Molecular Dynamics Simulations and Kapitza Conductance Prediction of Si/Au Systems Using the New Full 2NN MEAM Si/Au Cross-Potential - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Heat Transfer Année : 2012

Molecular Dynamics Simulations and Kapitza Conductance Prediction of Si/Au Systems Using the New Full 2NN MEAM Si/Au Cross-Potential

Résumé

Superlattices made by superposing dielectric and metal nanolayers are of great interest as their small size restricts the thermal energy carrier mean free path, decreasing the thermal conductivity and thereby increasing the thermoelectric figure of merit. It is, therefore, essential to predict their thermal conductivity. Potentials for Au and Si are discussed, and the potential of second nearest-neighbor modified embedded atom method (2NN MEAM) is chosen as being the best for simulating heat transfer in Si/Au systems. Full 2NN MEAM Si/Au cross-potential parameterization is developed, and the results are compared with ab initio calculations to test its ability to reproduce local density approximation (LDA) calculations. Volume-constant (NVT) molecular dynamics simulations are performed to deposit Au atoms on an Si substrate by physical vapor deposition, and the results of the intermixing zone are in good agreement with the Cahn and Hilliard theory. Nonequilibrium molecular dynamics simulations are performed for an average temperature of 300 K to determine the Kapitza conductance of Si/Au systems, and the obtained value of 158 MW/m 2 K is in good agreement with the results of Komarov for Au deposited on isotopically pure Si- 28 and natural Si, with values ranging between 133 and 182 MW/m2 K.
Fichier non déposé

Dates et versions

hal-01024971 , version 1 (16-07-2014)

Identifiants

Citer

Carolina Abs da Cruz, Patrice Chantrenne, Xavier Kleber. Molecular Dynamics Simulations and Kapitza Conductance Prediction of Si/Au Systems Using the New Full 2NN MEAM Si/Au Cross-Potential. Journal of Heat Transfer, 2012, 134 (6), pp.062402. ⟨10.1115/1.4005746⟩. ⟨hal-01024971⟩
24 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More