
HAL Id: hal-01024287
https://hal.science/hal-01024287

Preprint submitted on 17 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Evaluation of Hyper-Rectangular Blocks of
Update Operations Applied to General Data Structures

Mugurel Ionut Andreica, Andrei Grigorean, Andrei Parvu, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Andrei Grigorean, Andrei Parvu, Nicolae Tapus. Efficient Evaluation of
Hyper-Rectangular Blocks of Update Operations Applied to General Data Structures. 2013. �hal-
01024287�

https://hal.science/hal-01024287
https://hal.archives-ouvertes.fr


Efficient Evaluation of Hyper-Rectangular Blocks
of Update Operations Applied to General Data

Structures
Mugurel Ionuţ Andreica∗, Andrei Grigorean†, Andrei Pârvu∗ and Nicolae Ţăpuş∗

∗Computer Science Department
Politehnica University of Bucharest,

Splaiul Independenţei 313, sector 6, Bucharest, Romania, RO-060042
Email: mugurel.andreica@cs.pub.ro, andrei.prv@gmail.com, nicolae.tapus@cs.pub.ro

†Faculty of Mathematics and Computer Science,
University of Bucharest,

Str. Academiei 14, sector 1, Bucharest, Romania, RO-010014
Email: andrei.grigorean@gmail.com

Abstract—In this paper we present novel solutions for the
following problem: We have a general data structure DS and a
set of update operations organized into a D-dimensional cube
of side N (thus, there are ND update operations). We are
interested in efficiently evaluating range queries of the following
type: compute the result of applying all the update operations
within a hyper-rectangular block of the D-dimensional cube
to DS (considering that DS is initially empty). The result
of applying the updates consists of computing some aggregate
values over the data structure. We consider that the order of
applying the updates is irrelevant (i.e. the update operations
are commutative) and that the aggregate results corresponding
to a block of updates cannot easily be computed by combining
the results of a set of sub-blocks whose disjoint union is B.
However, the results can be efficiently maintained after each
update operation, if the operations are performed sequentially
in any order.

Keywords—data structures, hyper-rectangular blocks of up-
dates, sequence of updates, range query, block partitioning.

I. INTRODUCTION

Applying a large number of update operations to a data
structure and afterwards computing an aggregate result is an
important scenario which has not received sufficient attention
in the scientific literature so far, particularly when the results
of different sets of updates cannot be easily aggregated.
In this paper we address the situation in which the update
operations are placed in the cells of a D-dimensional cube
of side length N and we want to efficiently evaluate the result
of the application of a subset of these update operations
on an initially empty data structure. The subset of update
operations consists of a hyper-rectangular block of the D-
dimensional cube containing the update operations. We will
consider both the online and the offline case and we will
also place emphasis on scenarios where D is small (e.g. when
D = 1 the update operations are placed in a sequence and we
are interested in applying contiguous subsequences of update
operations to the data structure). Our results hold for any
type of data structure and any type of updates specific to it.
In this paper we will present solutions which are capable
of evaluating the result of the applications of the update
operations without actually applying each update operation
on the data structure each time. In order to achieve this we
first need to preprocess the D-dimensional cube of update
operations and precompute multiple values.

The rest of this paper is structured as follows. In Section
II we define the problem statement clearly. In Section III we
present a solution for the online case (i.e. the queries are
answered as they come, one at a time). In Section IV we
improve the memory requirements of the solution presented
in Section III for the case D = 1 and all the queries are
available offline. In Section V we discuss several applications
of our solutions. In Section VI we present experimental
evaluation results for the solutions proposed in this paper.
In Section VII we discuss related work and in Section VIII
we conclude and discuss future work.

II. PROBLEM STATEMENT

We consider that we have a data structure DS on which we
can apply certain update operations. The update operations
are placed in the cells of a D-dimensional cube of side
length N . We will denote by Op(c(1), . . . , c(D)) the update
operation located in the cell (c(1), . . . , c(D)) of the cube
(1 ≤ c(i) ≤ N , 1 ≤ i ≤ D). The data structure
is capable of efficiently maintaining some aggregate result
values after applying each update operation. The result values
are independent of the order in which a given subset of
update operations are applied (i.e. the update operations are
commutative).

We are interested in efficiently answering queries of the
following type: Given a hyper-rectangle

∏
[l(i), h(i)] (1 ≤

l(i) ≤ h(i) ≤ N , 1 ≤ i ≤ D), apply all the update operations
Op(c(1), . . . , c(D)) with l(i) ≤ c(i) ≤ h(i) (1 ≤ i ≤ D)
to an initially empty data structure and return the result
values maintained by the data structure after applying all the
operations.

III. ONLINE SOLUTION

We will consider that the side of the cube in each di-
mension is split into groups of size K (except possibly for
the last group, which may contain fewer than K elements).
We will define G(i) = (i − 1)/K + 1 as the group to
which the coordinate i belongs. We will now consider the
D-dimensional cube CG of side length (N + K − 1)/K,
where CG(c(1), . . . , c(D)) is a sub-cube of the original cube
consisting of the operations Op(c′(1), . . . , c′(D)) such that



G(c′(i)) = c(i) (1 ≤ i ≤ D). Note that we consider integer
division throughout this paper.

We will compute an instance of our data structure
for each possible hyper-rectangle contained in CG. Let
DSI(a(1), . . . , a(D), b(1), . . . , b(D)) be the data structure
after applying all the update operations from the entries
(c(1), . . . , c(D)) of CG such that a(i) ≤ c(i) ≤ b(i)
(1 ≤ i ≤ D). For a(i) = b(i) (for all 1 ≤ i ≤ D) we will
compute the data structure instance by sequentially applying
all the update operations in the range. When a(i) < b(i)
for at least one value of i (1 ≤ i ≤ D) we can either
compute the data structure instance from scratch (by applying
all the update operations in the range) or we can create a
copy of DSI(a(1), . . . , a(D), b(1), . . . , b(i) − 1, . . . , b(D))
and then apply to this copy the remaining update operations
(i.e. all the update operations corresponding to full-subcubes
CG(c(1), . . . , c(D)) where c(i) = b(i) and a(j) ≤ c(j) ≤
b(j) for (1 ≤ j ≤ D, j 6= i). Note that we assumed
that the data structure instances are computed as follows:
we choose the tuple (a(1), . . . , a(D)) and then the tuples
(b(1), . . . , b(D)) are considered in ascneding order of their
sum (i.e. b(1) + . . .+ b(D)), breaking ties arbitrarily in case
of equal sums.

By using this preprocessing approach we end up com-
puting O((N/K)2·D) data structure instances. Each data
structure instance can be computed with O((N/K)D−1 ·KD)
applications of update operations to a data structure instance.
Thus, the overall number of applications of update operations
of the preprocessing algorithm is O((N/K)3·D−1 ·KD). A
good choice of the parameter K is

√
N . In this case the

number of applied update operations is O(N2·D−0.5). For
D = 1, the overall number of update operations applied to
the data structure is of the order O(N ·

√
N).

In order to answer a query for a hyper-rectangle∏
[l(i), h(i)] (1 ≤ i ≤ D) we will proceed as follows.

We will start from a copy of DSI(G(l(i)) + 1(1 ≤ i ≤
D), G(h(i)) − 1(1 ≤ i ≤ D)) (if we have G(l(i)) + 1 >
G(h(i)) − 1 for some value of i then we start with an
empty data structure). Then we will apply to the initial
data structure all the update operations Op(c(1), . . . , c(D))
(l(i) ≤ c(i) ≤ h(i), 1 ≤ i ≤ D) such that G(c(i)) = G(l(i))
or G(c(i)) = G(h(i)) for at least one value of i. An easy
way to accomplish this is by choosing each dimension i
independently and ranging all the coordinates c(j 6= i)
(1 ≤ j ≤ D) between their lower and upper bounds. If
G(l(i)) = G(h(i)) the coordinate c(i) will be varied from
l(i) to h(i). Otherwise, we first vary it from l(i) to the
last coordinate in the same group as l(i) (i.e. the coordinate
G(l(i)) · K) and then we vary it from the first coordinate
in the group G(h(i)) (i.e. (G(h(i)) − 1) · K + 1) to h(i).
However, when D ≥ 2, we need to make sure to not apply
the same update operation multiple times (if needed, we can
maintain a hash table with the update operations which were
already applied for this query).

There are O(2·D ·KD ·(N/K)D−1) update operations left
to be applied to the starting data structure for each processed
query. When K =

√
N the number of applied update

operations needed for answering a query is O(D ·ND−0.5)
(plus we need to consider the time to create a copy of a
data structure instance, in case the data structure is large).
Note that the naive solution needs to apply O(ND) update

operations in order to answer a query. When D = 1 we need
only O(

√
N) applied update operations in order to answer a

query using our solution.

IV. OFFLINE SOLUTION FOR D = 1

For the case D = 1 we will provide an offline solution
which uses less memory than the solution presented in the
previous section. If we implement that solution we end up
storing O(N) data structure instances. We will see how we
can solve the problem by using only one data structure
instance in the offline case. When D = 1 we will denote
the query interval [l(1), h(1)] by [l, h].

First of all, each query for which h − l + 1 ≤ 2 ·K will
be processed directly by applying all the update operations
on an initially empty data structure. If creating an empty
copy of the data structure each time is too expensive then
we can always use the same empty data structure and, after
applying the update operations for a query, we will undo
them in order to get back to an empty data structure. We
discuss the possibility of supporting undo operations later in
this section.

In the other cases we will sort the queries in ascending
order of the value G(l) (and, in case of ties, in ascending
order of G(h)). Let’s assume that we are now processing all
the queries with G(l) = i. We will sort all these queries in
ascending order of their G(h) value. We will start with an
empty data structure instance. Then, for j = i + 2 up to
j = (N +K − 1)/K:

1) We will apply all the update operations Op(c) with
G(c) = j − 1 to our data structure instance.

2) We will consider all the queries with G(l) = i and
G(h) = j (note that these queries are positioned
consecutively in the sorted order, right after all the
queries with G(l) = i and G(h) = j−1). For each such
query we start from our data structure instance and we
apply to it the update operations Op(c) with c ≥ l such
that G(c) = G(l) and all the update operations Op(c′)
with c′ ≤ h and G(c′) = G(h).

3) We compute the answer to the query (now the data
structure instance has all the operations from the inter-
val [l, h] applied to it).

4) We restore our data structure instance to the state before
Step 2. If the update operations are invertible then
we can achieve this by applying the inverse update
operation for each update operation applied in Step 2.
Otherwise, in order to maintain the efficiency of our
approach, the data structure needs to efficiently support
an undo operation. For instance, many common data
structures which can be efficiently made persistent can
support an undo operation by reverting to the version
before applying the updates from Step 2. In case the
data structure does not have an undo operation we can
use the generic algoritm described in subsection IV-A.

Note that the total number of operations applied for
answering all the queries is O(N ·

√
N) plus O(

√
N) per

query (when K =
√
N ), which is basically the same as in

the online solution. However, the memory consumption is
reduced (only one data structure instance is maintained at all
times).



A. Generic Undo Algorithm

We need to be ale to undo the O(K) operations performed
on our data structure instance during Step 2 of the presented
algorithm (or when handling queries for which h− l + 1 ≤
2 ·K). We can achieve this as follows. We will maintain a
stack S, which is initially empty. While applying the update
operations, every time a field of the data structure is modified
we push on the stack the name of the field (or a reference
to it) together with its old value. Then, in order to undo
all the update operations, we simply pop the top element
from the stack as long as the stack is not empty and set
the corresponding field of the data structure to its old value
(also stored in the stack). Note that it is possible for the
same data structure field to appear multiple times in the stack,
but this poses no problem. By using this method the overall
theoretical time complexity of our solution does not increase.
Moreover, this method is applicable to any data structure, as
long as we have access to its implementation.

V. APPLICATIONS

In this section we present several applications of our
solutions from the previous two sections.

A. Counting Connected Components for Contiguous Subse-
quences of Edges

Let’s consider that we have an undirected (multi-)graph
with N vertices and M edges. Its edges are placed in a
sequence (e.g. they are time-stamped and ordered in increas-
ing order of the time stamps): e(1), . . . , e(M). We want to
efficiently evaluate the following types of queries: Given an
interval [i, j], compute the number of connected components
of the graph if only the edges e(i), . . . , e(j) are considered.

If we choose the data structure to be the disjoint sets
Union-Find data structure [9], then we can consider each
edge to be a union operation. Moreover, the data structure is
augmented in order to maintain the number of current disjoint
sets (in an empty data structure this number is N ). After
each successful union (i.e. when two different sets are joined
together) the number of sets decreases by 1 (note that the
number of disjoint sets at any time is exactly the number of
connected components of the graph).

Thus, we can immediately apply our results for D = 1 to
this problem in order to obtain a solution with O(M ·

√
M)

applications of the union operation during the preprocessing
stage and O(

√
M)) applications of the union operation for

answering each query. Note that the offline solution can also
be used. The Union-Find data structure has been augmented
in order to support Undo operations [4], [7]. However, even
without this augmentation, we can still apply the generic
technique mentioned in the previous section.

This problem was also considered in [5], where a more
efficient, but more specific solution was proposed.

B. Counting Black Cells in Multidmensional Cubes under
Range Set Updates

Let’s consider that we have an F -dimensional cube MC
of side length G. Each cell of the cube can be either white or
black (initially all the cells are white). An update operation
specifies a hyper-rectangle fully contained in the cube and
sets all the cells within that hyper-rectangle to the color black.
A query asks for the total number of black cells in MC. An

efficient data structure for supporting such range update oper-
ations is a multidimensional region quadtree. Each quadtree
node is associated to a hyper-cube fully contained in the
original cube. The root node of the quadtree is associated to
the whole cube MC. The leaves of the quadtree correspond to
the unit cells of the cube. All the nodes except for the leaves
have 2F children - each child is associated with a hyper-cube
with side length equal to half of the side length of the parent’s
hyper-cube. The union of the zones of the children is equal
to the zone of the parent. For a more detailed description of
multidimensional quad-trees see [14].

The quadtree can support the update operation as follows.
Each quadtree node will maintain the total number of black
cells inside its zone and whether the zone is fully black or
not (moreover, it will also store the total number of cells in
its zone). Thus, the number of black cells stored by the root
will represent the number of black cells in the whole cube.
An update operation proceeds as follows. Let’s denote by H
the hyper-rectangle corresponding to the update operation.
We start with the root as the current node. Let’s assume now
that the current node of the quadtree which is being visited
is v. If v is marked as being fully black then we simply do
not process v further, because its zone is already all black.
If v’s zone is not all black, then if H fully includes v’s zone
then we mark v’s zone as being fully black and we set its
number of black cells to the total number of black cells of the
zone. If, however, H does not fully include v’s zone, then we
consider each child w of v. If H intersects w’s zone, then
we apply this procedure recursively with w as the current
node. Before making a recursive call we decrease v’s number
of black cells by w’s (current) number of black cells. After
returning from the recursive call we add the (now updated)
number of black cells from w’s zone to the number of black
cells corresponding to v.

After each update the total number of black cells in the
whole cube can be found at the root of the multidimensional
quadtree. Note that this procedure also supports range queries
(i.e. compute the number of black cells in a given hyper-
rectangular block H). The query algorithm is similar to the
update algorithm. We start at the root and whenever we reach
a node v which is all black we add to the answer the number
of cells in the intersection between H and v’s zone. If v is
not all black then we apply the recursive procedure for all
the children of v which intersect H (if any).

The range update operations can be placed in a sequence
(for D = 1) or in a multidimensional cube (for D ≥ 2) and
we want to evaluate the effect a hyper-rectangle of update
operations has on an initially white multidimensional cube
MC. We can immediately apply our solutions presented in
sections III and IV for this problem.

Note that instead of a multidimensional quadtree we could
have used a region kd-tree (also named bintree in the litera-
ture [14]).

C. Counting Black Cells in Multidmensional Cubes under
Range Flip Updates

In this subsection we consider the same problem as in
the previous subsection, except that a range update operation
”flips” the color of all the cells from a given hyper-rectangle
included in MC (i.e. if the cell was white it become black,
and if it was black it becomes white). These operations are



also commutative, just like the range set operations from the
previous subsection.

We will use the same multidimensional quadtree data
structure. We will first describe how an update operation can
be efficiently supported by the quadtree. For each quadtree
node we will maintain the same values as before. However,
instead of maintaining the information whether the node is all
black, we will maintain a flipped bit indicating whether the
node was flipped and this flip operation was not propagated
to its descendants in the tree (initially no node is flipped).
The update procedure is also a recursive procedure starting
at the root. Let’s assume that the current node is v. If v is
marked as being flipped and v has any children, then we
unmark v from being flipped and we change the value of the
flipped bit of each child w of v (from 0 to 1, or from 1 to
0). Moreover, we set the number of black cells of each child
w of v to the total number of cells in w’s zone minus the
current number of black cells in w’s zone. Then, if v’s zone
is fully included in the update hyper-rectangle H we change
v’s flipped bit value (from 0 to 1, or from 1 to 0) and then
we set its number of black cells to the total number of cells
in v’s zone minus the current number of black cells in v’s
zone. If v’s zone is not fully contained in H , then we will
recursively apply the update procedure for each child w of v
whose zone intersects H . Just like in the previous subsection,
before making a recursive call we decrease v’s number of
black cells by w’s (current) number of black cells. After
returning from the recursive call we add the (now updated)
number of black cells from w’s zone to the number of black
cells corresponding to v.

After each update operation the root of the multidimen-
sional quadtree contains the number of black cells in the
multidimensional cube MC. Like in the previous case, this
data structure can also support range queries (i.e. compute
the number of black cells in a given hyper-rectangle H). The
query procedure is similar to the update procedure. We start
at the root of the quadtree. Let’s assume that the current node
of the quadtree is v. If v is marked as being flipped, then we
proceed like in the update procedure (we change v’s flipped
bit and the flipped bits and the number of black cells of v’s
children). Then, if v’s zone is fully contained in H we add to
the answer the number of black cells stored by v. Otherwise
we apply the query procedure recursively for each child w
of v whose zone intersects H .

The scenarios applicable to the problem from the previous
subsection are also valid in this case. Also, just like in the
previous subsection, we could use a region kd-tree instead of
a multidimensional quadtree without making any changes to
the update and query procedures.

Some instances of the problems described in subsections
V-B and V-C may appear when a multidimensional binary
data cube (e.g. a black and white image for F = 2) needs to
be updated quickly and multiple times. Such scenarios occur,
for instance, when car driving environments are modeled and
tracked (e.g. the driving environment is modeled as a grid
which is updated dynamically [10]).

VI. EXPERIMENTAL EVALUATION

We implemented both the naive and our optimized solution
for the problem presented in subsection V-A. The code was
written in C/C++ and compiled with the G++ compiler

version 3.3.1. The tests were run on a machine running
Windows 7 with an Intel Atom N450 1.66 GHz CPU and
1 GB RAM. We considered a graph with N = 4096 vertices
and M = 65536 randomly generated edges. We generated
65536 random queries, with the length of each query interval
randomly chosen between LMIN and M . We considered
three values for LMIN : 1, 1000 and 30000, and we ran
5 different tests (with the graph and the set of queries
regenerated each time). We used K =

√
M = 256.

For LMIN = 1 the naive solution ran in 361.92 seconds
and our optimized solution (the offline version described in
section IV) ran in 8.50 seconds (the reported time is the
total time for all the 5 tests). For LMIN = 1000 the naive
solution took 384.44 seconds and our optimized solution took
8.60 seconds, while for LMIN = 30000 the naive solution
took 843.63 seconds and our optimized solution took 7.50
seconds. We also considered an extra optimization for the
naive solution: stop performing unions for each query when
the number of connected components became 1 (because the
number of connected components cannot decrease below 1).
The total running times were: 264.97 seconds (for LMIN =
1), 258.13 seconds (for LMIN = 1000) and 403.70 seconds
(for LMIN = 30000).

We can see that our optimized solution is more than 40
times faster than the standard naive solution and more than
30 times faster than the optimized naive solution.

VII. RELATED WORK

Our solution makes use of a multidmensional block par-
titioning technique, which, in itself, is not a novel idea.
Single- and multi-dimensional block partitioning techniques
have been used before for speeding up range query processing
[1], [2], [3], [12], [13]. References [2], [3] also specifically
consider the possibility of efficiently handling range updates.
However, it is assumed that the effect of the updates can be
efficiently aggregated, unlike the scenario considered in this
paper (when the effect of a set of update operations cannot
be summarized and represented with a significantly lower
complexity than listing the individual update operations).
We would like to take this opportunity to correct a small
error from [3]. The first instruction of the STrangeQueryN-
odeIncl(node, a, b, dr) function should be: if (node.dim
> 1) then return mop(STrangeQuery(node.Tcovering,
lnode.dim−1, hnode.dim−1, dr), a, b). Moreover, the dr param-
eter should be added as the last argument of all the STrange*
functions and passed along whenever these functions are
called. Also, the STpushUpdates function doesn’t need to
be used (called) in the case of the multidimensional segment
tree.

The block partitioning technique has also been employed
when only range queries over a set of unmodifiable data are of
interest. For instance, range mode queries solutions using this
technique were presented in [6]. This method was also used
as part of a solution for efficienly answering range minimum
queries in multidimensional arrays [15].

Our offline solution for the 1D case assumes that the data
structure on which the update operations are applied can
efficiently support undo operations. Although we presented
a general undo method in this paper, some data structures
have their own more specific (and potentially more efficient)
undo operations. One such example was already mentioned in



subsection V-A for the Union-Find disjoint set data structure,
for which efficient solutions which can undo any number of
union operations at a time exist [4]. In general, data structures
which support persistence can easily support undo operations,
by simply switching back to the version of the data structure
before the operations were performed. General techniques for
making data structures persistent have been proposed in the
literature [11]. However, full data structure persistence is not
required for undo operations and may introduce unnecessary
overhead or complications. The concept of semi-persistence
was introduced in [8], which is particularly suited to the
possibility of undoing operations on a data structure.

VIII. CONCLUSIONS

In this paper we presented new solutions to the problem
of efficiently applying subsets of update operations to a
data structure, when the update operations are placed in
a multi-dimensional cube and the subset of applied update
operations is a hyper-rectangle contained in this cube. Our
solutions are general enough to be applied to any data
structure and any type of update operations. They are efficient
particularly in the case when the result of applying a subset
of update operations cannot be summarized and represented
with a significantly lower complexity than that of explicitly
representing the update operations themselves. Experimental
results confirmed the practical improvements suggested by
the theoretical analysis.

REFERENCES

[1] M.I. Andreica and N. Ţăpuş, Time Slot Groups - A Data Structure for
QoS-Constrained Advance Bandwidth Reservation and Admission Con-
trol, Proceedings of the 10th IEEE International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing (SYNASC), pp.
354-357, 2008.

[2] M.I. Andreica, Optimal Scheduling of File Transfers with Divisible Sizes
on Multiple Disjoint Paths, Proceedings of the 7th IEEE Romania
International Conference ”Communications”, pp. 155-158, 2008.

[3] M.I. Andreica and N. Ţăpuş, Efficient Data Structures for Online
QoS-Constrained Data Transfer Scheduling, Proceedings of the 7th

IEEE International Symposium on Parallel and Distributed Computing
(ISPDC), pp. 285-292, 2008.

[4] A. Apostolico, G.F. Italiano, G. Gambosi, M. Talamo, The Set Union
Problem With Unlimited Backtracking, Computer Science Technical
Reports, Paper 774, Purdue University, 1989.

[5] M.J. Bannister, C. DuBois, D. Eppstein and P. Smyth, Windows into Re-
lational Events: Data Structures for Contiguous Subsequences of Edges,
Proceedings of the 24th ACM Symposium on Discrete Algorithms,
2013.

[6] T.M. Chan, S. Durocher, K.G. Larsen, J. Morrison and B.T. Wilkinson,
Linear-Space Data Structures for Range Mode Query in Arrays, Pro-
ceedings of the 29th Symposium on Theoretical Aspects of Computer
Science, pp. 1-12, 2012.

[7] S. Conchon and J.-C. Filliâtre, A Persistent Union-Find Data Structure,
ACM SIGPLAN Workshop on ML, 2007.

[8] S. Conchon and J.-C. Filliâtre, Semi-Persistent Data Structures, Proceed-
ings of the 17th European Symposium on Programming, pp. 332-336,
2008.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to
Algorithms, 2nd edition, MIT Press, 2001.

[10] R. Danescu, F. Oniga and S. Nedevschi, Modeling and Tracking the
Driving Environment with a Particle Based Occupancy Grid, IEEE
Transactions on Intelligent Transportation Systems, vol.12 (4), pp. 1331-
1342, 2011.

[11] J.R. Driscoll, N. Sarnak, D.D. Sleator and R.E. Tarjan, Making Data
Structures Persistent, Journal of Computer and System Sciences, vol.
38 (1), pp. 86-124, 1989.

[12] H.-G. Li, T.W. Ling, S.Y. Lee and Z.X. Loh, Range Sum Queries in
Dynamic OLAP Data Cubes, Proceedings of the 3rd International Sym-
posium on Cooperative Database Systems for Advanced Applications,
pp. 74-81, 2001.

[13] C. K Poon, Dynamic Orthogonal Range Queries in OLAP, Theoretical
Computer Science, vol. 296 (3), 2003.

[14] H. Samet, Multidimensional Spatial Data Structures, Handbook of
Data Structures and Applications, Chapter 16, CRC Press, 2005.

[15] H. Yuan and M.J. Atallah, Data Structures for Range Minimum
Queries in Multidimensional Arrays, Proceedings of the 21st ACM-
SIAM Symposium on Discrete Algorithms, pp. 150-160, 2010.


