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ISIR, CNRS Université Pierre et Marie Curie, Paris

Email: surname.name@upmc.fr

Abstract—The versatility of nanodevices dynamics may allow
original architectures for computation but care should be taken
to handle fluctuations arising at this scale. In the network
of oscillatory units which we propose, bistability with down-
quiescent and up-oscillatory states enable tolerance to noise
in storage and retrieval dynamics for patterns or sequences.
We illustrate this by simulations of the stochastic differential
equations for a network with connectivity corresponding to stored
patterns.

I. INTRODUCTION

Computational task like image segmentation or associative
memory including sequences may be implemented through
the dynamics of a network of coupled oscillators [1]. A
major drawback limiting its use in real world applications
is the integration of dynamics for nonlinear systems which
are computationally demanding. Another concern about using
oscillators for computational purpose is their low tolerance to
noise impacting performance. We provide a solution for robust
memory storage in a network of oscillators and propose that
implementation relying on the dynamics of nanodevices, like
magnetic tunnel junctions [2], would render oscillator-based
computation amenable to real world applications.

II. OSCILLATORY UP-STATE AND QUIESCENT

DOWN-STATE

A. Dynamics of the bistable oscillator

The network consist of units described by two coupled state
variables (s, φ) with the following dynamics:

ds

dt
= −s+ w0f(s) + σ(cosφ− I0) + Iext + dξt

dφ

dt
= ω + (β − ρs)sinφ

Apart from linear relaxation, the dynamics for s includes
three nonlinear inputs: self-feedback modulated by w0 where
f is a smooth approximation of the Heaviside-step function
thresholded at 0.5, feedback from the oscillatory variable and
external inputs from stimulation and/or other units in the
network. The parameters are listed in Table I and the particular
values in forthcoming figures were guided by previous studies
in a deterministic framework [1]. The model we consider here
includes stochastic perturbation by independent Gaussian pro-
cesses ξt with 0 mean, variance 1 and no temporal correlation.
The constant input to the s variable I0 is thus chosen so
that units converge to the stable fixed point (0, φ0) in the
deterministic case. The stochastic dynamics were integrated
using a strong order 1 Taylor scheme [3].

A first case is illustrated in Figure 1 with a single unit,
s = (s) and φ = (φ), for 3 values of nonlinear feedback.

TABLE I. PARAMETER VALUES USED IN THE SIMULATIONS

Parameter name Parameter value

β: self-coupling of φ 1.2

ω: intrinsic frequency 1.

ρ: s to φ coupling .9

σ: φ to s coupling .9

d: noise intensity (2.std) .1 (varied)

w0: self-coupling of s 1 (varied)

f(s): soft thresholding function
tanh(10(s−0.5))−1

2

I0: pulse strength 1

N : Number of units 225

K: number of active units in a pattern 30
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Fig. 1. Time course of s for a single unit at 3 values of feedback gain w0.
Transition to oscillatory up state after transient stimulation with a short pulse
occurs when feedback is strong enough. The shaded area denotes the time
interval during which stimulation is applied.

After transient stimulus, Iext = I0, is applied the system is
confined close to the up-state limit cycle of the deterministic
system if feedback is strong enough whereas it stays close to
the resting state for weak feedback. As shown by the trajectory
at w0 = 0.7, some noise driven excursion close to the up-state
are possible but those are not frequent and transient.

B. Coupling for an associative memory

To implement associative memory in a network of N
units, we consider 3 binary patterns (p(1),p(2),p(3)) with

N entries, K being non-zero (K = O(
√
N)), [and non-

overlapping across patterns for simplicity]. Maintenance or
recall of a pattern is encoded in the activity si corresponding to
non-zero entries of the pattern. Each unit receive inputs from
external stimuli when it is presented and from other units of
the network, for a unit of index i:

Iexti = p
(k)
i (t) +

∑

j

wjif(sj).
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Fig. 2. Sequence maintenance: (UP) Snapshots of activity in the network
over a sequence cycle. (DOWN-LEFT) Dynamics for the ovelaps. Patterns
are triggered sequentially via stimulation pulses of the full pattern. (DOWN-
RIGHT) Sequence trajectory in reduced space.

A pattern p is stored by connecting units according to their
co-occurence in stored patterns:

wij =
1

K

∑

k∈(1,2,3)

p
(k)
i p

(k)
j .

This type of symmetric connections are commonly used in neu-
ronal network [4] were memory retrieval is achieved through
a fixed point. The same type of dynamics are achieved when
both ρ and σ are 0 but for the parameters listed in Table I the
memory of the pattern is maintained via a limit cycle.

III. SEQUENCE STORAGE AND ROBUSTNESS ASSESMENT

A. The sequence trajectory

To account for the retrieval of a pattern, it is useful to
monitor the overlap between the activity of the network and
the stored patterns:

o
(k)
t = st.p

(k).

Morever, when patterns are stimulated sequentially, the
dynamics of the network activity cycle with overlaps having
phase difference corresponding to the differences in timing
when pulse inputs were triggered.

The dynamics of the network can thus be mapped to the
plane by restricting the trajectories to the 2 first principal com-
ponents and different sequences will have different trajectories
in this plane. This is illustrated in Figure 2-(DOWN-RIGHT)
when storing p1 → p2 → p3 (green) and p1 → p3 → p2

(blue). The two trajectories are separable as their cycle have
different orientations.

B. Robustness of the storage

To investigate the separability of the stored patterns, we
considered the correlation between the normalized overlaps,
which is negative when patterns can be well separated. We
compute the average separability across pattern pairs for vari-
ous intensity of the noise:

S ∝
∑

k 6=l

∑

t

o
(k)
t .o

(l)
t .
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Fig. 3. Robustness of stored patterns: separability S of the patterns for various
noise intensities. Trajectory in reduced space for low, intermediate and high
noise intensities are also depicted as insets.

In Figure 3, as separability degrades under increasing noise
strength, we compare the sequence trajectories. For weak
noise, the patterns are separable and their stimulation order
can be determined. For intermediate noise, the patterns may
be decoded but their stimulation order is lost because the cycle
has no specific orientation. Finally for strong noise intensity,
patterns cannnot be distinguished at all.

IV. CONCLUSION

We demonstrated the storage of a sequence in the dynamics
of a network of bistable oscillators and presented analysis
tool to asses its robustesnes under noisy input. If implemented
with magnetic tunnel junctions, the model we propose would
provide an efficient solution to the robust storage of sequences.

More sophisticated scenarios like retrival of a sequence
from presentation of the first element could be studied and ad-
ditional mechanism (like winner-take-all via global inhibition)
could be considered to enhance robustness.
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