Robust sequence storage in bistable oscillators
David Colliaux, Pierre Bessière, Jacques Droulez

To cite this version:
David Colliaux, Pierre Bessière, Jacques Droulez. Robust sequence storage in bistable oscillators. Nanoarch 2014, Jul 2014, France. 2 p. hal-01025504

HAL Id: hal-01025504
https://hal.archives-ouvertes.fr/hal-01025504
Submitted on 18 Jul 2014
Robust sequence storage in bistable oscillators

David Coliaux, Pierre Bessière and Jacques Droulez
ISIR, CNRS Université Pierre et Marie Curie, Paris
Email: surname.name@upmc.fr

Abstract—The versatility of nanodevices dynamics may allow original architectures for computation but care should be taken to handle fluctuations arising at this scale. In the network of oscillatory units which we propose, bistability with down-quiet and up-oscillatory states enable tolerance to noise in storage and retrieval dynamics for patterns or sequences. We illustrate this by simulations of the stochastic differential equations for a network with connectivity corresponding to stored patterns.

I. INTRODUCTION

Computational task like image segmentation or associative memory including sequences may be implemented through the dynamics of a network of coupled oscillators [1]. A major drawback limiting its use in real world applications is the integration of dynamics for nonlinear systems which are computationally demanding. Another concern about using oscillators for computational purpose is their low tolerance to noise impacting performance. We provide a solution for robust memory storage in a network of oscillators and propose that implementation relying on the dynamics of nanodevices, like magnetic tunnel junctions [2], would render oscillator-based computation amenable to real world applications.

II. OSCILLATORY UP-STATE AND QUIESCENT DOWN-STATE

A. Dynamics of the bistable oscillator

The network consist of units described by two coupled state variables \((s, \phi)\) with the following dynamics:

\[
\begin{align*}
\frac{ds}{dt} &= -s + w_0 f(s) + \sigma (\cos \phi - I_0) + I_{ext} + d\xi_t \\
\frac{d\phi}{dt} &= \omega + (\beta - \rho s) \sin \phi
\end{align*}
\]

Apart from linear relaxation, the dynamics for \(s\) includes three nonlinear inputs: self-feedback modulated by \(w_0\) where \(f\) is a smooth approximation of the Heaviside-step function thresholded at 0.5, feedback from the oscillatory variable and external inputs from stimulation and/or other units in the network. The parameters are listed in Table I and the particular values in forthcoming figures were guided by previous studies in a deterministic framework [1]. The model we consider here includes stochastic perturbation by independent Gaussian processes \(\xi_t\) with 0 mean, variance 1 and no temporal correlation. The constant input to the \(s\) variable \(I_0\) is thus chosen so that units converge to the stable fixed point \((0, \phi_0)\) in the deterministic case. The stochastic dynamics were integrated using a strong order 1 Taylor scheme [3].

A first case is illustrated in Figure 1 with a single unit, \(s = (s)\) and \(\phi = (\phi)\), for 3 values of nonlinear feedback. After transient stimulus, \(I_{ext} = I_0\), is applied the system is confined close to the up-state limit cycle of the deterministic system if feedback is strong enough whereas it stays close to the resting state for weak feedback. As shown by the trajectory at \(w_0 = 0.7\), some noise driven excursion close to the up-state are possible but those are not frequent and transient.

B. Coupling for an associative memory

To implement associative memory in a network of \(N\) units, we consider 3 binary patterns \((p_i^{(1)}, p_i^{(2)}, p_i^{(3)})\) with \(N\) entries, \(K\) being non-zero \((K = O(\sqrt{N}))\), [and non-overlapping across patterns for simplicity]. Maintenance or recall of a pattern is encoded in the activity \(s_i\) corresponding to non-zero entries of the pattern. Each unit receive inputs from external stimuli when it is presented and from other units of the network, for a unit of index \(i:\)

\[
I_i^{ext} = p_i^{(k)}(t) + \sum_j w_{ji} f(s_j).
\]
A pattern p is stored by connecting units according to their co-occurrence in stored patterns:

$$w_{ij} = \frac{1}{K} \sum_{k \in \{1,2,3\}} p_{i}^{(k)} p_{j}^{(k)}.$$

This type of symmetric connections are commonly used in neuronal network [4] where memory retrieval is achieved through a fixed point. The same type of dynamics are achieved when both ρ and σ are 0 but for the parameters listed in Table I the memory of the pattern is maintained via a limit cycle.

III. SEQUENCE STORAGE AND ROBUSTNESS ASSESSMENT

A. The sequence trajectory

To account for the retrieval of a pattern, it is useful to monitor the overlap between the activity of the network and the stored patterns:

$$o_{t}^{(k)} = s_{t} p^{(k)}.$$

Moreover, when patterns are stimulated sequentially, the dynamics of the network activity cycle with overlaps having phase difference corresponding to the differences in timing when pulse inputs were triggered.

The dynamics of the network can thus be mapped to the plane by restricting the trajectories to the 2 first principal components and different sequences will have different trajectories in this plane. This is illustrated in Figure 2-(DOWN-RIGHT) when storing $p_1 \rightarrow p_2 \rightarrow p_3$ (green) and $p_1 \rightarrow p_3 \rightarrow p_2$ (blue). The two trajectories are separable as their cycle have different orientations.

B. Robustness of the storage

To investigate the separability of the stored patterns, we considered the correlation between the normalized overlaps, which is negative when patterns can be well separated. We compute the average separability across pattern pairs for various intensity of the noise:

$$S \propto \sum_{k \neq l} \sum_{t} \overline{r_{t}^{(k)}} \overline{r_{t}^{(l)}}.$$

In Figure 3, as separability degrades under increasing noise strength, we compare the sequence trajectories. For weak noise, the patterns are separable and their stimulation order can be determined. For intermediate noise, the patterns may be decoded but their stimulation order is lost because the cycle has no specific orientation. Finally for strong noise intensity, patterns cannot be distinguished at all.

IV. CONCLUSION

We demonstrated the storage of a sequence in the dynamics of a network of bistable oscillators and presented analysis tool to assess its robustness under noisy input. If implemented with magnetic tunnel junctions, the model we propose would provide an efficient solution to the robust storage of sequences.

More sophisticated scenarios like retrieval of a sequence from presentation of the first element could be studied and additional mechanism (like winner-take-all via global inhibition) could be considered to enhance robustness.

ACKNOWLEDGMENT

This work was supported by the european project FP7 BAMBI.

REFERENCES

