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CONVERGENCE SPEED OF NONLINEAR LUENBERGER
OBSERVERS∗

VINCENT ANDRIEU †

Abstract. It is shown that under a weak observability assumption, the nonlinear Luenberger
observer exists and ensures an exponential convergence rate of the estimate towards the state of
the system. Moreover, it is shown that under the complete observability assumption, this class
of observers is tunable. More specifically, it is shown that the estimate reaches a predetermined
neighborhood of the state after a parameterizable time.

1. Introduction. State estimation is one of the major problems in control en-
gineering. In the deterministic framework, an algorithm which can solve this problem
is called a state observer. This algorithm is based on the knowledge of a dynamical
model with measured outputs that accurately represents the considered physical phe-
nomena and the sensors available. Since 1964 and the seminal work of Luenberger in
[17], designing an observer for observable linear systems is now well understood. The
approach of Luenberger can be decomposed into two steps. In the first one, a linear
dynamic extension which defines a contraction, uniform in the measured output of
the system, is introduced. In the second step, based on some observability proper-
ties, a linear map is obtained such that, when applied to the state of the dynamic
extension, a state observer is obtained. With this approach, the estimate converges
asymptotically toward the state of the system.

For nonlinear models, the problem is much more complicated and many different
routes have been followed in order to extend this strategy. For instance we can refer
to the popular linearization up to output injection (see for instance [14, 15, 25]). Few
years back, Shoshitaishvili in [27] and more recently Kazantzis and Kravaris in [12]
(see also [16]) have introduced a nonlinear local extension of the linear Luenberger
observer. With their approach, it was shown that the existence of an observer around
an equilibrium was obtained assuming local observability.

Recently, the non-local version of this tool has been studied in [13] and [3]. The
interest of this approach lies in the fact that with a weak observability assumption
(distinguishability of the state based on the past measured outputs), a nonlinear
Luenberger observer exists and provides asymptotic state estimation of trajectories
remaining in a given bounded set.

This observer approach has been employed with success for the design of an
observer for permanent magnet synchronous motors with currents and voltages as
only measurements (see [21]). The asynchronous motors has been studied in [1]. It
has also been used to design an observer for harmonic oscillators in [23].

For linear systems, Luenberger observers have another fundamental property:
their rate of convergence is exponential and configurable. Indeed, it is well known
that when the system is linear and observable it is possible to choose the poles of
the Luenberger observer. This property ensures an exponential decay of the euclidian
norm of the estimation error with a term inside the exponential depending on the
selected poles. In the non-linear context, this property is even more important. For
instance, when we consider the stabilization by output feedback, it is essential to
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ensure a specific convergence rate to get stability of the closed loop system (see [28]
[10] or [4] for instance).

However, although the observer of [3] may ensure the asymptotic convergence of
the estimate toward the state of the system, no characterization of the convergence
speed is given. In this paper, with an extra observability assumption (the infinitesimal
distinguishability property as introduced by Gauthier and Kupka in [9]) it is shown
that the convergence speed of a nonlinear Luenberger observer is exponential and that
the argument of the exponential decay can be selected arbitrary large. Moreover, in
the complete observability context, it is shown that this type of observer may be
tunable (notion introduced in [5]). More precisely, if a precision and a time are given,
it is possible to configure the algorithm to ensure that after this time, the norm of
the estimation error will be smaller than the given accuracy.

The paper is organized as follows. In Section 2.1, the nonlinear Luenberger ob-
server is presented in its global version and one of the results obtained from [3] is
given. The first result which establishes a sufficient condition to get exponential con-
vergence of the nonlinear Luenberger observer is stated in Section 2.4. The main part
of the proof of this result is given in Section 3. The complete observability context
is studied in Section 4. This section provides also a comparison between the two
observability contexts. Section 5 contains all the technical proofs of the results stated
all along the paper. Finally, Section 6 gives the conclusion.

Notations

• All along the paper, for all x in R
n or Cn, |x| denotes the norm 2. In other

word, we have |x| =
√

〈x̄, x〉. If Q is a matrix in C
n×n, |Q| is the induced

norm 2.
• For Q, a m × n complex matrix, Q∗ denotes its conjugate transpose n × m

matrix.
• In denotes the identity matrix in R

n×n.

2. Exponential convergence of nonlinear Luenberger observers.

2.1. Structure of a Nonlinear Luenberger observer. Consider a nonlinear
system described by the following equation1:

ẋ = f(x) , y = h(x) , (2.1)

where f : Rn → R
n and h : Rn → R are two sufficiently smooth functions. For all x

in R
n, the solution of System (2.1) initiated from x at time 0 is denoted X(x, t).

For all x in a given open set A in R
n, the maximal time interval of definition

in A is denoted (σ−
A(x), σ

+
A(x)). More precisely, for all x in A, X(x, t) is in A for

all t in (σ−
A(x), σ

+
A(x)). And if X(x, σ−

A(x)) (respectively X(x, σ+
A(x))) exists, then

X(x, σ−
A(x)) /∈ A (resp. X(x, σ+

A(x)) /∈ A).

Following [27, 12, 13, 3] a nonlinear Luenberger observer is a dynamical system
of the form:

ż = Az + B1my , x̂ = T ∗(z) , (2.2)

1In this paper, for the sake of clarity only mono output time invariant systems are considered.
However, following [21] it is possible to extend all these results (part from Propositions 4.2 and
Proposition 4.3) to time varying systems provided all Assumptions imposed are uniform in the time.
The extension to the multi-output case can also be performed following [3] in which the state z of
the observer is now seen as a matrix.
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with state z (a complex vector) in C
m, A is a diagonal Hurwitz matrix in C

m×m, B1m

in R
m is defined as

B1m = (1, . . . , 1)′ , (2.3)

and T ∗ : Cm → R
n is a continuous functions.

Following [27, 12, 13, 3], the motivation for this structure is to design the mapping
T ∗ as the left inverse of a C1 mapping2 T : A → R

m satisfying

∂T

∂x
(x)f(x) = AT (x) +B1mh(x) . (2.4)

Indeed, it is easy to show that if T is a mapping solution to (2.4) it yields for all x
such that σ+

A(x) = +∞

lim
t→+∞

|Z(z, x, t)− T (X(x, t))| = 0 .

Designing the map T ∗ to a uniformly continuous left inverse of the mapping gives the
asymptotic estimation of the solution with our observer.

Note that in [3], the nonlinear Luenberger observer considered is slightly more
general since the function y 7→ B1my is a nonlinear function of the output. However,
since in our analysis we consider bounded sets, we can restrict ourselves to this specific
case.

2.2. Existence and construction of a nonlinear Luenberger observer.
As shown in [3], one of the the main interests of this approach is that its existence is
guaranteed under some weak observability assumption. Indeed, assume that the past
output path t 7→ h(X(x, t)) restricted to the time in which the trajectory remains in a
certain set is injective in x. Then, it is sufficient to choose m = n+1 generic complex
eigenvalues for A to get the existence of the existence of a function T ∗ making System
(2.2) an observer. The specific observability condition made is :

Assumption 1 ((O, δd)-Backward distinguishability Property). There ex-
ists a bounded open set O of R

n and a strictly positive real number δd such that,
for each pair of distinct points x1 and x2 in O, there exists a negative time t in3
(

max
{

σ−
O+δd

(x1), σ
−
O+δd

(x2)
}

, 0
]

such that :

h(X(x1, t)) 6= h(X(x2, t)) .

This distinguishability assumption says that the present state x can be distin-
guished from other states in an open set containing O by looking at the past output
path restricted to the time in which the solution remains in O + δd.

One of the results obtained in [3] can be reformulated as follows.
Theorem 2.1 ([3] Generic existence of Luenberger observer). Assume System

(2.1) satisfies Assumption 1. Then, for all bounded open set A such that Cl(A) ⊂ O,

2As shown in [3], we don’t need T to be C1 as long as the Lie derivative of T along f exists.
3 Given a subset S ⊆ Rn and a strictly positive real real number δ, S + δ is the open set defined

as ,

S + δ = {x ∈ R
n, ∃ xS ∈ S, |x− xS | < δ} . (2.5)
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there exist a negative real number ρ and zero Lebesgue measure subset Id of4 (Cρ)
n+1

such that for each (λ1, . . . , λn+1) in (Cρ)
n+1 \ Id the following holds. There exists a

continuous function T ∗ and a continuous function β which is decreasing in its second
component such that for all x in A and all z in C

n+1

lim
t→+∞

β(z, t) = 0 ,

and,

|X̂(x, z, t)−X(x, t)| ≤ β(z, t) , ∀ t ∈
[

0, σ+
A(x)

)

, (2.7)

where,

X̂(x, z, t) = T ∗(Z(x, z, t)) ,

and where (Z(x, z, t), X(x, t)) is the solution of System (2.1) and (2.2) with A =
Diag {λ1, . . . , λn+1}.

In [3], this result was not stated in this way. However, it is a direct consequence
of the fact that we restrict our analysis to a bounded set A.

The β function in the previous equation allows us to assess the quality of the
estimate on the time of existence of the solution of the model in the set A. As long
as the solution remains in the set A, the quality of the estimate increases due to the
fact that this function is strictly decreasing with time. Moreover, if for a given initial
condition x in A, the corresponding state trajectory X(x, t) remains in A in forward
time (i.e. σ+

A(x) = +∞), the estimation asymptotically converges to the state. Note
moreover that as shown in [3], the bound exhibits the distance between z and T (x).
Hence, if z was initiated at T (x) then the estimation x̂(t) would follow the true state
of the system.

It may be noticed that since we don’t know the initial state of the system, we
don’t know in general σ+

A(x). Consequently, we don’t know the time length in which
inequality (2.7) holds. However, in practice, we may have an a priori knowledge of a
compact set of initial conditions I included in A. Then, we know that inequality (2.7)
holds at least in maxx∈I σ+(x). Note moreover, that the knowledge of the function β
and the value of the estimate implies that we know a ball in which the true state is.
As long as this ball remains in A, we know that the estimate is valid. From this, we
get the following trivial corollary which gives a time length in which inequality (2.7)
holds.

Corollary 2.2. Assume all assumptions of Theorem 2.1 hold. Let t0 = maxx∈I σ+(x)
and z be in C

n+1. Then inequality (2.7) holds for all x in I and for all t such that
one of the two following items is satisfied.

• t ≤ t0 ;
• t ≥ t0 and for all s in [t0, t] BX̂(x,z,t)(β(z, s)) ⊂ A.

In order to give an explicit realization of the observer, we need first to find a
solution to the partial differential equation (2.4). This equation is the corner stone of
the nonlinear Luenberger observer methodology. Despite the fact that its existence is
ensured with some weak assumptions, obtaining an explicit solution may be a hard

4Cρ is the open subset of C defined as

Cρ = {λ ∈ C : Re(λ) < ρ} , (2.6)

where Re is the real part.
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task. Note however that on some examples this partial differential equation may be
solved as [1, 21, 23]. Note moreover, that it is possible to perform a numerical ap-
proximation of this mapping. Indeed, it has been shown in [3] that an approximation
of the mapping T could be used provided the dynamics of the observer is modified.
Following this remark, a numerical scheme has been introduced in [18] to construct a
suitable approximation of the mapping T given a generic nonlinear model.

The second step of the design is to compute T ∗ the left inverse of the mapping T .
And as in the high-gain methodology (see [9]), there is no general way of designing
such mapping. Note that a possible expression can be given as the solution to a global
optimization procedure :

x̂ = T ∗(z) := Argminx∈Cl(A) |z − T (x)|2 .

In [18], some other numerical constructions of this left inverse have been given.

2.3. Example : The harmonic oscillator. As an illustrative example of the
nonlinear Luenberger observer and following [23], consider the model of a harmonic
oscillator with unknown angular velocity (see [6] for recent results on the same topic
with some other approaches). This one is given as the following nonlinear model with
state x := (x1, x2, x3) satisfying

ẋ1 = −x2 , ẋ2 = x3x1 , ẋ3 = 0 , y = x1 . (2.8)

Given an initial condition xa := (xa1, xa2, xa3) with xa3 > 0, the measured out-
put is the time function defined for all positive time5 as y(t) := h(X(xa, t)) =
xa1 cos

(√
xa3t

)

− xa2√
xa3

sin
(√

xa3t
)

. It can be easily checked that the set O = {x2
1 +

x2
2 > 0, x3 > 0} is backward invariant. Moreover, consider two initial conditions de-

noted (xa, xb) in the open set O. If h(X(xa, t)) = h(X(xb, t)) on a time interval then
it yields that xa = xb. Thus Assumption 1 is satisfied for all positive real number δd.
Hence we know with Theorem 2.1 that there exists a nonlinear Luenberger observer
for the harmonic oscillator provided the initial condition is in a given bounded open
subset of O.

For instance, following [23] (see also [1]) the set A is selected as A := {x3x
2
1+x2

2 >
ǫ1, ǫ2 > x3 > ǫ3}. This selection guarantees that the set A is forward invariant. An
(asymptotic) observer for this system is given as,

x̂ = T ∗(z) , z = [z1, z2, z3, z4]
T , żi = λizi + y , i = 1, . . . , 4 , (2.9)

where λi are four distinct negative real numbers and T ∗ : R4 → A is a left inverse of
the mapping T : A → R

4 defined as

T (x) = [T1(x), T2(x), T3(x), T4(x)]
T

, Ti(x) =
−λix1 + x2

λ2
i + x3

. (2.10)

In [23] a continuous left inverse of this mapping is explicitly given.
Despite the fact that a nonlinear Luenberger observer may ensure asymptotic

estimation of the state of the system, nothing is said concerning its convergence speed.
In the next section, a sufficient condition is given under which exponential convergence

5This time function can be written in the form y(t) = A sin(ωt+Φ) with A the amplitude of the
signal and w and Φ respectively frequency and phase.
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of the estimation error towards the origin is obtained. In other words, the function β
given in Theorem 2.1 is given as

β(z, t) = M(z) exp(−ct) ,

where c is a positive real number and the function M is a continuous given later on.

2.4. Context and first result. In this section, a sufficient condition guaran-
teeing exponential convergence of the observer (2.2) is given. More precisely, in this
section, the following two observability assumptions are imposed on the system (2.1).

Assumption 2 (O-Backward distinguishability Property). There exists
an open set O of Rn such that, for each pair of distinct points x1 and x2 in O, there
exists a negative time t in

(

max
{

σ−
Rn(x1), σ

−
Rn(x2)

}

, 0
]

such that :

h(X(x1, t)) 6= h(X(x2, t)) .

Note that this Assumption is weaker then Assumption 1 previously defined. Indeed,
now, nothing is said on how the output distinguishes two given initial conditions.
Moreover, the set O may not be bounded. Note however that by taking O bounded
and δd = +∞, we recover Assumption 1.

The second sufficient condition is an observability assumption which characterizes
how a small change of the state modifies the backward output path on the time of
existence of the solutions.

This assumption is related to the backward distinguishability of the following time
varying linear system with output defined for all x in R

n and t in
(

σ−
Rn(x), σ

+
Rn(x)

)

as

ζ̇ =
∂f

∂x
(X(x, t))ζ , yz =

∂h

∂x
(X(x, t))ζ , (2.11)

whose solutions initiated from ζ at t = 0 for a given x is written X (x, ζ, t).
Assumption 3 (O-Backward Infinitesimal distinguishability property).

Given an open set O of Rn, for all x in O, for all ζ in R
n \{0}, there exists a negative

time t in
(

σ−
Rn(x), 0

]

such that

yz(t) :=
∂h

∂x
(X(x, t))X (ζ, x, t) 6= 0 . (2.12)

The first result of the paper can now be stated.
Theorem 2.3 (Exponential Luenberger observers). Let O be an open set of

R
n. Assume System (2.1) satisfies Assumptions 2 and 3 with the same observability

set O. Then for all bounded open set A of Rn such that Cl(A) ⊂ O, there exist a

negative real number ρ, a zero Lebesgue measure subset Ie of (Cρ)
n+1

such that for

each (λ1, . . . , λn+1) in (Cρ)
n+1 \ Ie the following holds. There exists a continuous

function T ∗ : Cn+1 → R
n and a continuous function M : Cn+1 → R+ such that for

all (x, z) in A× C
n+1

|T ∗(Z(x, z, t)−X(x, t)| ≤ M(z) exp
(

max
i

{Re(λi)}t
)

, ∀ t ∈
[

0, σ+
A(x)

)

, (2.13)

and where (X(x, t), Z(x, z, t)) is the solution of System (2.1) and (2.2) initiated from
(x, z) at t = 0 with A = Diag{λ1, . . . , λn+1}.
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2.5. Example (The harmonic oscillator, continued). Note that if we con-
sider the model of the harmonic oscillator given in (2.8), the associated linear time
varying system defined in (2.11) becomes simply,

ζ̇ =





0 −1 0
X3(x, t) 0 X1(x, t)

0 0 0



 ζ , yz = ζ1 ,

where X1 and X3 are respectively the first and the third component of the state
trajectory X(x, t). Consider xa in the open set A defined in Section 2.3, and assume
there exists ζ in R

3 such that yz(t) := X1(ζ, x, t) = 0 for all negative time. It yields,
ζ1 = 0 and Ẋ1(ζ, x, t) = −X2(ζ, x, t) = 0 ∀ t ≤ 0. Hence, it yields ζ2 = 0 and
X1(x, t)ζ3 = 0 ∀ t ≤ 0. Note that x being in A, we know that there exists t < 0 such
that X1(x, t) 6= 0. This implies that ζ3 = 0. Consequently, Assumption 3 is satisfied.

With Theorem 2.3, it yields the existence of an exponential Luenberger observer
for the harmonic oscillator. Actually, on this particular example it can be shown that
provided λ1, λ2, λ3 and λ4 are 4 different negative real numbers, the observer given
in (2.9) has an exponential convergence rate.

3. Proof of Theorem 2.3. The proof of Theorem 2.3 is based on several propo-
sitions. All proofs are given in Section 5. In this section, we only state each of these
propositions to get the main ideas of the way an exponential nonlinear Luenberger
observer can be obtained.

3.1. A constructive proposition. The following Propositions summarizes the
exponential nonlinear Luenberger observer approach.

Proposition 3.1. Let A be a bounded open set of R
n. If there exists a C1

function T : Rn → C
m which satisfies the following two points:

1. T is solution of the partial differential equation

∂T

∂x
(x)f(x) = AT (x) +B1mh(x) , ∀ x ∈ Cl(A) , (3.1)

where A = diag {λ1, . . . , λm} is a Hurwitz m ×m complex matrix and B1m

is defined in (2.3);
2. There exists a positive real number LT such that for all (x1, x2) in Cl(A) ×

Cl(A), the following inequality holds.

|x1 − x2| ≤ LT |T (x1)− T (x2)| ; (3.2)

then there exists a continuous function T ∗ : C
m → R

n such that for all (x, z) in
A× C

m

|T ∗(Z(x, z, t)−X(x, t)| ≤
√
nLT |z−T (x)| exp

(

max
i

{Re(λi)}t
)

, ∀ t ∈
[

0, σ+
A(x)

)

,

(3.3)
and where (X(x, t), Z(x, z, t)) is the solution of System (2.1) and (2.2) initiated from
(x, z) at t = 0 with A = Diag{λ1, . . . , λn+1}.

The proof of Proposition 3.1 can be found in the section 5.1.
With Proposition 3.1, it is established that an exponential nonlinear Luenberger

observer is obtained provided we find a C1 function T solution of the partial differential
equation (3.1) and which is uniformly injective in the sense of equation (3.2). If we
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compare with [3, Theorem 2.10], in which only existence of a nonlinear Luenberger
observer was obtained, inequality (3.2) is replaced by the following inequality,

|x1 − x2| ≤ γ(|T (x1)− T (x2)|) ; (3.4)

in which γ is any class K∞ function. If we compare inequalities (3.4) and (3.2), it is
now required that we have a linear growth condition on the function T . This further
requirement allow us to conclude on the exponential convergence of the obtained
observer.

This further property may be obtained if the function T is injective and its jaco-
bian is full rank. This is stated in the following Lemma.

Lemma 3.2. Let A be a bounded open set of Rn. If there exists a C1 function
T : Rn → C

m which satisfies the following two points:
1. The function T is injective on Cl(A);
2. For all x in Cl(A) the m× n complex matrix ∂T

∂x
(x) is rank n;

then there exists a positive real number LT such that (3.2) is satisfied.
The proof of Lemma 3.2 can be found in the section 5.2.
With Proposition 3.1 and Lemma 3.2 it can be checked that to prove Theorem

2.3, it is required to find a solution to the partial differential equation (3.1) for all
x in Cl(A) such that this one is injective in Cl(A) and such that its gradient is full
rank. In the remaining part of this Section, it is shown that this is indeed the case
for almost all Hurwitz diagonal matrix A provided we select m = n+ 1.

3.2. Solutions of the PDE given in (3.1). As proposed in [3] (see also [13]),
given a bounded open set A and a diagonal Hurwitz matrix A a solution of the partial
differential equation (3.1) can be simply expressed as,

T (x) =

∫ 0

−∞
exp(−As)B1mh(X̆(x, s))ds , (3.5)

where X̆ : Rn × R → R
n is the solution of the modified system

ẋ = f̆(x) = χ(x)f(x) , (3.6)

where χ : Rn → R is a C∞ function such that

χ(x) =

{

0 x /∈ A′ + δb
1 x ∈ A′ (3.7)

where δb is any positive real number and A′ is a bounded open set such that Cl(A) ⊂
A′.

Proposition 3.3. Consider a bounded open set A and A = diag {λ1, . . . , λm}
a Hurwitz m × m complex matrix. For all positive real number δb and open set A′

such that Cl(A) ⊂ A′ the function T : R
n → C

m given in (3.5) is a continuous
function which satisfies (3.1). Moreover there exists a negative real number ρ such
that if maxi=1,...,n+1{Re(λi)} < ρ then the function T is C2.

The proof of Proposition 3.3 can be found in the section 5.3.
In the case where the set A is not bounded, the existence of a solution to a partial

differential equation similar to (3.1) can still be obtained provided the linear mapping
B1m is replaced by a continuous function (see [3] for more details).

Moreover, when the set A is backward invariant, it can be shown that the restric-
tion of the solution of (3.1) to A is unique.
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In the following two subsections based on the two observability assumptions it is
shown that if the set A′ is properly selected it yields that generically on the eigenvalues
of the matrix A this function is an injective immersion.

3.3. Selection of A′. As noticed in [13], the function T can be seen as a pro-
jection of the function t ∈ R− 7→ h(X̆(x, s)) on a specific basis of function. We wish
this function T to inherit the injectivity property of the mappings x 7→ (t ∈ R− 7→
h(X̆(x, s))). However, if we which this mapping to be injective the set A′ needs to be
properly defined. Roughly speaking, the set A′ should be selected to ensure that we
don’t loose any backward observability properties by restricting ourself to the function
x 7→ (t ∈ σ−

A′ 7→ h(X(x, s))). This is exactly what is done in the following proposition.

Proposition 3.4. Let O be an open set of Rn. Assume System (2.1) satisfies
Assumptions 2 and 3 with the same observability set O. Then for all bounded open set
A such that Cl(A) ⊂ O there exist two bounded open sets A′ and A′′ with Cl(A) ⊂ A′′

such that the following holds.
1. For each pair of distinct points (x1, x2) in Cl(A′′)2, there exists a negative

time t in
(

max
{

σ−
A′(x1), σ

−
A′(x2)

}

, 0
]

such that :

h(X(x1, t)) 6= h(X(x2, t)) ;

2. for all x in Cl(A′′), for all v in R
n \ {0}, there exists a negative time t in

(

σ−
A′(x), 0

]

such that

∂h(X(x, t)

∂x
)v 6= 0 . (3.8)

The proof of Proposition 3.4 can be found in the section 5.4.

3.4. Generic properties of the solution of the PDE given in (3.1). Based
on the result of the paper [3], it can be shown that if the matrix A is obtained by
generically selecting m eigenvalues, the function T , solution of the PDE (3.1) which is
defined in (3.5) with A′ obtained from Proposition 3.4 , is injective provided System
(2.1) is backward distinguishable (i.e. Assumption 2 is satisfied). More precisely the
result obtained in [3] is:

Proposition 3.5 (Generic Injectivity, [3]). Consider three bounded open sets A,
A′ and A′′ with Cl(A) ⊂ A′′ such that for each pair of distinct points x1 and x2 in
(A′′)2, there exists a negative time t in

(

max
{

σ−
A′(x1), σ

−
A′(x2)

}

, 0
]

such that :

h(X(x1, t)) 6= h(X(x2, t)) .

Then, there exist a negative real number ρ and a subset I ⊂ (Cρ)
n+1

of zero Lebesgue
measure such that the function T : Rn → C

n+1 defined by (3.5) from A′ is injective on
Cl(A) provided A is a diagonal Hurwitz matrix with m = n + 1 complex eigenvalues

λi arbitrarily chosen in (Cρ)
n+1 \ I.

Consequently, to apply Proposition 3.1, it has to be shown that generically on A
and under Assumption 3, the function T defined in (3.5) is such that for all x in O
the matrix ∂T

∂x
(x) is full rank. This is proved by the following proposition.

Proposition 3.6 (Generically an immersion). Consider three bounded open sets
A, A′ and A′′ with Cl(A) ⊂ A′′ such that for all x in Cl(A), for all ζ1 and ζ2 in R

n,
there exists a negative time t in

(

σ−
A′(x), 0

]

such that

∂h

∂x
(X(x, t))X (ζ1, x, t) 6=

∂h

∂x
(X(x, t))X (ζ2, x, t) . (3.9)
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Then, there exist a negative real number ρ and a subset I ⊂ (Cρ)
n+1

of zero Lebesgue

measure such that for all x in Cl(A), the m × n matrix
∂T

∂x
(x) is full rank with T

defined by (3.5) from A′ provided A is a diagonal Hurwitz matrix with m = n + 1

complex eigenvalues λi arbitrarily chosen in (Cρ)
n+1 \ I.

3.5. Proof of Theorem 2.3. Let A be a bounded open subset of R
n such

that Cl(A) ⊂ O. The system (2.1) satisfying Assumptions 2 and 3 it yields with
Proposition 3.4 the existence of two bounded open sets A′ and A′′ with Cl(A) ⊂ A′′

such that Items 1 and 2 in Proposition 3.4 hold. With Proposition 3.3, 3.5 and 3.6
there exist a negative real number ρ, a subset I ⊂ C

n+1 of zero Lebesgue measure
such that the function T : Cl(A) → C

(n+1) defined by (3.5) is such that, provided A is
a diagonal matrix with n+1 complex eigenvalues λi arbitrarily chosen in (Cρ)

n+1 \ I
the following holds.

1. For all x in Cl(A), T is a C2 solution of the PDE (3.1);
2. the function T it is injective in Cl(A);
3. for all x in Cl(A), ∂T

∂x
(x) is full rank.

Consequently, given a matrix A with eigenvalues in (Cρ)
n+1 \ I and with Lemma

3.2 we can apply Proposition 3.1. This yields that the nonlinear Luenberger observer
(2.2) satisfies the exponential convergence property (2.13) with M defined as

M(z) =
√
nLT

(

|z|+ max
x∈Cl(A)

|T (x)|
)

.

4. Case of complete observability.

4.1. The context. Another setup in which nonlinear Luenberger observers have
been studied in [3] is when we have complete observability. This property is related
to the mapping which to a point x gives a finite number of successive Lie derivatives
of the output. More precisely, for a given integer m, we introduce the function Hm :
R

n → R
m

Hm(x) =











h(x)
Lfh(x)
...
Lm−1
f h(x)











. (4.1)

Here, Li
fh denotes the ith iterate Lie derivative, i.e. Li+1

f h = Lf (L
i
fh). Of course,

for this to make sense, the functions f and h must be sufficiently smooth.
The complete observability context is described by the following two Assumptions.

Assumption 4 (Differential observability in O). For all bounded open set
A such that Cl(A) ⊂ O there exists a positive integer m so that the function Hm :
R

n → R
m is injective when restricted to Cl(A).

Assumption 5 (Differential rank condition in O). For all bounded open
set A such that Cl(A) ⊂ O there exists a positive integer m so that the function
Hm : Rn → R

m is of rank n in Cl(A). More precisely, for all x in Cl(A), the matrix
∂Hm

∂x
(x) is full rank.
With a Taylor expansion of the output path at t = 0, we see that the injectivity

of Hm implies that the function which associates the initial condition x to the output

10



path, restricted to a very small time interval, is injective. This property is nicely
exploited by observers with very fast dynamics as high gain observers (see [9]).

Note moreover that it can be shown that this observer has an exponential conver-
gence (see [9]). High-gain observers have an even stronger property in the sense that
they are tunable as defined by G. Besançon in [5]. More precisely they satisfy that
if we know a bounded open set in which the unknown state is, a high gain observer
can be tuned in order to guarantee an estimation error as small as wanted after any
prescribed time. This is typically the kind of property needed in order to design a
stabilizing output feedback following a seperation principle paradigm as in [28].

This tunable aspect can also be obtained for nonlinear Luenberger observers when
considering the complete observability context. More precisely we get the following
result.

Theorem 4.1. Let O be an open subset of Rn. Assume System (2.1) satisfies
Assumptions 4 and 5 with the same observability set O. Then for all bounded open set
A such that Cl(A) ⊂ O, there exists a positive integer m such that for any diagonal
Hurwitz complex m×m matrix A, for any positive real numbers (tf , ǫ), there exists a
real number k∗ such that, for any k strictly larger than k∗, there exists a continuous
function T ∗

k : Cm → Cl(A) and a continuous function Mk : Cm → R+ such that the
nonlinear Luenberger observer

ż = kAz +B1my , x̂ = T ∗
k (z) (4.2)

satisfies the following.
1. For all (x, z) in A× C

m

|T ∗
k (Z(x, z, t)−X(x, t)| ≤ Mk(z) exp

(

kmax
i

{Re(λi)}t
)

, ∀ t ∈
[

0, σ+
A(x)

)

,

(4.3)
and where (X(x, t), Z(x, z, t)) is the solution of System (2.1) and (4.2) with
A = Diag{λ1, . . . , λm};

2. For all x in A

|X(x, t)− T ∗
k (Z(x, 0, t)| ≤ ǫ , ∀tf ≤ t ≤ σ+

A(x) . (4.4)

The proof of Theorem 4.1 can be found in the section 5.8.

4.2. Discussion on Assumptions. This setup has been popularized and stud-
ied in deep details by Gauthier and his coworkers (see [9] and the references therein,
see also [24]). In particular, it is established in [8] that, for any generic pair (f, h) in
(2.1), it is sufficient to pick m = 2n+ 1 to obtain that the mapping Hm is injective.

Moreover, in the analytic case, this set of Assumption is equivalent with Assump-
tion 2 and 3 as shown by the following two propositions.

Proposition 4.2 ([11]). Assume the vector field f and the function h are both
analytic with infinite convergence radius and satisfies the O-backward distinguishabil-
ity for a given open set O of Rn (i.e. Assumption 2 is satisfied). Then the system is
also differentially observable in O (i.e. Assumption 4 is satisfied).

Proposition 4.3. Assume the vector field f and the function h are both ana-
lytic with infinite convergence radius and satisfies the O-backward infinitesimal dis-
tinguishability property for a given open set O of Rn (i.e. Assumption 3 is satisfied).
Then the system satisfies also the differential rank condition in O (i.e. Assumption 5
is satisfied).

The proofs of Proposition 4.2 and Proposition 4.3 are given respectively in Section
5.6 and 5.7.
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4.3. Example (The harmonic oscillator, continued):. Consider again the
model of the harmonic oscillator given in (2.8). This system satisfying assumptions 2
and 3 and being analytic, we know with propositions 4.2 and 4.3 that given a bounded
set in O there exists m such that the mapping Hm(x) is injective and full rank (i.e.
assumptions 4 and 5 are satisfied).

Actually, on this particular example it can be shown that the mapping H4 : O →
R

4 given as:

H4(x) =









x1

−x2

−x3x1

x3x2









,

is injective in the set O. Note moreover, that we have

∂H4

∂x
(x) =









1 0 0
0 −1 0

−x3 0 −x1

0 x3 x2









which is full rank in O. Consequently applying Theorem 4.1, it yields the existence
of a tunable nonlinear Luenberger observer.

As illustration consider the Luenberger observer given in (2.9) where T ∗ is selected
as

x̂ = T ∗(z) = Argminx∈ClA

4
∑

j=1

(λix1 + x2 − (λ2
i + x3)zi)

2

where A = {x3x
2
1 + x2

2 > ǫ1, ǫ2 > x3 > ǫ3}. For instance, a suitable numerical
realization of the third component of this mapping is simply:

x̂3 = max{min{[0 0 1]TM(z)−1N(z), ǫ2}, ǫ3} ,

where

M(z) =







∑4
j=1 λ

2
i

∑4
j=1 λi −∑4

j=1 λizi
∑4

j=1 λi 4 −∑4
j=1 zi

−∑4
j=1 λizi −∑4

j=1 zi
∑4

j=1 z
2
i






, N(z) =







∑4
j=1 λ

3
i zi

∑4
j=1 λ

2
i zi

−∑4
j=1 λ

2
i z

2
i






.

Note that the saturation is employed to prevent the fact the matrix M may be badly
conditioned. Note however that another expression of T ∗ well defined and continuous
is given in [23]. However, in the present context, there is no need of such use.

In Figure (4.1) is depicted the estimation of the frequency (i.e. x3) when con-
sidering different values for the parameter k. Three scenarios have been considered
k = 0.7, k = 1, k = 10. As shown in Theorem 4.1, it can be seen that the convergence
rate increases with k. The simulation has been performed in Matlab with an Euler
integration for the observer and an Euler semi implicit integration for the harmonic
oscillator. The integration stepsize has been tuned to 5.10−4. The initial values of
the model have been tuned to x = [1, 1, 1]. The parameters of the observer have been
tuned to:

λ1 = −0.7 , λ1 = −0.9 , λ1 = −1.1 , λ1 = −1.3 , ǫ2 = 0 , ǫ3 = 5 .
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Fig. 4.1. Evolution with time of the estimation of x3 for three different values of the
parameter k.

5. Proofs.

5.1. Proof of Proposition 3.1. It is possible to define the function T−1 :
T (Cl(A)) → Cl(A) and this one satisfies,

|T−1(w1)− T−1(w2)| ≤ LT |w1 − w2| , (5.1)

for all (w1, w2) in T (Cl(A))×T (Cl(A)). It yields that the function T−1 : T (Cl(A)) →
Cl(A) is globally Lipschitz. Hence, the function T ∗ : Cm → Cl(A) solution to our
problem is a Lispchitz extension on the set C

m of this function. As exposed in [24]
different solutions are possible. In this paper the authors suggest a constructive
solution : the Mc-Shane formula (see [19] and more recently [18]). Following this
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approach we select T ∗ = (T ∗
1 , . . . , T

∗
n) as the function defined by:

T ∗
i (w) = inf

z∈T (Cl(A))

{(

T−1(z)
)

i
+ LT |z − w|

}

. (5.2)

This function is such that for all x in6 Cl(A),

T ∗(T (x)) = x ,

and for all (w, x) in C
m × Cl(A) it yields,

|T ∗(w)− x| ≤
√
nLT |w − T (x)| .

This implies that along the trajectories (X(x, t), Z(x, z, t)) of the system (2.1)
and (2.2) it yields for all (x, z) in Cl(A)× C

m

|T ∗(Z(x, z, t))−X(x, t)| ≤
√
nLT |Z(x, z, t)− T (X(x, t))| , ∀ t ∈

[

0, σ+
A(x)

)

.

On another hand, the function T is solution of the partial differential equation (3.1),
consequently, this implies that along the trajectories of system (2.1) and (2.2), for all
(x, z) in Cl(A)× C

m

Z(x, z, t)− T (X(x, t)) = exp(At)(z − T (x)) , ∀ t ∈
[

0, σ+
A(x)

)

.

Note that since A = Diag(λ1, . . . , λm) with Re(λi) < 0, it yields that equation (3.3)
holds and concludes the proof of Proposition 3.1.

5.2. Proof of Lemma 3.2. Consider the function ∆ : Cl(A) × Cl(A) → C
m

defined by,

∆(x1, x2) = T (x1)− T (x2)−
∂T

∂x
(x2)(x1 − x2) .

Note that the function R : Cl(A) → C
n×m given by,

R(x) =

((

∂T

∂x
(x)

)∗
∂T

∂x
(x)

)−1(
∂T

∂x
(x)

)∗
,

is well defined and continuous in Cl(A). For all (x1, x2) in Cl(A)× Cl(A), it yields7 :

|x1 − x2| ≤ Rmax

(

|T (x1)− T (x2)| + |∆(x1, x2)|
)

, (5.3)

6Setting z = T (x) in (5.2), it yields

T ∗
i (T (x))− xi ≤ (T−1(T (x)))i − xi = 0

Moreover, let z0 = T (x0) be such that infz∈T (Cl(A))

{(

T−1(z)
)

i
+ LT |z − T (x)|

}

=
(

T−1(z0)
)

i
+

LT |z0 − T (x)|, we have with (5.1)

T ∗
i (T (x))− xi =

(

T−1(T (x0))− T−1(T (x))
)

i
+ LT |T (x0)− T (x)|

≥ LT |T (x0)− T (x)| −
∣

∣

(

T−1(T (x0))− T−1(T (x))
)

i

∣

∣

≥ 0

7For a matrix M , the notation |M | stands for the induced norm 2, i.e. |M | = ||M ||2
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where Rmax = maxx∈ Cl(A) |R(x)| > 0. It yields, for all (x1, x2) in Cl(A)× Cl(A)

|x1 − x2|
(

1−Rmax
|∆(x1, x2)|
|x1 − x2|

)

≤ Rmax |T (x1)− T (x2)| .

Moreover, for all a in Cl(A), there exists δ(a) > 0, such that, for all x1 in
8 B(a, δ(a))∩

Cl(A), it gives :

|∆(x1, a)| ≤ 1

4Rmax
|x1 − a| .

The function ∆ being continuous in its second argument, for all a in Cl(A), there
exists a positive real number ǫ(a) such that, for all (x1, x2) in B(a, ǫ(a))2 ∩ Cl(A)2 :

|∆(x1, x2)| ≤ 1

2Rmax
|x1 − x2| .

With (5.3) it yields that for all a in Cl(A),

|x1 − x2| ≤ 2Rmax |T (x1)− T (x2)| , ∀ (x1, x2) ∈ B(a, ǫ(a))2 ∩ Cl(A)2 .

On another hand,
{

B
(

a, 1
2ǫ(a)

)

, a ∈ Cl(A)
}

is a covering by open subsets9 of the
compact subset Cl(A). Hence, there exists {a1, . . . , aN} in Cl(A)N with N a positive
integer, such that

Cl(A) ⊆
⋃

i=1,...,N

B
(

ai,
1

2
ǫ(ai)

)

.

Since the function T is injective on Cl(A), it is possible to define the positive real
number :

Nmax = max
(x1,x2)∈Ω

|x1 − x2|
|T (x1)− T (x2)|

(5.4)

where Ω is the compact subset defined by,

Ω = {(x1, x2) ∈ Cl(A)× Cl(A) : |x1 − x2| ≥ ǫmin} , (5.5)

where,

ǫmin = min
i <N

1

2
ǫ(ai) .

Consider now (x1, x2) in Cl(A)× Cl(A). Two cases can be distinguished:
1. |x1 − x2| ≤ ǫmin : since there exists i < N such that x2 ∈ B(ai, 1

2ǫ(ai)), it
yields,

|x1 − ai| ≤ |x1 − x2| + |x2 − ai|

≤ ǫmin +
1

2
ǫ(ai)

≤ ǫ(ai) .

Hence, x1 ∈ B(ai, ǫ(ai)), and consequently:

|x1 − x2| ≤ 2Rmax |T (x1)− T (x2)| .

8B(xc, r) denotes the subset of Rn: {x ∈ Rn, |x− xc| ≤ r}
9Depending on the shape of the set A it is possible to avoid the use of a covering to get the

result.
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2. |x1 − x2| ≥ ǫmin : In this case (x1, x2) is in Ω and consequently :

|x1 − x2| ≤ Nmax |T (x1)− T (x2)| . (5.6)

Consequently, it yields that for all (x1, x2) in Cl(A)× Cl(A) :

|x1 − x2| ≤ LT |T (x1)− T (x2)| ,

with, LT = max{Nmax , 2Rmax } .

5.3. Proof of Proposition 3.3. First of all note that the function χ being C∞,
the vector field x 7→ χ(x)f(x) is as smooth as f . Hence, for all x in R

n the function
X̆(x, t), solution of system (3.6), are properly defined, unique, complete in positive
and negative time and as smooth as f in their x component.

With the fact that A′ + δb is bounded and backward invariant for the modified
system (3.6), it yields that for all i in {1, . . . ,m} and all (x, t) in A′ + δb × (−∞, 0],

| exp(−λit)h(X̆(x, t))| ≤ exp([−Re(λi)]t)hmax , (5.7)

where hmax is the positive real number defined as,

hmax = max
x∈Cl(A′+δb)

|h(x)| .

By Lebesgue dominated convergence Theorem it yields that, for all x in A′ + δb, the
function T given in (3.5) defines a continuous function in Cl(A′ + δb). Moreover, for
all i in {1, . . . ,m} and all (x, t) in R

n \ A′ + δb × (−∞, 0],

h(X̆(x, t)) = h(x) , (5.8)

and consequently we see that the function T given in (3.5) defines a continuous func-
tion in R

n.
Then, for each x in R

n and for each positive time t, we get :

T (X̆(x, t))− T (x) =

∫ 0

−∞
exp(−As)B1mh(X̆(X̆(x, t), s))ds − T (x) ,

= exp(At)

∫ t

−∞
exp(−Au)B1mh(X̆(x, u))du − T (x) ,

= (exp(At)− I)T (x) + exp(At)

∫ t

0

exp(−Au)B1mh(X̆(x, u))du .

Thus, we obtain, for all x in R
n,

χ(x)LfT (x) = LχfT (x) = lim
t→0

T (X̆(x, t))− T (x)

t
= AT (x) +B1mh(x) . (5.9)

With (3.7), this implies that (3.1) is satisfied.
Now following [22, Theorem 2.50], we show that by taking Re(λi) for all i suffi-

ciently negative, the function T defined in (3.5) is C2. First of all, for all x in A′ + δb
and all s in R− we have

∂2X̆

∂x∂s
(x, s) =

∂f̆

∂x
(X̆(x, s))

∂X̆

∂x
(x, s)
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where f̆(x) = χ(x)f(x). We can introduce the function U defined as

U(x, s) = trace

((

∂X̆

∂x
(x, s)

)′
∂X̆

∂x
(x, s)

)

.

Note that we have U(x, 0) = n. Moreover for all x in A′ + δb and for all s in R−,

U(x, s) ≥
∣

∣

∣

∣

∣

∂X̆

∂x
(x, s)

∣

∣

∣

∣

∣

2

.

Also, it satisfies for all s in R−

∂U

∂s
(x, s) = trace

((

∂X̆

∂x
(x, s)

)′ [(
∂f̆

∂x
(X̆(x, s))

)′

+
∂f̆

∂x
(X̆(x, s))

]

∂X̆

∂x
(x, s)

)

.

Hence, employing the fact that for all x in A′ + δb the trajectories s 7→ X̆(x, s) are
bounded it gives the existence of a negative real number ρ1 such that for all x in
A′ + δb and for all s in R−,

λmax

{(

∂f̆

∂x
(X̆(x, s))

)′

+
∂f̆

∂x
(X̆(x, s))

}

≤ −2ρ1 .

Hence, it yields for all x in A′ + δb and for all s in R−,

∂U

∂s
(x, s) ≤ −2ρ1U(x, s) .

Consequently, we obtain for all x in Cl(A) + δb and for all s in R−,
∣

∣

∣

∣

∣

∂X̆

∂x
(x, s)

∣

∣

∣

∣

∣

≤
√
n exp(ρ1s) . (5.10)

Hence, employing the fact that the bounded set A′ + δb is backward invariant along
the trajectories of the system (3.6) we get for all x in R

n and s in R−,
∣

∣

∣

∣

∣

exp(−λis)
∂h

∂x
(X̆(x, s))

∂X̆

∂x
(x, s)

∣

∣

∣

∣

∣

≤ max

{

dhmax,

∣

∣

∣

∣

∂h

∂x
(x)

∣

∣

∣

∣

}√
n exp([ρ1 − Re(λi)]s) ,

(5.11)
where dhmax is the positive real number defined as,

dhmax = max
x∈Cl(A′+δb)

∣

∣

∣

∣

∂h

∂x
(x)

∣

∣

∣

∣

.

With Lebesgue dominate convergence theorem, it can be established that the function

∂T

∂x
(x) =

∫ 0

−∞
exp(−As)

∂h

∂x
(X̆(x, s))

∂X̆

∂x
(x, s) ds , (5.12)

is continuous and properly defined provided Re(λ) < ρ1 and consequently the function
T is C1. Similarly, it can be shown that this function is C2 provided Re(λ) < ρel where
ρel is a negative real number.

17



5.4. Proof of Proposition 3.4. Let A′′ be any bounded open set such that

Cl(A) ⊂ A′′ , Cl(A′′) ⊂ O .

Let a be in Cl(A′′) and b in10 Sn. Note that we have for all t in
(

σ−
Rn(a), σ

+
Rn(a)

)

,

∂2X

∂t∂x
(a, t)b =

∂f

∂x
(X(a, t))

∂X

∂x
(a, t)b ,

∂X

∂x
(a, 0)b = b .

Consequently, the mapping
(

X(a, t), ∂X
∂x

(a, t)b
)

defined on
(

σ−
Rn(a), σ

+
Rn(a)

)

is a solu-
tion of system (2.1) and (2.11) initiated from (a, b). This system being locally Lips-
chitz, its trajectories are uniquely defined. Consequently for all t in

(

σ−
Rn(a), σ

+
Rn(a)

)

we have,

X (b, a, t) =
∂X

∂x
(a, t)b .

Since a ∈ Cl(A′′) ⊂ O, with Assumption 3 (setting ζ1 = b, ζ2 = 0), there exists ta,b
in
(

σ−
Rn(a), 0

]

such that

∣

∣

∣

∣

∂h

∂x
(X(a, ta,b))

∂X

∂x
(a, ta,b)b

∣

∣

∣

∣

:= r(a, x) > 0 .

Consider now the function ∆(a, b, ℓ) where ℓ is a positive real number defined when
it exists by,

∆(a, b, ℓ) = h(X(a, ta,b))− h(X(a+ ℓb, ta,b))− ℓ
∂h

∂x
(X(a, ta,b))

∂X

∂x
(a, ta,b)b .

Note that the function x 7→ h(X(x, t)) being C1 we have,

lim
ℓ→0

∆(a, b, ℓ)

ℓ
= 0 .

Hence, there exists ℓ0 such that for all ℓ < ℓ0 ∆(a, b, ℓ) is well defined and

|∆(a, b, ℓ)|
ℓ

<
r(a, b)

4
, ∀ℓ < ℓ0 .

The functions being continuous, there exists ǫ(a, b) < ℓ0 such that for all (x, v) in
B(a, ǫ(a, b))× B(b, ǫ(a, b)), we have,

σ−
Rn(x) < t , σ−

Rn(x+ ℓv) < t , ∀ℓ ≤ ǫ(a, b) , (5.13)

and
∣

∣

∣

∣

∂h

∂x
(X(x, ta,b))

∂X

∂x
(x, ta,b)v

∣

∣

∣

∣

≥ r(a, b)

2
,
|∆(x, v, ℓ)|

ℓ
<

r(a, b)

3
, ∀ℓ ≤ ǫ(a, b) . (5.14)

The set
⋃

(a,b)∈Cl(A′′)×Sn
B(a, ǫ(a, b)) × B(b, ǫ(a, b)) is a covering by open subsets of

the compact set Cl(A′′)× Sn. Hence, we can extract a finite set of (ai, bi)i=1,...,N in
Cl(A′′)× Sn such that

Cl(A′′)× Sn ⊂
⋃

(ai,bi)∈Cl(A′′)×Sn

B(ai, ǫ(ai, bi))× B(bi, ǫ(ai, bi)) .

10Sn denotes the subset of Rn defined as Sn = {x ∈ Rn, |x| = 1}
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Let Cl be the compact set defined by

Cd =
⋃

i=1,...,N

Cd,i , Cd,i =















w ∈ R
n, w = X(x+ ℓv, t),

t ∈ [tai,bi , 0]
x ∈ B(ai, ǫ(ai, bi))
v ∈ B(bi, ǫ(ai, bi))
ℓ ∈ [0, ǫ(ai, bi)]















.

(5.15)
The function (t, x, v, ℓ) 7→ X(x+ ℓv, t) being continuous and well defined on the set of
interest due to (5.13) this set is compact and correctly defined. Finally, if we denote
ǫm = mini=1,...,N ǫ(ai, bi) we can introduce the compact set

R = {(x1, x2) ∈ Cl(A′′)× Cl(A′′), |x1 − x2| ≥ ǫm} .

On another hand, consider c and d in R. With Assumption 2, there exists a time
t(c, d) in

(

max
{

σ−
Rn(c), σ

−
Rn(d)

}

, 0
]

such that

|h(X(c, t(c, d)))− h(X(d, t(c, d)))| > 0 .

The functions X and h being continuous, there exists ǫ(c, d) such that for all (x1, x2)
in B(c, ǫ(c, d))× B(d, ǫ(c, d)) we have,

σ−
Rn(x1) < t(c, d) , σ−

Rn(x2) < t(c, d) , (5.16)

and,

|h(X(x1, t(c, d)))− h(X(x2, t(c, d)))| > 0 . (5.17)

The set
⋃

(c,d)∈R B(c, ǫ(c, d))×B(d, ǫ(c, d)) is a covering by open subsets of the compact

set R. Hence, we can extract a finite set of (ci, di) in R such that

R ⊂
⋃

(ci,di)∈R
B(ci, ǫ(ci, di))× B(di, ǫ(ci, di)) .

Let now, Cl be the compact set defined by

Cr =
⋃

i

Cr,i , Cr,i =
{

w ∈ R
n, w = X(x, t),

t ∈ [tci,di
, 0]

x ∈ B(ci, ǫ(ci, di)) ∪ B(di, ǫ(ci, di))

}

.

(5.18)
Finally, consider the set A′ be any bounded open set containing Cr ∪ Cd. Then, we
have the required distinguishability property. Indeed, consider x1 and x2 in Cl(A′′)
such that x1 6= x2. Two cases may be distinguished.

1. If |x1 − x2| ≤ ǫm. With v = x1−x2

|x1−x2| , there exists i such that, (x1, v) is in

B(ai, ǫ(ai, bi))×B(bi, ǫ(ai, bi)). Moreover, we have |x1 − x2| ≤ ǫm ≤ ǫ(ai, bi).
Hence, with (5.13), we have,

σ−
Rn(x1) < t(ai, bi) , σ−

Rn(x2) < t(ai, bi) ,

and moreover, with (5.15), it yields,

X(x1, t) ∈ Cd,i , X(x2, t) ∈ Cd,i , ∀t ∈ [t(ai, bi), 0] .

Hence, with the definition of A′, it yields,

σ−
A′(x1) < t(ai, bi) , σ−

A′(x2) < t(ai, bi) .
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On another hand, if we denote ℓ = |x1 − x2| we have,

h(X(x1, t(ai, bi)))− h(X(x2, t(ai, bi))) = ℓ∂h
∂x

(X(x1, ta,b))
∂X
∂x

(x1, ta,b)v

+∆(x1, v, ℓ) .

which gives,

|h(X(x1, t(ai, bi)))− h(X(x2, t(ai, bi)))| ≥

ℓ

[

∂h

∂x
(X(x1, ta,b))

∂X

∂x
(x1, ta,b)v −

|∆(x1, v, ℓ)|
ℓ

]

.

Hence, with (5.14) it yields,

|h(X(x1, t(ai, bi)))− h(X(x2, t(ai, bi)))| ≥ ℓ
r(a, b)

6
> 0 .

2. If |x1−x2| ≥ ǫm. In this case, (x1, x2) is in R. Hence, there exists i such that
(x1, x2) is in B(ci, ǫ(ci, di))× B(di, ǫ(ci, di)). Hence, with (5.16), we have,

σ−
Rn(x1) < t(ci, di) , σ−

Rn(x2) < t(ci, di) ,

and moreover, with (5.18), it yields,

X(x1, t) ∈ Cr,i , X(x2, t) ∈ Cr,i , ∀t ∈ [t(ci, di), 0] .

Hence, with the definition of A′, it yields,

σ−
A′(x1) < t(ci, di) , σ−

A′(x2) < t(ci, di) .

On another hand, with (5.17) it yields,

|h(X(x1, t(ci, di)))− h(X(x2, t(ci, di)))| > 0 .

Hence, in both cases, the points x1 and x2 are distinguished before leaving A′ which
proves the first point of the Proposition.

Now, let (x, v) be in Cl(A′′)×R
n with v 6= 0. Note that

(

x, v
|v|

)

is in Cl(A′′)×Sn.

Hence there exists i such that

σ−
A′(x) < t(ai, bi) ,

and,

∂h

∂x
(X(x, t(ai, bi)))

∂X

∂x
(x, t(ai, bi))

v

|v| 6= 0 .

This gives the second point of the Proposition.

5.5. Proof of Proposition 3.6. For a given λ, we denote Tλ : Rn → C the
function (when it exists) defined by

Tλ(x) =

∫ 0

−∞
exp(−λs)h(X̆(x, s)) ds . (5.19)

Following the proof of Proposition 3.3, there exists a negative real number ρ such that
the function Tλ(x) is C2 provided Re(λ) < ρ. Moreover, with equation (5.11) in the
proof of Lemma 3.3, it yields for all λ in C with Re(λ) < ρ

∫ 0

−∞
exp(−2Re(λ)s)

∣

∣

∣

∣

∣

∂h(X̆(x, s))

∂x
v

∣

∣

∣

∣

∣

2

ds < +∞ . (5.20)
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The rest of the proof of this proposition follows the same line as the one of
Proposition 3.5 (a proof of which is given in [3]) and is based on the use of Coron’s
Lemma.

Lemma 5.1 (Coron [7]). Let Γ and Υ be open subsets of C and R
2n respectively.

Let g : Υ× Γ → C
p be a function which is holomorphic in λ for each x in Υ and C1

in x for each λ in Γ. If, for each pair (x, λ) in Υ × Γ for which g(x, λ) is zero it is
possible to find, for at least one of the p components gj of g, an integer k satisfying :

∂igj
∂λi

(x, λ) = 0 ∀i ∈ {0, . . . , k − 1} ,

∂kgj
∂λk

(x, λ) 6= 0 ,

(5.21)

then the following set has zero Lebesgue measure in C
n+1:

I =
⋃

x∈Υ

{

(λ1, . . . , λn+1) ∈ Γn+1g(x, λ1) = . . . = g(x, λn+1) = 0
}

. (5.22)

This result has been established by Coron in [7, Lemma 3.2] in a stronger form
except for the very minor point that, here, g is not C∞ in both x and λ. A proof of
this specific result can be found in [3].

Let Γ and Υ be open sets defined by:

Γ = {λ ∈ C, Re(λ) < ρ} , Υ = {w = (x, v) ∈ A′′ × R
n : v 6= 0} . (5.23)

Now, consider the function GT : Υ× Γ → C defined by :

GT (w, λ) =
∂Tλ

∂x
(x) v , (5.24)

with w = (x, v). This function is C1 in w in Υ for all λ in Γ. Moreover, it can be
shown in [26, chap 19, p. 367] that the Theorem of Morera and Fubini yields that
this function is holomorphic in λ in Γ, for all w in Υ. Consequently, with (5.20),
Plancherel Theorem can be employed to get for all w in Υ,

1

2π

∫ +∞

−∞
|GT (w, Re(λ) + is)|2 ds =

∫ 0

−∞
exp(−2Re(λ)s)

∣

∣

∣

∣

∣

∂h(X̆(x, s))

∂x
v

∣

∣

∣

∣

∣

2

ds .

(5.25)
Now, for all w in Υ, exploiting inequality (3.9) and the continuity with respect to the
time, it yields the existence of an open interval (t0, t1) with σ−

A′(x) < t0 for which
∣

∣

∣

∣

∂h(X(x, s))

∂x
v

∣

∣

∣

∣

> 0 ∀s ∈ (t0, t1) . (5.26)

With the definition of the modified system (3.6), it yields

h(X̆(x, s)) = h(X(x, s)) ∀s ∈ (t0, t1) .

Hence, with (5.25), the last equality and inequality (5.26) yield that:

∫ +∞

−∞
|GT (w, Re(λ) + is)|2 ds > 0 .
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This implies that for all w in Υ, the function λ 7→ GT (w, λ) is not identically zero
on Γ. Since this function is holomorphic, it yields that for all (w, λ) in Υ × Γ, there
exists, for at least one of the n+1 components GTj of GT , an integer k which satisfies:















∂iGTj

∂λi
(w, λ) = 0 ∀i ∈ {0, . . . , k − 1} ,

∂kGTj

∂λk
(w, λ) 6= 0 .

Hence, employing Coron’s Lemma with G as the g function, and by using (5.24), it
allows to conclude that the set Ile defined by :

Ile =

{

(λ1, . . . , λn+1) ∈ Γn+1 : ∃ (x, v) ∈ Υ :
∂Tλi

∂x
(x)v = 0 ∀i ∈ {1, . . . , n+ 1}

}

has a zero Lebesgue measure in C
n+1.

5.6. Proof of Proposition 4.2. This result has been obtained in [11]. We
consider the following sequence of sets Vm ⊂ R

n × R
n defined as,

Vℓ = {(x1, x2) ∈ R
n × R

n|Hℓ(x1) = Hℓ(x2)} .

By definition of Hℓ, we have Vk+1 ⊆ Vk. Hence, the sequence Vk is a decreasing
sequence of analytic subsets of Rn × R

n.

The ideal of the ring of analytic functions being Notherian, by [20, corollary 1,
p.99], Vℓ is a stationary sequence. Hence, there exists k, such that

Vℓ ∩ (Cl(A)× Cl(A)) = Vk ∩ (Cl(A)× Cl(A)) , ∀k > ℓ .

This shows that the system (2.1) is differentially distinguishable of order k in
Cl(A). Indeed, assume there exists x1 and x2 in Cl(A)× Cl(A) such that Hk(x1) =
Hk(x2). Hence, it yields that (x1, x2) is in Vk and by stationarity (x1, x2) is also in
Vℓ for all k ≥ ℓ. This implies that,

Lk
fh(x1) = Lk

fh(x2) , ∀k .

On the other hand, the functions describing the model being analytic, we know
that for all x in Cl(A) the output function

t 7→ h(X(x, t)) ,

is an analytic function of the time with infinite convergence radius. Consequently, for
all x in Cl(A), there exists a positive real number tx < σ+

Rn(x) such that

h(X(x, t)) = h(x) +

+∞
∑

j=1

Lj−1
f h(x)

tj

j!
, ∀ 0 ≤ t < tx .

Hence, PRn(x1)[0,σ) = PRn(x2)[0,σ) where σ = max{σ+
Rn(x1), σ

+
Rn(x2)} and conse-

quently x1 = x2 due to the fact that the system is distinguishable at O in R
n.
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5.7. Proof of Proposition 4.3. We consider the following sequence of sets
Vℓ ⊂ R

n × R
n with ℓ in N defined as,

Vℓ = {(x, v) ∈ R
n × R

n|∂Hℓ

∂x
(x)v = 0} .

By definition of Hℓ, we have Vk+1 ⊆ Vk. Hence, the sequence Vk is a decreasing
sequence of analytic subsets of Rn × R

n.
The ideal of the ring of analytic functions being Notherian, by [20, corollary 1,

p.99], Vℓ is a stationary sequence in all compact subset. Hence, there exists k, such
that

Vℓ ∩ {(x, v) ∈ R
n × R

n|x ∈ Cl(A), |v| ≤ 1} =

Vk ∩ {(x, v) ∈ R
n × R

n|x ∈ Cl(A), |v| ≤ 1} , ∀k > ℓ .

This shows that the system (2.1) satisfies the differential rank condition of order k
in O. Indeed, assume there exists (x, v) in A × R

n such that ∂Hk

∂x
(x)v = 0. Hence,

it yields that
(

x, v
|v|

)

is in Vk and by stationarity
(

x, v
|v|

)

is also in Vℓ for all ℓ ≥ k.

This implies that,

∂Lfh
ℓ−1

∂x
(x)

v

|v| =
∂Lfh

ℓ−1

∂x
(x)v = 0 , ∀ℓ .

On the other hand, the functions describing the model being analytic with infinite
convergence radius, the output function

(t 7→ h(X(x, t)) ,

is an analytic function of the time with infinite convergence radius. Consequently, for
all x in Cl(A) it yields,

h(X(x, t)) = h(x) +
+∞
∑

j=1

Lj−1
f h(x)

tj

j!
, ∀ 0 ≤ t ≤ σ+

Rn(x) .

Consequently, it yields,

∂h(X(x, t))

∂x
v =

∂h

∂x
(x)v +

∞
∑

j=1

∂Lfh
j−1

∂x
(x)v

tj

j!
= 0 , ∀t .

The system being infinitesimally observable in O, it yields that v = 0. Hence, the
system satisfies the differential rank condition of order k in Cl(A).

5.8. Proof of Theorem 4.1. As done in [3], the idea is to consider a family
of m × m Hurwitz matrices kA where k is a positive real number which will be
selected sufficiently large and A = Diag{λ1, . . . , λm}. Given a bounded open set A,
a corresponding solution to the partial differential equation (3.1) is given as

Tk(x) =

∫ 0

−∞
exp(−kAs)B1mh(X̆(x, s))ds , (5.27)

where X̆ : Rn × R → R
n is the solution of the modified system (3.6)-(3.7) where

δb is any positive real number and A′ is a bounded open set such that Cl(A) ⊂
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A′. As shown in Proposition 3.3, there exists a negative real number ρ such that if
maxi=1,...,n+1{Re(λi)} < ρ then for all k ≥ 1, the function Tk given in (5.27) is well
defined, C2 and a solution to the partial differential equation (3.1).

By integrating by part it yields that the function Tk satisfies for all x in R
n

Tk(x) = −(kA)−1B1mh(x) + (kA)−1

∫ 0

−∞
exp(−kAs)B1mL

f̆
h(X̆(x, s))ds ,

which is well defined due to the fact that the set A′ + δb is bounded and backward
invariant along the trajectories of the system (3.6). And with successive integration
by part, we obtain

Tk(x) = (kA)−mRk(x)−K−1SHm(x) ,

with the notations :

S =







λ−1
1 . . . λ−m

1
...

...
...

λ−1
m . . . λ−m

m






, K = Diag(k, . . . , km) , (5.28)

and Rk : Rn → C
m is the function defined by

Rk(x) =

∫ 0

−∞
exp(−skA)BLm

f̆
h(X̆(x, s))ds .

Again, this function is well defined since the function x 7→ Lm

f̆
h(X̆(x, s)) is uniformly

bounded in s for all x. Moreover, with Proposition 3.3, this function is C1 for k
sufficiently large. More precisely, we have for all x in Cl(A)

∣

∣

∣

∣

∂Rk

∂x
(x)

∣

∣

∣

∣

≤
∫ 0

−∞

∣

∣

∣

∣

∣

exp(−skA)B1m

∂Lm

f̆
h

∂x
(X̆(x, s))

∂X̆

∂x
(x, s)

∣

∣

∣

∣

∣

ds ,

and consequently, with (5.10), it yields

∣

∣

∣

∣

∂Rk

∂x
(x)

∣

∣

∣

∣

≤
∫ 0

−∞
exp(s[ρ1 − kmax

i
{Re{λi}])

∣

∣

∣

∣

∣

∂Lm

f̆
h

∂x
(X̆(x, s))

√
n

∣

∣

∣

∣

∣

ds .

Consequently we obtain the following inequality.

|Rk(x1)−Rk(x2)| ≤
c0

ρ1 − kρ
|x1 − x2| , ∀ (x1, x2) ∈ Cl(A)2 ,

where c0 is the positive real number defined as,

c0 = max
x∈Cl(A′+δb)

∣

∣

∣

∣

∣

∂Lm

f̆
h

∂x
(x)

∣

∣

∣

∣

∣

.

Hence, for all (x1, x2) in Cl(A)2 it gives,

|Tk(x1)− Tk(x2)| ≥ |K−1S(Hm(x1)−Hm(x2))| −
∣

∣(kA)−m(Rk(x1)−Rk(x2))
∣

∣

≥ 1

|K||S−1| |Hm(x1)−Hm(x2)| −
|kρ|−mc0
ρ1 − kρ

|x1 − x2| ,

≥ k−m

[

1

|S−1| |Hm(x1)−Hm(x2)| −
|ρ|−mc0
ρ1 − kρ

|x1 − x2|
]

.
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On another hand, with Lemma 3.2 Assumption 4 and 5, it yields that there exists
a positive real number LH such that for all (x1, x2) in Cl(A)2 we have,

|Hm(x1)−Hm(x2)| ≥ LH |x1 − x2| .

Hence, it yields,

|Tk(x1)− Tk(x2)| ≥ k−m

[

LH

|S−1| −
|ρ|−mc0
ρ1 − kρ

]

|x1 − x2| .

Note that for all k sufficiently large, and with Proposition 3.1 this implies that there
exists a continuous function T ∗

k : Cm → R
n such that for all (x, z) in A×C

m inequality
(4.3) is obtained with

Mk(z) =
√
nk−m

[

LH

|S−1| −
|ρ|−mc0
ρ1 − kρ

] [

|z|+ max
x∈Cl(A)

|Tk(x)|
]

.

Note moreover that the set A′+ δb being backward invariant along the trajectory
of the system (3.6), it yields

|Tk(x)| ≤
c1
kρ

, ∀ x ∈ Cl(A) , (5.29)

where c1 is the positive real number defined as,

c1 = max
x∈Cl(A′+δb)

|h(x)| .

Note that there exists k∗ such that for all k ≥ k∗ we have

√
nk−m

[

1

|S−1|LH − |ρ|−mc0
ρ1 − kρ

]

c1 exp(kρtf ) ≤ ǫ .

Hence we get the result.

6. Conclusion. In this paper is presented a sufficient condition guaranteeing
that a nonlinear Luenberger observer as introduced in [27], [12] and [3] converges
exponentially towards the state of the model. Moreover, it is shown that in the
complete observability concept this observer is tunable. These facts may be used
to design some output feedback based on this observer. For instance some of these
arguments have been used in output regulations in [10].

7. acknowledgement. The author thanks Laurent Praly for many fruitful dis-
cussions.
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