (Zα)K of the same type as theK–parabolic subgroup
QK ∩ (Gα)K of (Gα)K . Now we apply Borel-Tits’ theorem [BT65, th. 4.13]
which states that Gα(K) acts transitively on theK-points of that variety. In

other words, the map Gα(K) → (Zα/Q)(K)
∼−→ (Pα/P)(K) is surjective,

so that Pα(K) = Gα(K) ·P(K). By taking the opposite decomposition we
conclude that

P(K)wαP(K) ⊂ Pα(K) ⊂ P(K)Gα(K).

It remains to check that P(K)Gα(K) ⊂ P(K)Gα(R). Let Qα = P∩Gα. It
is a parabolic subgroup of the R–group Gα. According to Proposition 3.5,
we have Gα(K) = Qα(K)Gα(R). Therefore

P(K)Gα(K) = P(K)Qα(K)Gα(R) = P(K)Gα(R).

Let now l ≥ 2 and write w = wα1 w
′. Then we have

P(K)wP(K) = P(K)wα1w
′ P(K)

⊂
(
P(K)wα1

) (
P(K)w′ P(K)

)

⊂ P(K)wα1 P(K)Gα2(R) · · ·Gαl
(R) [ Induction]

⊂ P(K)Gα1(R)Gα2(R) · · ·Gαl
(R) [ Case l = 1]

as required. �

From the Bruhat decomposition G(K) =
⋃

w∈W
P(K)wP(K), we get the

following.
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5.2. Corollary. G(R) is generated by P(R) and the Gα(R) for all roots
α ∈ ∆0.

Proof. Let g ∈ G(R). Viewing g as an element of G(K) we can write it in
the form g = p1wp2 where p1, p2 ∈ P(K) and w ∈ W . By Proposition 5.1
we have g = p1wp2 = p3g1 · · · gl where p3 ∈ P(K) and g1, . . . , gl ∈ Gαi

(R),
αi ∈ ∆0. Since all gi and g are in G(R) we conclude that p3 ∈ P(R). �

5.3. Application to the quasi-split case. We assume here additionally
that G is quasi-split. In this case B = P is a Borel subgroup of G.

5.4. Lemma. B(R) ⊂
〈
EB(R),Gα(R)

〉
where α runs over ∆0.

Proof. Recall that B = Ru(B) ⋊ T, where T is the twist of T by η, so
that we need to deal with T(R) only. But T has a decomposition [SGA3,
XXIV.3.13]

T
∼−→

∏

α∈∆0

∏

Rα/R

(Gm,Rα)

where the Rα are connected étale covers of R. It remains to note that each
summand

∏
Rα/R

(Gm,Rα) is a maximal torus of Gα, hence the statement

follows. �

We can now easily finish the proof of Theorem 1.1 (2). By Lemma 3.7,
Gα is semisimple simply connected and quasi-split of relative rank 1. Hence
according to Lemma 5.4 and Corollary 5.2 we may assume without loss of
generality that G = Gα is a quasi-split group scheme of relative rank 1. The
following cases can occur.

Gα is of absolute type A1. Then Gα = SL2. Since R is euclidean Gα(R) is
generated by “elementary matrices”.

Gα is of absolute type A2
1. Then Gα =

∏
R′/R

SL2,R′ where R′/R is the unique

(connected) quadratic étale extension of R which splits Gα. It is known that
R′ is a Laurent polynomial ring [GP2, Lemma 2.8]. Since Gα(R) = SL2(R

′)
we are reduced to the previous case.

Gα is of absolute type A3
1. The argument is similar.

Gα is of absolute type A2. Let S/R be the quadratic (connected) étale
extension splitting Gα.

Denote by τ the non-trivial automorphism of S over R. Since Gα is quasi-
split over R and split over S it admits a realization Gα ≃ SU(f) where
f = xτ(y) + zτ(z), x, y, z ∈ S, is a 3-dimensional hermitian form on V =
S ⊕ S ⊕ S. Let W ⊂ V be the submodule spanned by first two components
of V . Obviously, SU(f |W ) ≃ SL2. Therefore SU(f |W )(R) is contained in
the subgroup EB(R) of SU(f)(R). In particular, T(R) ⊂ EB(R) where
T ≃ Gm,R is a split R–torus consisting of matrices of the form




x 0 0
0 x−1 0
0 0 1


 .
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Consider now the group H. By Example 3.2, H ≃ SO3. Let T
′ ⊂ H be a

split maximal k-torus. Since the simply connected covering of H is SL2 the
group of k-points of H is generated by unipotent elements and T′(k). The
two maximal split tori T′

R and T of the R–group Gα are conjugate under the
action of Gα(R) by [CGP2]. Since T(R) ⊂ EB(R), we get H(k) ⊂ H(R) ⊂
Est

B(R). The application of part (1) of Theorem 1.1 completes the proof of
Theorem 1.1 (2).

6. Remarks on Conjecture 1.3

The following lemma shows that in parts (2) and (3) of Conjecture 1.3
one needs to prove injectivity only.

6.1. Lemma. (1) The map W st
P (R,G)→W (F,GF ) is surjective.

(2) The map W st
P (R,G)→W (K,GK) is surjective.

Proof. (1) This follows from Lemma 4.3 (2) and Theorem 1.1 (1).

(2) This is an argument of strong approximation. Let g ∈ G(K) and let Σ
be the set of closed points of Spec(R) where g is not regular. For each point
x ∈ Σ, we denote by Rx the local ring at x; Rx is a DVR and we denote by

R̂x its completion and by K̂x its fraction field. By [G, Lemme 4.5], we have

G(K̂x) = G(K̂x)
+ ·G(R̂x) for each x ∈ Σ. In particular, we can decompose

g = g+x gx, gx ∈ G(R̂x), g+x ∈ G(K̂x)
+,

for each x ∈ Σ. Let Spec(R′) = Spec(R) \Σ. By (loc. cit., Lemme 4.6), the

group G(R′)∩G(K)+ is dense in
∏

x∈ΣG(K̂x)
+. Since

∏
x∈ΣG(R̂x) is open

in
∏

x∈ΣG(K̂x), there exists g′ ∈ G(R′) ∩G(K)+ such that

(g′)
−1

g+x ∈ G(R̂x), ∀x ∈ Σ.

It follows that (g′)−1 g ∈ G(R̂x) for each x ∈ Σ, so that (g′)−1 g ∈ G(R).
Thus [g] ∈ W (K,GK) is in the image of the map W st

P (R,G)→ W (K,GK).
�

6.2. Remarks. (a) If Conjecture 1.3 (2) holds, the stable Whitehead group
W st

P (R,G) has finite exponent.

(b) Since W (K,G×RK)→ G(K)/R is an isomorphism by [G, 7.2] we have
well-defined maps

H(k)/R → H(K)/R → G(K)/R.
So if part (2) of the conjecture holds, it would imply that the map H(k)→
W st

P (R,G) induces a well defined map H(k)/R → W st
P (R,G).

We summarize here cases that support our conjecture.

6.3. Theorem. Parts (2), (3) of Conjecture 1.3 hold in the following cases.

(i) k is algebraically closed.

(ii) G is constant, i.e. ηgeo = 1.
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Proof. Case (i). By [P2], G is quasi-split, hence we have

W st
P (R,G) = W (K,G×k K) = W (F,G×k F ) = 1.

Also, H(k)/R = 1 and the assertion is therefore clear.

Case (ii). We have H = ηarG and G = H ×k R. Then we have a well-
defined map W (k,H)→W st

P (R,G). It fits in a sequence of maps

W (k,H)→W st
P (R,G)→W (K,GK)→ W (F,GF ).

The first map is surjective by Theorem 1.1 (1), the second and the third
are surjective as well by Lemma 6.1. But the composite map W (k,H) →
W (F,H) ∼= W (F,GF ) is an isomorphism [G, Theorem 7.3], so all the maps
above are isomorphisms as well. Thus part (2) of the conjecture holds for
G. Part (3) follows from the fact that the natural map W (k,H)→ H(k)/R
is an isomorphism (ibid, Theorem 7.2). �
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