Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)$_2$Ni$_7$-type hydrogen storage alloys for Nickel-Metal Hydride batteries

J. Monnier, H. Chen, Suzanne Joiret, J. Bourgon, M. Latroche

To cite this version:

HAL Id: hal-01025697
https://hal.archives-ouvertes.fr/hal-01025697
Submitted on 29 Jul 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)$_2$Ni$_7$-type hydrogen storage alloys for Nickel-Metal Hydride batteries

J. Monnier1, H. Chen1, S. Joiret2,3, J. Bourgon1, M. Latroche1

1: ICMPE – UMR 7182 CNRS UPEC – 2-8 rue Henri Dunant, 94320 Thiais, France – monnier@icmpe.cnrs.fr
2: Sorbonne Universités, UPMC Univ. Paris 06, UMR 8235, Laboratoire Interfaces et Systèmes Electrochimiques, F-75005, Paris, France
3: CNRS, UMR 8235, LISE, F-75005, Paris, France

Abstract
To improve the performances of Nickel-Metal Hydride batteries, an important step is the understanding of the corrosion processes that take place in the electrode material. In particular, the present study focuses for the first time on the model (La,Mg)$_2$Ni$_7$ system. The calendar corrosion in 8.7M KOH medium was investigated from 6 hours to 16 weeks immersion. By a unique combination of structural and elemental characterisations, the corrosion products are evidenced in those systems. In particular, we demonstrate that Ni and Mg combine in a pseudo-binary hydroxide Mg$_{1-x}$Ni$_x$(OH)$_2$ whereas La corrodes into nanoporous La(OH)$_3$ needles with inner hollow nanochannels.

Keywords
Corrosion; Ni-MH batteries; Raman micro spectroscopy; TEM; combination of techniques

Introduction
Because of their high capacity and the use of more environmentally friendly materials, Nickel-Metal Hydride (Ni-MH) batteries are expected to play a key role in the huge market of hybrid electric vehicles (HEV) and Emergency Light Units (ELU). Hydrogen-absorbing alloys based on ANi$_3$ (A: a rare earth such as La or a mixture of rare earths such as mishmetal Mm), or AB_3 when Ni is partially substituted by Mn, Co or Al, are widely used as negative electrode materials [1]. Recently, new families of hydrogen-absorbing alloys based on ANi$_x$, with $3\leq x<5$, have shown high interest because they present higher capacities than AB_3 alloys [2]. Moreover, some authors point out the beneficial substitution of the A element with lighter ones such as Mg, in these AB_x alloys [3]. In these systems, many studies focused on commercial compositions from the PuNi$_3$-type alloys. These AB_3 alloys present higher hydrogen storage capacity and higher discharge capacity, eg. 356mAh/g for LaCaMgNi$_9$ [4] compared to the AB_5 alloys. Discharge capacity of 410mAh/g has even been achieved for the La$_{0.7}$Mg$_{0.3}$Ni$_{2.8}$Co$_{0.5}$ composition [5]. However the poor cycling stability of these new alloys prevent them from long cycle life practical application.
The life-time duration of these materials has to be significantly improved. When a hydrogen-absorbing alloy is used as negative electrode for an alkaline battery, the constituent elements are corroded by the electrolyte. This corrosion leads to loss of capacity balance between the positive and the negative electrode, loss of water and drying of the battery, and eventually to shortcut. Therefore, a good understanding of the corrosion processes will allow to find solutions to overcome these phenomena, and to finally improve the battery cycle life.

The degradation processes of AB_3-based Ni-MH batteries have been extensively studied during calendar storage and cycling [6-8]. In these alloys containing Mm, Ni and Co, the degradation process is closely related to alloy corrosion in aqueous KOH electrolyte and is enhanced by decrepitation (fracture of the powder particles creating new surfaces). The latter phenomenon is a consequence of volume changes occurring upon hydrogen solid solution/hydride phase transformation during cycling [9]. It has been observed that during soaking of AB_3 alloy into KOH aqueous solution, a continuous nanocrystalline corrosion scale composed of a metallic solid solution (Ni, Co), oxide solid solution (Ni, Co)O and mishmetal hydroxide Mm(OH)$_3$ needles form as surface corrosion products.

The AB_3 alloys previously mentioned [4] have also been studied regarding their high corrosion rates [10]. However, all these studies are limited to cycling degradation studies. Concerning A_2B_7 alloys, few works have been published on commercial composition during electrochemical cycling [11]. The commercialized A_2B_7 moved from pure La-based (La, Mg)$_2$Ni$_7$ toward light rare earth rich mischmetal-based (Mm, Mg)$_2$Ni$_7$ to reduce the capacity degradation through cycling [12]. As an example, the studied composition La$_{0.7}$Mg$_{0.3}$Ni$_{3.4}$Mn$_{0.1}$ presents an initial capacity of 400 mAh/g which decreases continuously with cycling (down to 200 mAh/g for 35 cycles). The corrosion study identifies formation of a Mg(OH)$_2$ film then the formation of La(OH)$_3$ needles. However, neither the Ni nor the Mn corrosion products are mentioned. Considering the existing literature, a fundamental study to understand the corrosion process in A_2B_7 alloys is missing. Moreover, the peculiar role of Mg is not fully understood, and comparison between corrosion of binary and pseudo-binary compounds is necessary. This study aims to present a full characterisation of the corrosion processes taking place during the soaking of (La,Mg)$_2$Ni$_7$ alloys in alkaline medium (KOH).

Experimental part

Preparation of the alloys

The binary La$_2$Ni$_7$ alloy was prepared by induction melting of the pure elements (La, Ni: 99.9%) under vacuum in a water cooled copper crucible. The alloy was turned over five times to ensure good homogeneity and was annealed for seven days at 1000°C. The pseudo-binary alloy La$_{1.5}$Mg$_{0.5}$Ni$_7$ was prepared in two steps by powder metallurgy. A precursor LaNi$_{4.67}$ was first prepared by induction melting as for the binary compound. This precursor was then grounded and mixed with Mg powder (99.8%). The mixture was annealed for ten days at 900°C in a tight crucible closed under argon.
Calendar corrosion exposure

1.5 grams of each alloy were exposed to 8.7M KOH solution with the following conditions: immersion time between 6 hours and 16 weeks; ambient temperature, argon desaerated atmosphere; daily homogenization to avoid preferential corrosion of part of the sample; constant ratio $\frac{m_{\text{alloy}}}{V_{\text{electrolyte}}}$; sampling of ~200 mg of powder for each immersion time. We selected KOH 8.7 M to emphasize the corrosion effect, without being detrimental to the specific conductivity of the solution [13].

Powder particles were rinsed down to a pH close to 12 (for pH <12 the corroded species start to dissolve in water), then dried under vacuum at 40°C for 24 hours.

Characterisation techniques

Both initial alloys were characterised by microprobe analysis (EPMA) and X-ray diffraction (XRD). Corrosion products of A_2B_7 alloys powders were examined by XRD, Raman microspectroscopy (micro-RS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A Bruker Da Vinci (Cu Kα radiation) and a Bruker D8 (Cu Kα radiation) were used for XRD analysis. Patterns were typically acquired with the Da Vinci between 10 and 110° (2θ) in 0.015° steps for 3 s, leading to an acquisition time of 5h30. Longer acquisition time (24h) was performed for some samples with the D8 diffractometer for the same angular region.

Micro-RS measurements were performed using Notch filter based micro-spectrometer equipped with Peltier cooled CCD (Horiba Jobin Yvon) with a focal length of 180 mm, a 1800 lines/mm grating and an air cooled Ar+ Laser emitting at 514.5 nm or HeNe Laser emitting at 632.8 nm. Spectral resolution is around 3 cm$^{-1}$ and calibration is checked on the 520.5 cm$^{-1}$ band of silicon. Microanalysis is achieved through Olympus microscope and 100x and 50xOlympus objective. The beam size is about 2 µm for a 100x and about 5 µm for a 50x objective. A laser excitation power of 70 µW is used. Spectra acquisitions are managed by the LabSpec software (Horiba Jobin Yvon).

Powder particles were examined with a Zeiss LEO scanning electron microscope equipped with a Field Emission Gun and an energy dispersive X-ray detector (EDX). No coating was made in order to be sure that the morphological changes observed at the alloy surface are due to the corrosion process.

A Tecnai FEI F20 ST equipped with EDX detectors provided high spatial resolution imaging of the scale morphology, crystallography (by electron diffraction) and chemistry (by EDX analyses) of the corrosion products. TEM specimens were prepared by cutting thin slices (60 to 80 nm) of resin embedded powder particles in an ultramicrotome.

Results

Pristine alloy characterisations

XRD pattern of the binary La$_2$Ni$_7$ compound was indexed in the Ce$_2$Ni$_7$ hexagonal cell ($P6_3/mmc$ space group). Pseudo-binary La$_{1.3}$Mg$_{0.3}$Ni$_7$ was observed under two polymorphic forms: Ce$_2$Ni$_7$ hexagonal ($P6_3/mmc$ space group) and Gd$_2$Co$_7$ rhombohedral ($R-3m$ space group). Results of the characterisation of both samples are given in Table 1.
Table 1: Characterisation of the alloys by EPMA and XRD analysis.

<table>
<thead>
<tr>
<th>Electron probe micro analysis (±0.01)</th>
<th>B/A ratio</th>
<th>Space group</th>
<th>%</th>
<th>Cell parameters</th>
<th>Volume V (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.505 ±0.117</td>
<td>P6/mmc</td>
<td>100</td>
<td>a (Å)</td>
<td>5.06284 (0.00004)</td>
</tr>
<tr>
<td>La₂Ni₇</td>
<td>3.337 ±0.122</td>
<td>P6/mmc</td>
<td>22.1 (0.5)</td>
<td>c (Å)</td>
<td>5.03144 (0.00010)</td>
</tr>
<tr>
<td></td>
<td>R-3m</td>
<td>78 (1)</td>
<td></td>
<td>a (Å)</td>
<td>5.03124 (0.00009)</td>
</tr>
</tbody>
</table>

Structural characterisation of corrosion products

Figures 1 and 2 show the XRD patterns recorded for La₂Ni₇ and La₁.₅Mg₀.₅Ni₇, respectively, after immersion in 8.7M KOH for different soaking times. Beside the alloy main diffraction peaks, these diffractograms enable to identify the presence of the La(OH)₃ phase, especially at longer soaking times (additional X-ray diagramms are available in the Supplementary Information Figure S1).

![Figure 1](image1.png) ![Figure 2](image2.png)

Figure 1: La₂Ni₇ diffractograms after various immersion times in 8.7M KOH; a. from top to bottom: non corroded (NC), 6 hours (6H), 48 hours (48H) and 8 weeks (8W); b. low theta region shown in the dashed rectangle, with longer acquisition time for the sample soaked 8 weeks in 8.7M KOH. The (100) diffraction peak of La(OH)₃ (triangle; PDF n°00-036-1481) and the (001) diffraction peak of Ni(OH)₂ (circle; PDF n°04-012-5845) are shown beside the peaks of the main phase (vertical bars; Ce₂Ni₇-type).

Figure 2: La₁.₅Mg₀.₅Ni₇ diffractograms after various immersion times in 8.7M KOH; a. from top to bottom: non corroded (NC), 6 hours (6H), 48 hours (48H) and 8 weeks (8W); b. low theta region shown in the dashed rectangle, with longer acquisition time for the sample soaked 8 weeks in 8.7M KOH. The (100) diffraction peak of La(OH)₃ (triangle; PDF n°00-036-1481) and the (001) diffraction peak of Mg(OH)₂ (cross; PDF n° 00-007-0239) are shown beside the peaks of the main phases (vertical bars; Ce₂Ni₇- and Gd₂Co₇-type respectively).
For a better phase identification, longer acquisition time (up to 24 hours) allowing better signal to noise ratio was performed for both samples. Ni(OH)$_2$ for the binary alloy, and Mg(OH)$_2$ for the pseudo-binary one are clearly observed after 8 weeks of soaking (Figure 1.b and 2.b).

Reference Raman spectra of O-H vibration of Ni(OH)$_2$ at 3582 cm$^{-1}$, La(OH)$_3$ at 3600 cm$^{-1}$ and Mg(OH)$_2$ at 3650 cm$^{-1}$ are displayed in figure 3.a. Difference in wavenumber are large enough to distinguish between the different hydroxides. Raman spectra of La$_2$Ni$_7$ soaked 48 hours and 12 weeks are given in Figure 3.b. For 48 hours the corrosion layer is formed of Ni(OH)$_2$ or La(OH)$_3$, pure phases but not spatially homogeneous. For 12 weeks the corrosion layer is homogeneous and formed of a mixture of pure phases of Ni(OH)$_2$ and La(OH)$_3$.

In the presence of magnesium in the alloy, the Raman spectra are given in Figure 3.c for 8 weeks into KOH. The corrosion layer is spatially heterogeneous at the micrometer scale. A new band is appearing at 3650 cm$^{-1}$ and attributed to Mg(OH)$_2$. The band corresponding to Ni(OH)$_2$ is shifted at 3690 cm$^{-1}$ and in some spectra an enlargement of the high wavenumber side of the band corresponding to La(OH)$_3$ is visible.

The low frequency spectra (see supplementary information Figure S4) recorded for the 12-weeks corroded sample indicate also the presence of Mg(OH)$_2$, but a very broad band around 540 cm$^{-1}$ is also present, which could be attributed to a NiO or MgO oxide phase.

![Figure 3](image-url)
Morphologic and elemental characterisations of corrosion products

The first morphologic characterisation of corrosion products was performed with systematic SEM analysis for each corrosion time. Some of the results are presented here for La$_2$Ni$_7$ and La$_{1.5}$Mg$_{0.5}$Ni$_7$ (Figure 4) for low magnification in SE2 mode (additional micrographs are available in the Supplementary Information Figure S2 and Figure S3). The La$_2$Ni$_7$ surface is covered after 48 hours of immersion in 8.7M KOH. The La$_{1.5}$Mg$_{0.5}$Ni$_7$ surface is covered after 4 days of immersion in 8.7M KOH. The corrosion product quantity seems quite the same for both alloys and do not vary whatever the immersion time over a few days.

![Figure 4: SEM micrographs at magnification 10k, in SE2 mode, of (a.) non corroded La$_2$Ni$_7$ sample and La$_2$Ni$_7$ sample corroded for (b.) 6h, (c.) 48h and (d.) 8 weeks; (e.) non corroded La$_{1.5}$Mg$_{0.5}$Ni$_7$ sample and La$_{1.5}$Mg$_{0.5}$Ni$_7$ sample corroded for (f.) 6h, (g.) 48h and (h.) 8 weeks.]

Higher magnification micrographs in InLens mode (Figure 5) present the morphology of the corrosion products developed on both alloys.

Needle-like morphology corrosion products appear first for the La$_2$Ni$_7$ alloy. Then hexagonal platelets appear. For the La$_{1.5}$Mg$_{0.5}$Ni$_7$ alloy, both platelets and needle appear for 6h immersion in 8.7M KOH.

6
After 48 hours immersion two morphologies are confirmed for both alloys. The first one corresponds to little platelets without size growth. The second one develops needle-like morphology. It is particularly evidenced for the pseudo-binary alloy. In this case, the needles are quite large, up to a micronic size, and they have a well defined morphology. For the binary alloy, the needles are smaller and less defined.

Figure 5: SEM micrographs at magnification 50k, in InLens mode, of La$_2$Ni$_7$ sample corroded for (a.) 6h, (b.) 48h and (c.) 8 weeks on the left and La$_{1.5}$Mg$_{0.5}$Ni$_7$ sample corroded for (d) 6h, (e.) 48h and (f) 8 weeks on the right.

Figure 6 presents SEM micrographs of both samples, focusing on the interface between the alloy and the corrosion products. This interface, which is smooth for the non-corroded alloys, shows a nanometric roughness as soon as the corrosion process starts.

Figure 6: SEM micrographs, in InLens mode, of the metal/corrosion products interface for a. La$_2$Ni$_7$ corroded for 6h in 8.7M KOH and b. La$_{1.5}$Mg$_{0.5}$Ni$_7$ corroded for 24h in 8.7M KOH.
Characterisation was completed by TEM analysis for the 48-hours corroded samples. Figure 7 presents elemental mapping for the 48h corroded binary sample. The selected area shows two types of corrosion products. The one from the bottom, as can be seen in the TEM-mode micrograph, has a well-defined morphology with linear border despite its small size. This particle is associated with the La element. The corrosion particle in the upper part of the mapping is not so well defined, and is associated to the Ni element. La and Ni are segregated in the corrosion products, they form La(OH)$_3$ and Ni(OH)$_2$ hydroxides at different places and not in a single compound, as confirmed by electronic diffraction (see supplementary information Figure S5 and Table S1).

Figure 7: TEM micrograph and EDS-STEM elemental mapping of La, Ni and O for the La$_2$Ni$_7$ sample corroded 48h in 8.7M KOH solution.

Figure 8 displays the elemental mapping for the 48h corroded pseudo-binary sample. Well defined particles with needle-shape morphology can be distinguished. They are outstandingly linked to the La element in the STEM-EDS elemental mapping. Beside these needles, the other corrosion products are very fine. They are associated to the Mg element, as well as the Ni one.

Figure 8: TEM micrograph and EDS-STEM elemental mapping of La, Mg, Ni and O on La$_2$Mg$_{0.5}$Ni$_7$ sample corroded 48h in 8.7M KOH.

Electronic diffraction allows to assign La(OH)$_3$ as the well-defined large needles. For the Ni and Mg containing area, no single crystallized area was found to allow measuring diffraction angles and interplanar distances with enough accuracy to differentiate between Ni(OH)$_2$ and Mg(OH)$_2$ hydroxides (see supplementary information Figure S6 and Table S2).
Other TEM micrographs for binary and pseudo-binary samples corroded 6 hours, 48 hours, and 8 weeks confirm the presence of two morphologies for both alloys: large and well-defined needles for La(OH)$_3$ and small platelets of Ni(OH)$_2$ for La$_2$Ni$_7$ and of Ni(OH)$_2$/Mg(OH)$_2$ or (Mg, Ni)(OH)$_2$ particles for La$_{1.5}$Mg$_2$Ni$_7$.

Moreover, an inner channel can be observed inside the core of the La(OH)$_3$ needles. Figure 9 presents the EDS profile of a La(OH)$_3$ needle for the pseudo-binary sample corroded 6 hours. The profile is recorded along the transversal part of the needle. A La and O depletion appears in the middle of the needle. This indicates the presence of a hollow channel with a diameter about 2 nm.

![Figure 9: STEM micrograph and STEM-EDS elemental profile for the La$_{2.5}$Mg$_{0.5}$Ni$_7$ sample corroded 6h in 8.7M KOH.](image)

Figure 10 presents the micrographs for the 8-weeks pseudo-binary corroded sample. The large needles show a density variation in their central part. At the bottom of Figure 10.a, a hexagonal particle is observed with a small hole in its central part. EDS analysis indicates that these hexagonal particles are composed of La and O, identifying them as the La(OH)$_3$ needles in a transversal view. The diameter of the hole is about 10 nm diameter though this value should be taken with caution as part of the hole can be covered during the ultra-microtome preparation. It indicates however that the size of the hole might vary depending on the immersion time.
Specific corrosion of magnesium

Beside the general corrosion process detailed in this paper, small cubic particles have been also observed by SEM (Figure 11.a). The particle size is about 2 µm. EDS spectra performed on these particles indicate the presence of O and Mg (Figure 11.b). These elements, combined with the morphology observation, indicate that MgO crystals are present in the initial pseudo-binary alloy. These MgO crystals are attributed to Mg corrosion taking place at high temperature during the elaboration process. They disappear after two weeks in 8.7M KOH. As suggested by the SEM micrograph (Figure 11.c) they probably turn into Mg(OH)$_2$ hexagonal platelets, thermodynamically favoured at such basic pH. These MgO particles are not identified in the XRD analysis, due to their very low concentration in the sample, and the low diffraction structure factors of Mg and O.
Discussion

Corrosion mechanisms in binary alloy

The corrosion process identified for La$_2$Ni$_7$ immersed in 8.7M KOH can be described as a multilayer system with the following sequences: the metallic alloy / a rough alloy-corrosion products interface / corrosion products with large needles of La(OH)$_3$ and little platelets of Ni(OH)$_2$. The morphology of these platelets and needles are in good agreement with the crystallographic structures of these two phases.

The various immersion times evidence that the metallic grains are totally covered with hydroxides in 2 days. After 4 days of immersion, the platelets are well organised and no size growth can be noticed up to 16 weeks of exposure.

Unlike Maurel et al [6], we evidenced the presence of Ni(OH)$_2$ that they did not point out. That could be explained by the low diffraction power of nickel hydroxide, and by the absence of Raman spectroscopy in their study. The rough interface layer formation can be explained by the internal oxidation mechanism. This layer is commonly associated to a metallic nickel amorphous layer which catalyses the surface electrochemical reaction, as suggested in [6]

![Figure 12: Corrosion mechanisms by a. cationic and b. anionic transport as proposed by Maurel et al.[6], modified (this work) to introduce the presence of the Ni(OH)$_2$ platelets.]

Influence of Mg on the corrosion mechanism

Considering the La$_{1.5}$Mg$_{0.5}$Ni$_7$ ternary alloy, the corrosion mechanism is strongly influenced by the presence of Mg. First, Ni(OH)$_2$ is no more observed as a pure phase in the XRD diagrams, and Mg(OH)$_2$ is detected. Therefore, it seems that the Mg(OH)$_2$ formation predominates as Mg is introduced in the alloy.

The micro-RS low frequency spectra recorded for the 12-weeks corroded sample indicates also the presence of Mg(OH)$_2$, as well as a very broad band around 540 cm$^{-1}$, which could be attributed to an oxide. Neither NiO nor MgO structures display a Raman signal as they have both face centered cubic structure. However, these crystals frequently include some impurities, or are non-stoechiometric with Ni$_{1-x}$O or Mg$_{1-x}$O formulae. In these cases, a broad band around 540 cm$^{-1}$ appears. The presence of NiO or MgO oxides in our system could result from the dehydration of the hydroxide phases, leading to oxide formation. This dehydration is likely to appear under the Raman laser beam.
Considering the STEM-EDX elemental mapping of the pseudo-binary sample, two morphologies are identified: large needles composed of La and O, corresponding to the La(OH)$_3$ phase, and small particles. These are linked to the Mg element, as could be deduced from the XRD Mg(OH)$_2$ identification, but they are also related to the Ni element. Therefore two hypotheses are proposed for this observation. Mg(OH)$_2$ and Ni(OH)$_2$ hydroxides can both be present, finely mixed at the nanometric scale, or Mg can substitute Ni in the Mg(OH)$_2$ hydroxide, the only one identified by XRD analyses.

To choose between these two hypotheses, the cell parameters have been derived from the X-ray diffractogram shown in the inset of Figure 2. They are presented in Table 2. The cell parameters for Mg(OH)$_2$, as identified in the corroded pseudo-binary alloy, have intermediate values between those of pure Mg(OH)$_2$ and pure Ni(OH)$_2$. The a parameters are very close for both phases, however the c parameters are significantly different. In the refined pattern, the main diffraction peak for Mg(OH)$_2$ is the (001) one, giving a value of the c parameter for the 8-weeks corroded pseudo-binary sample in between those of Mg(OH)$_2$ and Ni(OH)$_2$, favoring the second hypothesis. Considering the weak diffraction factor of Mg, and the low Mg(OH)$_2$ content in the sample, this result has to be considered with cautious but suggests that Ni is substituted within the Mg(OH)$_2$ lattice.

<table>
<thead>
<tr>
<th></th>
<th>Mg(OH)$_2$ (ref JACGAR 1996 29 48-52)</th>
<th>La${1.5}$Mg${0.5}$Ni$_{7}$ corroded 8 weeks</th>
<th>Ni(OH)$_2$ (ref JPSODZ 2007 174 414-420)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3.1477</td>
<td>3.1472</td>
<td>3.1260</td>
</tr>
<tr>
<td>c</td>
<td>4.7717</td>
<td>4.7345</td>
<td>4.6050</td>
</tr>
</tbody>
</table>

In the presence of magnesium, the Raman spectrum of lanthanum hydroxide is not modified but Mg(OH)$_2$ as pure phase is identified by the band at 3650 cm$^{-1}$. The O-H vibration of Ni(OH)$_2$ is 10 cm$^{-1}$ shifted showing that Ni(OH)$_2$ as pure phase is not formed anymore. Solid solution of Ni/ Mg hydroxide has been studied by infrared spectroscopy and O-H vibration depends quite linearly on the Mg/ Ni content of the solid solution [14]. The spatial variation of the recorded Raman spectra at the micrometer scale clearly indicates that the corrosion product layer is formed from: La(OH)$_3$ and Ni$_{1-x}$Mg$_x$(OH)$_2$ with x varying from one point to another. The formation of Ni/ Mg hydroxide by coprecipitation technique has already been studied and different compositions can be formed depending on the process for the same solution content [15]. However the existence of a predominant defined composition in the corrosion layer cannot be excluded as Raman spectroscopy is not a quantitative technique.

These observations lead to the conclusion that in the La-Mg-Ni system, Mg and Ni are involved in the same hydroxide formation, with a Mg(OH)$_2$ structure including Ni in its lattice, forming a mixed (Mg,Ni)(OH)$_2$ hydroxide. Neither this hydroxide, nor the Ni(OH)$_2$ hydroxide formed for La$_2$Ni$_7$, could modify the electrochemical capacity of the negative electrode, considering their compositions is very close to that of the positive electrode (i.e. at
much higher hydrogenation potential). Moreover, as observed for AB₅ alloys, neither the (Ni, Mg)(OH)₂ nor the La(OH)₃ needles affect the density of the catalytic metallic nickel layer.

Comparing the various immersion times, we evidence that the alloy surface is totally covered with hydroxides within 4 days as for the binary alloy it is covered within 2 days. The corrosion could start slower with the Mg. Moreover, the La(OH)₃ needles have a better defined morphology when Mg is present. This suggests that Mg promotes the ordering of the corrosion products. As concerns applications, the Mg rate in (R, Mg)Niₓ alloy has to be finely considered to reach the better compromise between the positive effect on plateau pressure and capacity and the effect related to corrosion of the alloy. Moreover, the presence of Mg in the alloy lead to specific oxidation mechanism of Mg, with the formation of MgO during the alloy elaboration. This corrosion product turns into Mg(OH)₂ with immersion non 8.7M KOH.

Finally, the rare earth hydroxide needles show a channel in their central part. Maurel et al. showed that these channels play a role in the growth mechanism [6]. These holes have nanometric dimensions, varying from 2-3 nm for the pseudo-binary sample corroded during 6 hours up to 10 nm for the sample corroded 8 weeks. It is worth to note that those “nanochannels” have their diameter size growing with the needle size. This point is in contradiction with the previous work [6] on AB₅ sample for which they reported that the hole size staid constant for various immersion times.

Conclusion

The present study investigates two compounds: La₂Ni₇ and La₁.₅Mg₀.₅Ni₇ alloys and aims to understand from a fundamental point of view which corrosion products develop in A₂B₇ alloys when soaked in KOH. We focused our attention on the influence of Mg on corrosion mechanisms. It appears that A₂B₇ binary alloys corrode in the same way than AB₅ alloys, with formation of Ni(OH)₂ and La(OH)₃ hydroxides upon a rough interface. When magnesium is added, Mg hydroxide is observed instead of the Ni one. However Ni is probably substituted in the Mg(OH)₂ structure. The La(OH)₃ needles are better defined and longer than for the binary alloy. Moreover, specific corrosion due to the Mg has been observed. This modified corrosion of Mg-containing alloys requires establishing a compromise between the beneficial effect of Mg on the pressure plateau and capacity and its detrimental effect on the corrosion rate. In both alloys, the La(OH)₃ needles present inner nanochannels which play a role in the needle growth process.

Acknowledgements

P. Bernard and L. Goubault from SAFT, as well as V. Vivier from LISE, are gratefully acknowledged for useful discussions. The authors would like to thank V. Lalanne (ICMPE) for her help for TEM sample preparation and E. Leroy (ICMPE) for EPMA and TEM analyses. The research program MALHYCE (ANR-2011-PRGE-006 01) is acknowledged for financial support.
Bibliography

Supplementary information

- XRD diagrams of all corroded samples

a.

![XRD diagram a](image1)

b.

![XRD diagram b](image2)

Figure S1: a. La$_2$Ni$_7$ and b. La$_{1.5}$Mg$_{0.5}$Ni$_7$ diffractograms after various immersion times in 8.7M KOH: from top to bottom: non corroded, 6 hours, 24 hours, 48 hours, 4 days, 1 week; 2 weeks, 4 weeks, 6 weeks, 8 weeks, 12 weeks, 16 weeks. The black arrow corresponds to the (100) diffraction peak of the La(OH)$_3$ phase (PDF n° 00-036-1481; NC = non corroded, H = hour(s), D = day(s), W = week(s))
SEM micrographs of all corroded samples

Figure S2: SEM micrography, in InLens mode, of La2Ni7 sample (a;) non corroded and corroded for (b.) 6h, (c.) 24h, (d.) 48h, (e.) 4 days, (f.) 1 week, (g.) 2 weeks, (h.) 4 weeks, (i.) 6 weeks, (j.) 8 weeks, (k.) 12 weeks, and (l.) 16 weeks
Figure S3: SEM micrography, in InLens mode, of La$_{1.5}$Mg$_0.5$Ni$_7$ sample (a.) non corroded and corroded for (b.) 6h, (c.) 24h, (d.) 48h, (e.) 4 days, (f.) 1 week, (g.) 2 weeks, (h.) 4 weeks, (i.) 6 weeks, (j.) 8 weeks, (k.) 12 weeks, and (l.) 16 weeks
Low frequency Raman spectra

Figure S4: Raman spectra of La$_{1.5}$Mg$_{0.5}$Ni$_{7}$ sample corroded for 12 weeks compared to Ni(OH)$_2$, NiO and Mg(OH)$_2$ references. Acquisition conditions: 600sec.
Electronic diffraction on corroded samples

![Figure S5: TEM bright field micrograph and electronic diffraction scanning area on La$_2$Ni$_7$ sample corroded 48h on 8.7M KOH](image)

Table S1: Electronic diffraction analysis on La$_2$Ni$_7$ sample corroded 48h on 8.7M KOH

<table>
<thead>
<tr>
<th>Diffraction</th>
<th>Identification</th>
<th>(1/d nm) measured with DiffTool</th>
<th>Relative Intensity</th>
<th>Distance manually measured with ImageJ</th>
<th>Distance in La(OH)$_3$ PDF n° 00-036-1481</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff010</td>
<td>La(OH)$_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.9060</td>
<td>0.3441</td>
<td>100.00</td>
<td>0.332-0.361</td>
<td>0.3263</td>
<td></td>
</tr>
<tr>
<td>3.3450</td>
<td>0.2990</td>
<td>77.50</td>
<td>0.304</td>
<td>0.2826-0.3187</td>
<td></td>
</tr>
<tr>
<td>4.6706</td>
<td>0.2141</td>
<td>43.61</td>
<td>-</td>
<td>0.2136</td>
<td></td>
</tr>
<tr>
<td>5.0745</td>
<td>0.1971</td>
<td>37.23</td>
<td>0.197</td>
<td>0.1929</td>
<td></td>
</tr>
<tr>
<td>5.8032</td>
<td>0.1723</td>
<td>28.58</td>
<td>0.172-0.178</td>
<td>0.1660</td>
<td></td>
</tr>
<tr>
<td>8.3317</td>
<td>0.1200</td>
<td>15.97</td>
<td>-</td>
<td>0.1217</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diffraction</th>
<th>Identification</th>
<th>(1/d nm) measured with DiffTool</th>
<th>Relative Intensity</th>
<th>Distance manually measured with ImageJ</th>
<th>Distance in Ni(OH)$_2$ PDF n°04-012-5845</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff011</td>
<td>Ni(OH)$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1175</td>
<td>0.2429</td>
<td>74.34</td>
<td>0.279</td>
<td>0.269</td>
<td></td>
</tr>
<tr>
<td>4.7145</td>
<td>0.2121</td>
<td>74.77</td>
<td>0.210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.6372</td>
<td>0.1507</td>
<td>87.47</td>
<td>0.150</td>
<td>0.1475-0.1557</td>
<td></td>
</tr>
<tr>
<td>8.1473</td>
<td>0.1227</td>
<td>91.91</td>
<td>0.122</td>
<td>0.1164-0.1290</td>
<td></td>
</tr>
<tr>
<td>9.4115</td>
<td>0.1063</td>
<td>97.62</td>
<td>-</td>
<td>0.1061</td>
<td></td>
</tr>
<tr>
<td>10.4475</td>
<td>0.0957</td>
<td>100.00</td>
<td>-</td>
<td>0.0932</td>
<td></td>
</tr>
</tbody>
</table>
Figure S6: TEM bright field micrograph and electronic diffraction pattern related to the circle, for the sample La$_{1.5}$Mg$_{0.5}$Ni$_7$ corroded for 8 weeks in 8.7M KOH. Interplanar distances are indicated on the diffraction pattern.

Table S2: Electronic diffraction analysis on La$_{1.5}$Mg$_{0.5}$Ni$_7$ sample corroded 8 weeks in 8.7M KOH: comparison between experimental values of interplanar distances and PDF database of Ni(OH)$_2$ and Mg(OH)$_2$

<table>
<thead>
<tr>
<th>1/d</th>
<th>d (nm) measured with DiffTool</th>
<th>Relative Intensity</th>
<th>Distance manually measured with ImageJ</th>
<th>Distance in Ni(OH)$_2$ PDF n°04-012-5845</th>
<th>Distance in Mg(OH)$_2$ PDF n°00-007-0239</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7541</td>
<td>0.2103</td>
<td>100.00</td>
<td>0.236</td>
<td>0.23-0.2328</td>
<td>0.2365</td>
</tr>
<tr>
<td>5.531</td>
<td>0.1808</td>
<td>81.07</td>
<td>0.182</td>
<td>0.182</td>
<td>0.1794</td>
</tr>
<tr>
<td>6.6636</td>
<td>0.1501</td>
<td>62.7</td>
<td>0.152</td>
<td>0.1475-0.1557</td>
<td>0.1494</td>
</tr>
<tr>
<td>8.3229</td>
<td>0.1202</td>
<td>40.59</td>
<td>0.12</td>
<td>0.1164-0.1290</td>
<td>0.1192</td>
</tr>
</tbody>
</table>