Pressure-driven radial flow in a Taylor-Couette cell - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Fluid Mechanics Année : 2010

Pressure-driven radial flow in a Taylor-Couette cell

Résumé

A generalized solution for pressure-driven flow through a permeable rotating inner cylinder in an impermeable concentric outer cylinder, a situation used commercially in rotating filtration, is challenging due to the interdependence between the pressure drop in the axial direction and that across the permeable inner cylinder. Most previous approaches required either an imposed radial velocity at the inner cylinder or radial throughflow with both the inner and outer cylinders being permeable. We provide an analytical solution for rotating Couette-Poiseuille flow with Darcy's law at the inner cylinder by using a small parameter related to the permeability of the inner cylinder. The theory works for suction, injection and even combined suction/injection, when the axial pressure drop in the annulus is such that the transmembrane pressure difference reverses sign along the axial extent of the system. Corresponding numerical simulations for finite-length systems match the theory very well.

Dates et versions

hal-01024690 , version 1 (16-07-2014)

Identifiants

Citer

Nils Tilton, Denis Martinand, Eric Serre, Richard M. Lueptow. Pressure-driven radial flow in a Taylor-Couette cell. Journal of Fluid Mechanics, 2010, 660, pp.527-537. ⟨10.1017/S0022112010003228⟩. ⟨hal-01024690⟩
45 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More