Online Asynchronous Distributed Regression

Abstract : Distributed computing offers a high degree of flexibility to accommodate modern learning constraints and the ever increasing size of datasets involved in massive data issues. Drawing inspiration from the theory of distributed computation models developed in the context of gradient-type optimization algorithms, we present a consensus-based asynchronous distributed approach for nonparametric online regression and analyze some of its asymptotic properties. Substantial numerical evidence involving up to 28 parallel processors is provided on synthetic datasets to assess the excellent performance of our method, both in terms of computation time and prediction accuracy.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01024673
Contributeur : Gérard Biau <>
Soumis le : mercredi 16 juillet 2014 - 15:08:14
Dernière modification le : jeudi 27 avril 2017 - 09:46:24
Document(s) archivé(s) le : lundi 24 novembre 2014 - 16:34:32

Fichiers

biauzenine.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01024673, version 1
  • ARXIV : 1407.4373

Collections

INRIA | INSMI | UPMC | LSTA | PSL | USPC | PMA

Citation

Gérard Biau, Ryad Zenine. Online Asynchronous Distributed Regression. 2014. 〈hal-01024673〉

Partager

Métriques

Consultations de la notice

548

Téléchargements de fichiers

164