Sequential Pattern Mining to Discover Relations between Genes and Rare Diseases

Nicolas Béchet 1 Peggy Cellier 2 Thierry Charnois 3 Bruno Crémilleux 3 Marie-Christine Jaulent
1 EXPRESSION - Expressiveness in Human Centered Data/Media
UBS - Université de Bretagne Sud, IRISA-D6 - MEDIA ET INTERACTIONS
2 LIS - Logical Information Systems
IRISA-D7 - GESTION DES DONNÉES ET DE LA CONNAISSANCE
3 Equipe CODAG - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : Orphanet provides an international web-based knowledge portal for rare diseases including a collection of review articles. However, reviews and literature monitoring are manual. Thus, new documentation about a rare disease is a time-consuming process and automatically discovering knowledge from a large collection of texts is a crucial issue. This context represents a strong motivation to address the problem of extracting gene-rare diseases relationships from texts. In this paper, we tackle this issue with a cross-fertilization of information extraction and data mining techniques (sequential pattern mining under constraints). Experiments show the interest of the method for the documentation of rare diseases.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01023713
Contributor : Greyc Référent <>
Submitted on : Tuesday, July 15, 2014 - 10:34:36 AM
Last modification on : Tuesday, February 26, 2019 - 6:06:03 PM

Identifiers

Citation

Nicolas Béchet, Peggy Cellier, Thierry Charnois, Bruno Crémilleux, Marie-Christine Jaulent. Sequential Pattern Mining to Discover Relations between Genes and Rare Diseases. 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS'12), Jun 2012, Porto, Italy. p1-6, ⟨10.1109/CBMS.2012.6266367⟩. ⟨hal-01023713⟩

Share

Metrics

Record views

435