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LIMIT THEOREMS FOR BIFURCATING INTEGER-VALUED
AUTOREGRESSIVE PROCESSES

BERNARD BERCU AND VASSILI BLANDIN

Université de Bordeaux

Abstract. We study the asymptotic behavior of the weighted least squares es-
timators of the unknown parameters of bifurcating integer-valued autoregressive
processes. Under suitable assumptions on the immigration, we establish the al-
most sure convergence of our estimators, together with a quadratic strong law
and central limit theorems. All our investigation relies on asymptotic results for
vector-valued martingales.

1. Introduction

Bifurcating integer-valued autoregressive (BINAR) processes are an adaptation
of integer-valued autoregressive (INAR) processes to binary tree structured data.
It can also be seen as the combination of INAR processes and bifurcating autore-
gressive (BAR) processes. BAR processes have been first introduced by Cowan and
Staudte [9] while INAR processes have been first investigated by Al-Osh and Alzaid
[1, 2] and McKenzie [22]. BINAR processes take into account both inherited and
environmental effects to explain the evolution of the integer-valued characteristic
under study. To the best of our knowledge, this is the first paper devoted to BINAR
processes.

We can easily see cell division as an example of binary tree structure, the integer-
valued characteristic could then be, as an example, the number of parasites in a cell.
Keeping this example in mind, we consider that each time a cell is dividing, the two
sister cells inherits both some parasites depending on the number of parasites of
the mother, and some parasites from the environment. Bansaye [3] used a Kimmel
branching process to model this division process. This Kimmel process can be seen
as the inheritance part of our BINAR process, where the parasites in the mother cell
divide and then the offspring are distributed among the two sister cell. However,
this model does not allow any environmental effect.

The first-order BINAR process is defined as follows. The initial cell is labelled 1
and the offspring of the cell labelled n are labelled 2n and 2n+1. Denote by Xn the
integer-valued characteristic of individual n. Then, the first-order BINAR process
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is given, for all n ≥ 1, by

(1.1)

{
X2n = a ◦Xn + ε2n

X2n+1 = b ◦Xn + ε2n+1

where the thinning operator ◦ will be defined in (2.1). The immigration sequence
(ε2n, ε2n+1)n≥1 represents the environmental effect, while the thinning operator rep-
resents the inherited effect. The example of the cell division incites us to suppose
that ε2n ans ε2n+1 are correlated since the environmental effect on two sister cells
can reasonably be seen as correlated.

The purpose of this paper is to study the asymptotic behavior of the weighted
least squares (WLS) estimators of first-order BINAR process via a martingale ap-
proach. The martingale approach has been first proposed by Bercu et al. [7]. We
also refer to Wei and Winnicki [27] and Winnicki [28] for the WLS estimation of
parameters associated to branching processes. We shall make use of the strong law
of large numbers [14] as well as the central limit theorem [14, 16] for martingales, in
order to investigate the asymptotic behavior of the WLS estimators, as previously
done by Basawa and Zhou [5, 29, 30]. In contrast with Bercu et al. [7], we investi-
gate the asymptotic behavior of a WLS estimator instead of a least squares one. On
the one hand, it enables us to reduce the moment assumption on the immigration
sequence. On the other hand, it also allows us to reduce the asymptotic variance in
the central limit theorem for our estimates. This gain of efficiency is entirely due to
the weighted sequence which was inspired by Wei and Winnicki [27]. The fact that
we consider an integer-valued process also forced us to adapt the proofs because
of the thinning operator which needs to be manipulated more carefully than the
classical product.

Several points of view appeared for both BAR and INAR processes and we tried
to make a link between those approaches. On the one hand, for the BAR side of
the BINAR process, we had a look to classical BAR studies as done by Huggins
and Basawa [18, 19] and Huggins ans Staudte [20] who studied the evolution of cell
diameters and lifetimes, but also to bifurcating Markov chains models introduced
by Guyon [15] and used in Delmas and Marsalle [13]. However, we did not put aside
the analogy with the Galton-Watson processes as studied in Delmas and Marsalle
[13] and Heyde and Seneta [17]. We also refer to the interesting contribution of De
Saporta et al. [10, 11, 12] dealing with statistical inference for BAR processes with
missing data. On the other hand, concerning the INAR side of the BINAR process,
we used the classical INAR definition but also had a look to Bansaye [3, 4] who stud-
ied an integer-valued process on a binary tree without using an INAR model, and
also Kachour and Yao [21] who decided to study an integer-valued autoregressive
process by a rounding approach instead of the classical INAR one. The approach of
this paper has also been used for the study of random coefficient bifurcating autore-
gressive (RCBAR) process as in Blandin [8] and Bercu and Blandin [6]. RCBAR
processes is the combination of BAR processes and random coefficient autoregressive
processes. They have been previously investigated by Nicholls and Quinn [23, 24, 25].
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The paper is organised as follows. Section 2 is devoted to the presentation of
the first-order BINAR process while Section 3 deals with the WLS estimators of
the unknown parameters. Section 4 allows us to detail our approach based on
martingales. Section 5 gathers the main results about the asymptotic properties of
the WLS estimators. More precisely, we will propose the almost sure convergence,
the quadratic strong law and the central limit theorem for our estimates. The rest
of the paper is devoted to the proofs of our main results.

2. Bifurcating integer-valued autoregressive processes

Consider the first-order BINAR process given by (1.1) where the initial integer-
valued state X1 is the ancestor of the process and (ε2n, ε2n+1) represents the immi-
gration which takes nonnegative integer values. In all the sequel, we shall assume
that E[X8

1 ] < ∞. Moreover,

(2.1) a ◦Xn =
Xn∑

i=1

Yn,i and b ◦Xn =
Xn∑

i=1

Zn,i

where (Yn,i)n,i≥1 and (Zn,i)n,i≥1 are two independent sequences of i.i.d., nonnega-
tive integer-valued random variables with means a and b and positive variances
σ2
a and σ2

b respectively. Moreover, µ4
a, µ

4
b and τ 6a , τ 6b are the fourth-order and the

sixth-order centered moments of (Yn,i) and (Zn,i), respectively, and (Yn,i) and (Zn,i)
admit eighth-order moments. We also assume that the two offspring sequences (Yn,i)
and (Zn,i) are independent of the immigration (ε2n, ε2n+1). In addition, as in the
literature concerning BAR processes, we shall assume that

0 < max(a, b) < 1.

One can see this BINAR process as a first-order integer-valued autoregressive process
on a binary tree, where each node represents an individual, node 1 being the original
ancestor. For all n ≥ 1, denote the n-th generation by

Gn = {2n, 2n + 1, . . . , 2n+1 − 1}.
In particular, G0 = {1} is the initial generation and G1 = {2, 3} is the first genera-
tion of offspring from the first ancestor. Let Grn be the generation of individual n,
which means that rn = [log2(n)]. Recall that the two offspring of individual n are
labelled 2n and 2n + 1, or conversely, the mother of individual n is [n/2] where [x]
stands for the largest integer less than or equal to x. Finally denote by

Tn =
n⋃

k=0

Gk

the sub-tree of all individuals from the original individual up to the n-th gener-
ation. On can observe that the cardinality |Gn| of Gn is 2n while that of Tn is
|Tn| = 2n+1 − 1.
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Figure 1. The tree associated with the BINAR

3. Weighted least-squares estimation

Denote by F = (Fn)n≥0 the natural filtration associated with the first-order
BINAR process, which means that Fn is the σ-algebra generated by all individ-
uals up to the n-th generation, in other words Fn = σ{Xk, k ∈ Tn}. We will assume
in all the sequel that, for all n ≥ 0 and for all k ∈ Gn,{

E[ε2k|Fn] = c a.s.

E[ε2k+1|Fn] = d a.s.

Consequently, we deduce from (1.1) that, for all n ≥ 0 and for all k ∈ Gn,

(3.1)

{
X2k = aXk + c+ V2k,

X2k+1 = bXk + d+ V2k+1,

where V2k = X2k −E[X2k|Fn] and V2k+1 = X2k+1 −E[X2k+1|Fn]. Therefore, the two
relations given by (3.1) can be rewritten in the matrix form

(3.2) χn = θtΦn +Wn

where

χn =

(
X2n

X2n+1

)
, Φn =

(
Xn

1

)
, Wn =

(
V2n

V2n+1

)
,

and the matrix parameter

θ =

(
a b
c d

)
.

Our goal is to estimate θ from the observation of all individuals up to Tn. We

propose to make use of the WLS estimator θ̂n of θ which minimizes

∆n(θ) =
1

2

∑

k∈Tn−1

1

ck
‖χk − θtΦk‖2
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where the choice of the weighting sequence (cn)n≥1 is crucial. We shall choose
cn = 1 +Xn and we will go back to this suitable choice in Section 4. Consequently,
we obviously have for all n ≥ 1

(3.3) θ̂n = S−1
n−1

∑

k∈Tn−1

1

ck
Φkχ

t
k

where

Sn =
∑

k∈Tn

1

ck
ΦkΦ

t
k.

In order to avoid useless invertibility assumption, we shall assume, without loss of
generality, that for all n ≥ 0, Sn is invertible. Otherwise, we only have to add the
identity matrix of order 2, I2 to Sn. In all what follows, we shall make a slight abuse

of notation by identifying θ as well as θ̂n to

vec(θ) =




a
c
b
d


 and vec(θ̂n) =




ân
ĉn
b̂n
d̂n


 .

Therefore, we deduce from (3.3) that

θ̂n = Σ−1
n−1

∑

k∈Tn−1

1

ck
vec(Φkχ

t
k),

= Σ−1
n−1

∑

k∈Tn−1

1

ck




XkX2k

X2k

XkX2k+1

X2k+1




where Σn = I2⊗Sn and ⊗ stands for the standard Kronecker product. Consequently,
(3.2) yields to

θ̂n − θ = Σ−1
n−1

∑

k∈Tn−1

1

ck
vec(ΦkW

t
k),

= Σ−1
n−1

∑

k∈Tn−1

1

ck




XkV2k

V2k

XkV2k+1

V2k+1


 .(3.4)

In all the sequel, we shall make use of the following moment hypotheses.

(H.1) For all n ≥ 0 and for all k ∈ Gn

E[ε2k|Fn] = c and E[ε2k+1|Fn] = d a.s.

(H.2) For all n ≥ 0 and for all k ∈ Gn

Var[ε2k|Fn] = σ2
c > 0 and Var[ε2k+1|Fn] = σ2

d > 0 a.s.
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(H.3) For all n ≥ 0 and for all k, l ∈ Gn+1, if [k/2] 6= [l/2], εk and εl are condition-
ally independent given Fn, while otherwise it exists ρ2 < σ2

cσ
2
d such that, for

all k ∈ Gn

E[(ε2k − c)(ε2k+1 − d)|Fn] = ρ a.s.

(H.4) One can find µ4
c > σ4

c and µ4
d > σ4

d such that, for all n ≥ 0 and for all k ∈ Gn

E
[
(ε2k − c)4 |Fn

]
= µ4

c and E
[
(ε2k+1 − d)4 |Fn

]
= µ4

d a.s.

In addition, it exists ν4 ≤ µ4
cµ

4
d such that, for all k ∈ Gn

E[(ε2k − c)2(ε2k+1 − d)2|Fn] = ν2 a.s.

(H.5) One can find τ 6c > 0 and τ 6d > 0 such that

sup
n≥1

sup
k∈Gn

E[ε62k|Fn] = τ 6c and sup
n≥1

sup
k∈Gn

E[ε62k+1|Fn] = τ 6d a.s.

sup
n≥2

E[ε8n] < ∞

It follows from hypothesis (H.1) that V2n and V2n+1 can be rewritten as

V2n =
Xn∑

i=1

(Yn,i − a) + (ε2n − c) and V2n+1 =
Xn∑

i=1

(Zn,i − b) + (ε2n − d).

Hence, under assumption (H.2), we have for all n ≥ 0 and for all k ∈ Gn

E[V 2
2k|Fn] = σ2

aXk + σ2
c and E[V 2

2k+1|Fn] = σ2
bXk + σ2

d a.s.(3.5)

Consequently, if we choose cn = 1+Xn for all n ≥ 1, we clearly have for all k ∈ Gn

E [V 2
2k| Fn] ≤ max(σ2

a, σ
2
c )ck and E

[
V 2
2k+1

∣∣Fn

]
≤ max(σ2

b , σ
2
d)ck a.s.

It is exactly the reason why we have chosen this weighting sequence into (3.3).
Similar WLS estimation approach for branching processes with immigration may
be found in [27] and [28]. We can also observe that, for all k ∈ Gn, under the
assumption (H.3)

ρ = E[V2kV2k+1|Fn] a.s.

Hence, we propose to estimate the conditional covariance ρ by

(3.6) ρ̂n =
1

|Tn−1|
∑

k∈Tn−1

V̂2kV̂2k+1

where for all k ∈ Gn, {
V̂2k = X2k − ânXk − ĉn,

V̂2k+1 = X2k+1 − b̂nXk − d̂n.

For all n ≥ 0 and for all k ∈ Gn, denote v2k = V 2
2k − E[V 2

2k|Fn]. We deduce from
(3.5) that for all n ≥ 1

V 2
2n = ηtΦn + v2n
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where ηt =
(
σ2
a σ2

c

)
. It leads us to estimate the vector of variances η by the WLS

estimator

(3.7) η̂n = Q−1
n−1

∑

k∈Tn−1

1

dk
V̂ 2
2kΦk

where

Qn =
∑

k∈Tn

1

dk
ΦkΦ

t
k

and the weighting sequence (dn)n≥1 is given, for all n ≥ 1, by dn = (1 +Xn)
2. This

choice is due to the fact that for all n ≥ 1 and for all k ∈ Gn

E[v22k|Fn] = E[V 4
2k|Fn]−

(
E[V 2

2k|Fn]
)2

a.s.

= 2σ4
aX

2
k + (µ4

a − 3σ4
a + 4σ2

aσ
2
c )Xk + µ4

c − σ4
c a.s.(3.8)

where we recall that µ4
a is the fourth-order centered moment of (Yn,i). Consequently,

as dn ≥ 1, we clearly have for all n ≥ 1 and for all k ∈ Gn

E[v22k|Fn] ≤ (µ4
a − σ4

a + 4σ2
aσ

2
c + µ4

c − σ4
c )dk a.s.

We have a similar WLS estimator ζ̂n of the vector of variances ζt =
(
σ2
b σ2

d

)
by

replacing V̂ 2
2k by V̂ 2

2k+1 into (3.7).

4. A martingale approach

In order to establish all the asymptotic properties of our estimators, we shall make
use of a martingale approach. For all n ≥ 1, denote

Mn =
∑

k∈Tn−1

1

ck




XkV2k

V2k

XkV2k+1

V2k+1


 .

We can clearly rewrite (3.4) as

(4.1) θ̂n − θ = Σ−1
n−1Mn.

As in [7], we make use of the notation Mn since it appears that (Mn)n≥1 a martingale.
This fact is a crucial point of our study and it justifies the vector notation since most
of asymptotic results for martingales were established for vector-valued martingales.
Let us rewrite Mn in order to emphasize its martingale quality. Let Ψn = I2 ⊗ ϕn

where ϕn is the matrix of dimension 2× 2n given by

ϕn =




X2n√
c2n

X2n+1√
c2n+1

. . .
X2n+1−1√
c2n+1−1

1√
c2n

1√
c2n+1

. . .
1√

c2n+1−1


 .



8 BERNARD BERCU AND VASSILI BLANDIN

It represents the individuals of the n-th generation which is also the collection of all
Φk/

√
ck where k belongs to Gn. Let ξn be the random vector of dimension 2n

ξtn =

(
V2n√
c2n−1

V2n+2√
c2n−1+1

. . .
V2n+1−2√
c2n−1

V2n+1√
c2n−1

V2n+3√
c2n−1+1

. . .
V2n+1−1√
c2n−1

)
.

The vector ξn gathers the noise variables of Gn. The special ordering separating odd
and even indices has been made in [7] so that Mn can be written as

Mn =
n∑

k=1

Ψk−1ξk

Under (H.1), we clearly have for all n ≥ 0, E[ξn+1|Fn] = 0 a.s. and Ψn is Fn-
measurable. In addition it is not hard to see that under (H.1) to (H.3), (Mn) is
a locally square integrable vector martingale with increasing process given, for all
n ≥ 1, by

〈M〉n =
n−1∑

k=0

ΨkE[ξk+1ξ
t
k+1|Fk]Ψ

t
k =

n−1∑

k=0

Lk a.s.(4.2)

where

(4.3) Lk =
∑

i∈Gk

1

c2i

(
σ2
aXi + σ2

c ρ
ρ σ2

bXi + σ2
d

)
⊗
(
X2

i Xi

Xi 1

)
.

It is necessary to establish the convergence of 〈M〉n, properly normalized, in order to

prove the asymptotic results for our BINAR estimators θ̂n, η̂n and ζ̂n. Since the sizes
of Ψn and ξn double at each generation, we have to adapt the proof of vector-valued
martingale convergence given in [14] to our framework.

5. Main results

In all the sequel, we will assume that the law of the immigration (ε2n, ε2n+1) does
not depend on n. However, we shall get rid of the standard assumption commonly
used in the INAR literature that the offspring sequences (Yn,i) and (Zn,i) share the
same Bernoulli distribution. The only assumption that we will use here is that
the offspring sequences (Yn,i) and (Zn,i) admit eighth-order moments. We have
to introduce some more notations in order to state our main results. From the
original process (Xn)n≥1, we shall define a new process (Yn)n≥1 recursively defined
by Y1 = X1, and if Yn = Xk with n, k ≥ 1, then

Yn+1 = X2k+κn

where (κn)n≥1 is a sequence of i.i.d. random variables with Bernoulli B (1/2) dis-
tribution. Such a construction may be found in [15] for the asymptotic analysis of
BAR processes. The process (Yn) gathers the values of the original process (Xn)
along the random branch of the binary tree (Tn) given by (κn). Denote by kn the
unique k ≥ 1 such that Yn = Xk. Then, for all n ≥ 1, we have

(5.1) Yn+1 = an+1 ◦ Yn + en+1
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where

(5.2) an+1 =

{
a if κn = 0

b otherwise
and en = εkn .

Lemma 5.1. Assume that (εn) satisfies (H.1) to (H.4). Then, we have

Yn
L−→ T

where T is a positive non degenerate integer-valued random variable with E[T 3] < ∞.

Denote C1
3(R+) =

{
f ∈ C1(R+,R)

∣∣∃γ > 0, ∀x ≥ 0, (|f ′(x)|+ |f(x)|) ≤ γ(1 + x3)
}

.

Lemma 5.2. Assume that (εn) satisfies (H.1) to (H.5). Then, for all f ∈ C1
3(R+),

we have

lim
n→∞

1

|Tn|
∑

k∈Tn

f(Xk) = E[f(T )] a.s.

Proposition 5.3. Assume that (εn) satisfies (H.1) to (H.5). Then, we have

(5.3) lim
n→∞

〈M〉n
|Tn−1|

= L a.s.

where L is the positive definite matrix given by

L = E

[
1

(1 + T )2

(
σ2
aT + σ2

c ρ
ρ σ2

bT + σ2
d

)
⊗
(
T 2 T
T 1

)]
.

Our first result deals with the almost sure convergence of our WLS estimator θ̂n.

Theorem 5.4. Assume that (εn) satisfies (H.1) to (H.5). Then, θ̂n converges

almost surely to θ with the rate of convergence

(5.4) ‖θ̂n − θ‖2 = O
(

n

|Tn−1|

)
a.s.

In addition, we also have the quadratic strong law

(5.5) lim
n→∞

1

n

n∑

k=1

|Tk−1|(θ̂k − θ)tΛ(θ̂k − θ) = tr(Λ−1/2LΛ−1/2) a.s.

where

(5.6) Λ = I2 ⊗ A and A = E

[
1

1 + T

(
T 2 T
T 1

)]
.
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Our second result concerns the almost sure asymptotic properties of our WLS vari-

ance and covariance estimators η̂n, ζ̂n and ρ̂n. Let

ηn = Q−1
n−1

∑

k∈Tn−1

1

dk
V 2
2kΦk,

ζn = Q−1
n−1

∑

k∈Tn−1

1

dk
V 2
2k+1Φk,

ρn =
1

|Tn−1|
∑

k∈Tn−1

V2kV2k+1.

Theorem 5.5. Assume that (εn) satisfies (H.1) to (H.5). Then, η̂n and ζ̂n con-

verge almost surely to η and ζ respectively. More precisely,

‖η̂n − ηn‖ = O
(

n

|Tn−1|

)
a.s.(5.7)

‖ζ̂n − ζn‖ = O
(

n

|Tn−1|

)
a.s.(5.8)

In addition, ρ̂n converges almost surely to ρ with

(5.9) ρ̂n − ρn = O
(

n

|Tn−1|

)
a.s.

Remark 5.6. We also have the almost sure rates of convergence

‖η̂n−η‖2 = O
(

n

|Tn−1|

)
, ‖ζ̂n−ζ‖2 = O

(
n

|Tn−1|

)
, (ρ̂n−ρ)2 = O

(
n

|Tn−1|

)
a.s.

Our last result is devoted to the asymptotic normality of our WLS estimators θ̂n,

η̂n, ζ̂n and ρ̂n.

Theorem 5.7. Assume that (εn) satisfies (H.1) to (H.5). Then, we have the

asymptotic normality

(5.10)
√

|Tn−1|(θ̂n − θ)
L−→ N (0, (I2 ⊗ A−1)L(I2 ⊗ A−1)).

In addition, we also have

√
|Tn−1| (η̂n − η)

L−→ N (0, B−1MacB
−1),(5.11)

√
|Tn−1|

(
ζ̂n − ζ

) L−→ N (0, B−1MbdB
−1),(5.12)

where

B = E

[
1

(1 + T )2

(
T 2 T
T 1

)]
,

Mac = E

[
2σ4

aT
2 + (µ4

a − 3σ4
a + 4σ2

aσ
2
c )T + µ4

c − σ4
c

(1 + T )4

(
T 2 T
T 1

)]
,
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Mbd = E

[
2σ4

bT
2 + (µ4

b − 3σ4
b + 4σ2

bσ
2
d)T + µ4

d − σ4
d

(1 + T )4

(
T 2 T
T 1

)]
.

Finally,

(5.13)
√

|Tn−1| (ρ̂n − ρ)
L−→ N

(
0, σ2

ρ

)

where

(5.14) σ2
ρ = σ2

aσ
2
bE[T

2] +
(
σ2
aσ

2
d + σ2

bσ
2
c

) c

1− a
+ ν2 − ρ2,

E[T 2] =
Υc

1− a
+

c2 −Υc

1− a2
+

2(ac+ bd)c

(1− a)(1− a2)
,

Υ =
σ2
a + σ2

b

2(a− a2)
, a =

a+ b

2
, a2 =

a2 + b2

2
,

c =
c+ d

2
, c2 =

σ2
c + σ2

d + c2 + d2

2
.

The rest of the paper is dedicated to the proof of our main results.

6. Proof of Lemma 5.1

We can reformulate (5.1) and (5.2) as

Yn = an ◦ an−1 ◦ . . . ◦ a2 ◦ Y1 +
n−1∑

k=2

an ◦ an−1 ◦ . . . ◦ ak+1 ◦ ek + en.

We already made the assumption that the law of the immigration (ε2n, ε2n+1) does
not depend on n. Consequently, the couples (ak, ek) and (an−k+2, en−k+2) share the
same distribution. Hence, for all n ≥ 2, Yn has the same distribution than the
random variable

Zn = a2 ◦ . . . ◦ an ◦ Y1 +
n−1∑

k=2

a2 ◦ a3 ◦ . . . ◦ an−k+1 ◦ en−k+2 + e2,

= a2 ◦ . . . ◦ an ◦ Y1 +
n∑

k=3

a2 ◦ a3 ◦ . . . ◦ ak−1 ◦ ek + e2.

For the sake of simplicity, we will denote

(6.1) Zn = a2 ◦ . . . ◦ an ◦ Y1 +
n∑

k=2

a2 ◦ a3 ◦ . . . ◦ ak−1 ◦ ek.

For all n ≥ 2 and for all 2 ≤ k ≤ n, let Σn−k+2
n = ak ◦ . . . ◦ an ◦ Y1 and Σ1

n = Y1. We
clearly have Σn−k+2

n = ak ◦Σn−k+1
n . Consequently, it follows from the tower property

of the conditional expectation that

E[Σn
n] = E[a2 ◦ Σn−1

n ] = E[a ◦ Σn−1
n ]P(a2 = a) + E[b ◦ Σn−1

n ]P(a2 = b),
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leading to

E[Σn
n] =

1

2


E


E




Σn−1
n∑

i=1

Y2,i

∣∣∣∣∣∣
Σn−1

n




+ E


E




Σn−1
n∑

i=1

Z2,i

∣∣∣∣∣∣
Σn−1

n






 ,

=
1

2


E



Σn−1

n∑

i=1

E [Y2,i]


+ E




Σn−1
n∑

i=1

E [Z2,i]




 ,

=
1

2

(
E[aΣn−1

n ] + E[bΣn−1
n ]

)
= aE[Σn−1

n ] = · · · = an−1
E[Σ1

n] = an−1
E[Y1].

The stability hypothesis 0 < max(a, b) < 1 implies that 0 < a < 1 which leads to

∞∑

n=2

E[Σn
n] = E[Y1]

∞∑

n=2

an−1 =
E[Y1]a

1− a
.

Then, we obtain from the monotone convergence theorem that

(6.2) lim
n→∞

Σn
n = 0 a.s.

It now remains to study the right-hand side sum in (6.1). For all n ≥ 2, denote

Tn =
n∑

k=2

a2 ◦ . . . ◦ ak−1 ◦ ek.

By the same calculation as before, we have for all n ≥ 2

E[Tn] =
n∑

k=2

ak−2
E[ek] = c

n−2∑

k=0

ak,

which implies that

lim
n→∞

E[Tn] =
c

1− a
.

Hence, the positive increasing sequence (Tn) converges almost surely to

T =
∞∑

k=2

a2 ◦ . . . ◦ ak−1 ◦ ek

which is almost surely finite, thanks to the monotone convergence, as E[T ] < ∞.
Therefore, we can conclude from (6.1) and (6.2) that

lim
n→∞

Zn = T a.s.

leading to

Yn
L−→ T.

Let us prove that E[T 3] < ∞. First of all, we already saw that

E[a2 ◦ . . . ◦ an ◦ en+1] = an−1
E[e2] = an−1c.
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In addition,

E[(Σn
n)

2] =
1

2

(
E
[
(a ◦ Σn−1

n )2
]
+ E

[
(b ◦ Σn−1

n )2
])

,

=
1

2


E


E






Σn−1
n∑

i=1

Y2,i




2∣∣∣∣∣∣
Σn−1

n




+ E


E






Σn−1
n∑

i=1

Z2,i




2∣∣∣∣∣∣
Σn−1

n






 ,

and the first expectation is

E


E






Σn−1
n∑

i=1

Y2,i




2∣∣∣∣∣∣
Σn−1

n




 = E


E




Σn−1
n∑

i=1

Y 2
2,i +

Σn−1
n∑

i=1

Σn−1
n∑

j=1
j 6=i

Y2,iY2,j

∣∣∣∣∣∣∣∣
Σn−1

n





 ,

= E




Σn−1
n∑

i=1

E[Y 2
2,i] +

Σn−1
n∑

i=1

Σn−1
n∑

j=1
j 6=i

E[Y2,i]E[Y2,j]


 ,

= E[Σn−1
n (σ2

a + a2) + Σn−1
n (Σn−1

n − 1)a2],

= E[Σn−1
n ]σ2

a + a2E[(Σn−1
n )2].

Since the computation of the second expectation is exactly the same, we obtain

E[(Σn
n)

2] = E[Σn−1
n ]

σ2
a + σ2

b

2
+ a2E[(Σn−1

n )2],

= an−2σ
2
a + σ2

b

2
E[Y1] + a2E[(Σn−1

n )2] = . . .

=

(
n−2∑

i=0

an−i−2a2
i

)
σ2
a + σ2

b

2
E[Y1] + a2

n−1
E[(Σ1

n)
2],

=
an−1 − a2

n−1

a− a2
σ2
a + σ2

b

2
E[Y1] + a2

n−1
E[Y 2

1 ],

= (an−1 − a2
n−1

)ΥE[Y1] + a2
n−1

E[Y 2
1 ]

where

Υ =
σ2
a + σ2

b

2(a− a2)
.

In the same way, we can prove that

E[(a2 ◦ . . . ◦ an ◦ en+1)
2] = (an−1 − a2

n−1
)Υc+ a2

n−1
c2.

Consequently, as (en) is an integer-valued random variable,

E[(a2 ◦ . . . ◦ an ◦ en+1)
2] ≤ an−1(Υc+ c2) ≤ an−1(Υ + 1)c2.

Furthermore, we obtain from tedious but straightforward calculations that it exists
some constant ξ > 0 such that for all 2 ≤ p ≤ 8

(6.3) E[(a2 ◦ . . . ◦ an ◦ en+1)
p] ≤ ξE[ep2]a

n−1.
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One can observe that the constant ξ only depends on the moments of (Yn,i) and
(Zn,i) up to order 8. Hence, as 0 < a < 1, we deduce from (6.3) and the triangle
inequality that

E[T 3]1/3 ≤
∞∑

k=2

E
[
(a2 ◦ . . . ◦ ak−1 ◦ ek)3

]1/3
,

≤ ξ1/3E[e32]
1/3

∞∑

k=2

a(k−2)/3 < ∞

which immediately leads to E[T 3] < ∞. Finally, let us compute Var(T ) in order to
prove that T is not degenerate. First, one can observe that

E[T 2] = E



(

∞∑

k=2

a2 ◦ . . . ◦ ak−1 ◦ ek
)2

 ,

=
∞∑

k=2

E
[
(a2 ◦ . . . ◦ ak−1 ◦ ek)2

]

+ 2
∞∑

k=2

∞∑

l=k+1

E [(a2 ◦ . . . ◦ ak−1 ◦ ek) (a2 ◦ . . . ◦ al−1 ◦ el)]

We already saw that

E
[
(a2 ◦ . . . ◦ ak−1 ◦ ek)2

]
= (ak−2 − a2

k−2
)Υc+ a2

k−2
c2.

Moreover, we have, for all l ≥ 3

E [e2(a2 ◦ . . . ◦ al−1 ◦ el)] =
1

2
E [ε2(a ◦ . . . ◦ al−1 ◦ el)] +

1

2
E [ε3(b ◦ . . . ◦ al−1 ◦ el)] ,

=
1

2
(E [ε2]E[[(a ◦ . . . ◦ al−1 ◦ el)] + E [ε3]E[[(b ◦ . . . ◦ al−1 ◦ el)]) ,

=
1

2

(
c(aal−3c) + d(bal−3c)

)
,

=
(ac+ bd)c

2
al−3.

In addition, for all k ≥ 2 and for all l ≥ k + 1

E [(a2 ◦ . . . ◦ ak−1 ◦ ek) (a2 ◦ . . . ◦ al−1 ◦ el)]

=
1

2
E [(a ◦ . . . ◦ ak−1 ◦ ek) (a ◦ . . . ◦ al−1 ◦ el)]

+
1

2
E [(b ◦ . . . ◦ ak−1 ◦ ek) (b ◦ . . . ◦ al−1 ◦ el)] .
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Let us tackle the first term

E [(a ◦ . . . ◦ ak−1 ◦ ek) (a ◦ . . . ◦ al−1 ◦ el)]

= E

[(
a3◦...◦ak−1◦ek∑

i=1

Yk,i

)(
a3◦...◦al−1◦el∑

j=1

Yl,j

)]
,

= E

[
a3◦...◦ak−1◦ek∑

i=1

a3◦...◦al−1◦el∑

j=1

E[Yk,iYl,j|a3 ◦ . . . ◦ ak−1 ◦ ek, a3 ◦ . . . ◦ al−1 ◦ el]
]
,

= E

[
a3◦...◦ak−1◦ek∑

i=1

a3◦...◦al−1◦el∑

j=1

E[Yk,iYl,j]

]
,

= E

[
a3◦...◦ak−1◦ek∑

i=1

a3◦...◦al−1◦el∑

j=1

a2

]
,

= a2E [(a3 ◦ . . . ◦ ak−1 ◦ ek) (a3 ◦ . . . ◦ al−1 ◦ el)] .

Hence, we obtained that

E [(a2 ◦ . . . ◦ ak−1 ◦ ek) (a2 ◦ . . . ◦ al−1 ◦ el)]
= a2E [(a3 ◦ . . . ◦ ak−1 ◦ ek) (a3 ◦ . . . ◦ al−1 ◦ el)] ,
= a2

k−2
E [ek (ak ◦ . . . ◦ al−1 ◦ el)] ,

= a2
k−2 (ac+ bd)c

2
al−k−1.

Finally, we have

E[T 2] =
∞∑

k=2

(
(ak−2 − a2

k−2
)Υc+ a2

k−2
c2
)
+ 2

∞∑

l=3

(ac+ bd)c

2
al−3

+ 2
∞∑

k=3

∞∑

l=k+1

a2
k−2 (ac+ bd)c

2
al−k−1,

= Υc

(
1

1− a
− 1

1− a2

)
+

c2

1− a2
+

(ac+ bd)c

1− a

(
1 +

a2

1− a2

)
,

= Υc

(
1

1− a
− 1

1− a2

)
+

c2

1− a2
+

(ac+ bd)c

(1− a)(1− a2)
.
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To conclude, we can compute the variance of T

Var(T ) = E[T 2]− E[T ]2,

= Υc

(
1

1− a
− 1

1− a2

)
+

σ2
c + σ2

d

2(1− a2)

+
c2 + d2

2(1− a2)
+

(ac+ bd)c

(1− a)(1− a2)
−
(

c

1− a

)2

,

= Υc

(
1

1− a
− 1

1− a2

)
+

σ2
c + σ2

d

2(1− a2)
+

2(ad− bc+ c− d)2

(2− (a2 + b2))(2− (a+ b))2
.

The first and the third terms of this sum are clearly nonnegative since max(a, b) < 1,
and the second term is clearly positive under (H.2). This allows us to say that the
variance of T 2 is positive and T is not degenerate.

7. Proof of Lemma 5.2

We shall now prove that for all f ∈ C1
3(R+),

(7.1) lim
n→∞

1

|Tn|
∑

k∈Tn

f(Xk) = E[f(T )].

Denote g = f − E[f(T )],

MTn
(f) =

1

|Tn|
∑

k∈Tn

f(Xk) and MGn
(f) =

1

|Gn|
∑

k∈Gn

f(Xk).

Via Lemma A.2 of [7], it is only necessary to prove that

lim
n→∞

1

|Gn|
∑

k∈Gn

g(Xk) = 0 a.s.

We shall follow the induced Markov chain approach, originally proposed by Guyon
in [15]. Let Q be the transition probability of (Yn), Q

p the p-th iterated of Q. In
addition, denote by ν the distribution of Y1 = X1 and νQp the law of Yp. Finally, let
P be the transition probability of (Xn) as defined in [15]. We obtain from relation
(7) of [15] that for all n ≥ 0

E[MGn
(g)2] =

1

2n
νQng2 +

n−1∑

k=0

1

2k+1
νQkP (Qn−k−1g ⋆ Qn−k−1g)

where, for all x, y ∈ N, (f ⋆ g)(x, y) = f(x)g(y). Consequently,

∞∑

n=0

E[MGn
(g)2] =

∞∑

n=0

1

2n
νQng2 +

∞∑

n=1

n−1∑

k=0

1

2k+1
νQkP (Qn−k−1g ⋆ Qn−k−1g),

≤
∞∑

k=0

1

2k
νQk

(
g2 + P

(
∞∑

l=0

|Qlg ⋆ Qlg|
))

.
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However, for all x ∈ N,

Qng(x) = Qnf(x)− E[f(T )] = Ex[f(Yn)− f(T )] = Ex[f(Zn)− f(T )]

where Zn is given by (6.1). Hence, we deduce from the mean value theorem and
Cauchy-Schwarz inequality that

(7.2) |Qng(x)| ≤ Ex[Wn|Zn − T |] ≤ Ex[W
2
n ]

1/2
Ex[(Zn − T )2]1/2

where

Wn = sup
z∈[Zn,T ]

|f ′(z)|.

By the very definition of C1
3(R+), one can find some constant α > 0 such that

|f ′(z)| ≤ α(1 + z6). Hence, it exists some constant β > 0 such that

Ex[W
2
n ] ≤ αEx[1 + Z6

n + T 6] = α(1 + Ex[Z
6
n] + E[T 6]),

≤ β(1 + x6).(7.3)

As a matter of fact, under hypotheses (H.1) to (H.5), E[T 6] < ∞ and it exists
some constant γ > 0 such that Ex[Z

6
n] < γ(1 + x6). Let us first deal with E[T 6].

The triangle inequality, together with 0 < a < 1 and (6.3) allow us to say that

E[T 6]1/6 ≤
∞∑

k=2

E
[
(a2 ◦ . . . ◦ ak−1 ◦ ek)6

]1/6 ≤ ξ1/6E[e62]
1/6

∞∑

k=2

a(k−2)/6 < ∞

which immediately leads to E[T 6] < ∞. One the other hand, we infer from (6.1)
that

Ex[Z
6
n]

1/6 ≤ Ex[(a2 ◦ . . . ◦ an ◦ Y1)
6]1/6 +

n∑

k=2

Ex

[
(a2 ◦ a3 ◦ . . . ◦ ak−1 ◦ ek)6

]1/6
,

≤ ξ1/6Ex[Y
6
1 ]

1/6an−1 +
∞∑

k=2

E
[
(a2 ◦ a3 ◦ . . . ◦ ak−1 ◦ ek)6

]1/6
,

≤ ξ1/6x+
∞∑

k=2

E
[
(a2 ◦ a3 ◦ . . . ◦ ak−1 ◦ ek)6

]1/6

and we have already proved that the sum in the right-hand term is finite. So we
can conclude that there exists some constant γ > 0 such that Ex[Z

6
n] < γ(1 + x6).

Furthermore

Zn − T = a2 ◦ . . . an ◦ Y1 −
∞∑

k=n+1

a2 ◦ . . . ◦ ak ◦ ek+1

and the triangle inequality allows us to say that

Ex[(Zn − T )2]1/2 ≤ Ex[(a2 ◦ . . . an ◦ Y1)
2]1/2 +

∞∑

k=n+1

Ex[(a2 ◦ . . . ◦ ak ◦ ek+1)
2]1/2.
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We already saw in section 6 that

Ex[(a2 ◦ . . . an ◦ Y1)
2] = (an−1 − a2

n−1
)ΥEx[Y1] + a2

n−1
Ex[Y

2
1 ],

= (an−1 − a2
n−1

)Υx+ a2
n−1

x2 = x(Υan−1 + a2
n−1

(x−Υ))

and

Ex[(a2 ◦ . . . ◦ ak ◦ ek+1)
2] = (ak−1 − a2

k−1
)Υc+ a2

k−1
c2.

Hence
∞∑

k=n+1

Ex[(a2 ◦ . . . ◦ ak ◦ ek+1)
2]1/2 =

∞∑

k=n+1

(
ak−1Υc+ a2

k−1
(
c2 −Υc

))1/2
,

≤
∞∑

k=n+1

(
ak−1c+ ak−1

∣∣∣c2 −Υc
∣∣∣
)1/2

,

≤
∞∑

k=n+1

√
a
k−1

δ = δ

√
a
n

1−
√
a
.

where

δ =

√
max(c2, (1 + Υ)c− c2).

To sum up, we find that

Ex[(Zn − T )2]1/2 ≤ √
x
(
Υan−1 + a2

n−1
(x−Υ)

)1/2
+

δ

1−
√
a

√
a
n
,

≤





√
x (Υan−1 + an−1(x−Υ))

1/2
+

δ

1−
√
a

√
a
n

if x > Υ,

√
x
√
Υ
√
a
n−1

+
δ

1−
√
a

√
a
n

if x ≤ Υ,

≤





x
√
a
n−1

+
δ

1−
√
a

√
a
n

if x > Υ,

1 + x

2

√
Υ
√
a
n−1

+
δ

1−
√
a

√
a
n

if x ≤ Υ,

≤
√
a
n
(1 + x)

(√
Υ

2
√
a
+

δ

1−
√
a

)
.(7.4)

Finally, we obtain from (7.2) together with (7.3) and (7.4) that for some constant
κ > 0

|Qng(x)| ≤
√
β(1 + x6)1/2

√
a
n−1

(1 + x)

(√
Υ

2
+

δ

1−
√
a

)
≤

√
a
n
κ(1 + x4).

Therefore,

P

(
∞∑

n=0

|Qng ⋆ Qng|
)

≤ κ2

1− a
P (h ⋆ h)
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where, for all x ∈ N, h(x) = 1 + x4. We are now in position to prove that

(7.5) E

[
∞∑

n=0

MGn
(g)2

]
< ∞.

It is not hard to see that from hypothesis (H.5), it exists some constant λ > 0 such
that for all x ∈ N, P (h ⋆ h)(x) ≤ λ(1 + x8). Consequently, it exists some constant
µ > 0 such that

∞∑

n=0

E
[
MGn

(g)2
]
≤

∞∑

k=0

1

2k
νQk

(
g2 + P

(
∞∑

l=0

|Qlg ⋆ Qlg|
))

,

≤
∞∑

k=0

1

2k

(
E[g2(Yk)] +

λκ2

1− a
(1 + E[Y 8

k ])

)
,

≤
(
2µ+

λκ2

1− a

)(
2 +

∞∑

k=0

1

2k
E[Y 8

k ]

)
.(7.6)

Furthermore, we can deduce from (6.3) that it exists some constant ζ such that

E[Y 8
n ]

1/8 ≤ E
[
(a2 ◦ . . . an ◦ Y1)

8
]1/8

+
n∑

k=2

E
[
(a2 ◦ . . . ak−1 ◦ ek)8

]1/8
,

≤ E
[
(a2 ◦ . . . an ◦ Y1)

8
]1/8

+ ξ1/8E[e82]
1/8

n∑

k=2

ak−2,

≤ ζ1/8E[Y 8
1 ]

1/8an−1 +
ξ1/8E[e82]

1/8

1− a
,

≤ ζ1/8E[Y 8
1 ]

1/8 + ξ1/8E[e82]
1/8

1− a
.(7.7)

Then, (7.6) and (7.7) immediately lead to (7.5). Finally, the monotone convergence
theorem implies that

lim
n→∞

MGn
(g) = 0 a.s.

which completes the proof of Lemma 5.2.

8. Proof of Proposition 5.3

The almost sure convergence (5.3) immediately follows from (4.2) and (4.3) to-
gether with Lemma 5.2. It only remains to prove that det(L) > 0 where the limiting
matrix L can be rewritten as

L = E [Γ⊗ B]
where

Γ =

(
σ2
aT + σ2

c ρ
ρ σ2

bT + σ2
d

)
and B =




T 2

(1 + T )2
T

(1 + T )2

T

(1 + T )2
1

(1 + T )2


 .
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We have

L = E

[(
σ2
aT 0
0 σ2

bT

)
⊗ B

]
+ E

[(
σ2
c ρ
ρ σ2

d

)
⊗ B

]
,

=

(
σ2
a 0
0 σ2

b

)
⊗ E[TB] +

(
σ2
c ρ
ρ σ2

d

)
⊗ E[B].(8.1)

We shall prove that E[B] is a positive definite matrix and that E[TB] is a positive
semidefinite matrix. Denote by λ1 and λ2 the two eigenvalues of the real symmetric
matrix E[B]. We clearly have

λ1 + λ2 = tr(E[B]) = E

[
T 2 + 1

(1 + T )2

]
> 0

and

λ1λ2 = det(E[B]) = E

[
T 2

(1 + T )2

]
E

[
1

(1 + T )2

]
− E

[
T

(1 + T )2

]2
≥ 0

thanks to the Cauchy-Schwarz inequality and λ1λ2 = 0 if and only if T is degenerate,
which is not the case thanks to Lemma 5.1. Consequently, E[B] is a positive definite
matrix. In the same way, we can prove that E[TB] is a positive semidefinite matrix.
Since the Kronecker product of two positive semidefinite (respectively definite pos-
itive) matrices is a positive semidefinite (respectively positive definite) matrix, we
deduce from (8.1) that L is positive definite as soon as ρ2 < σ2

cσ
2
d which is the case

thanks to (H.3).

9. Proof of Theorem 5.4

We will follow the same approach as in Bercu et al. [7]. For all n ≥ 1, let

Vn = M t
nΣ

−1
n−1Mn = (θ̂n − θ)tΣn−1(θ̂n − θ). First of all, we have

Vn+1 = M t
n+1Σ

−1
n Mn+1 = (Mn +∆Mn+1)

tΣ−1
n (Mn +∆Mn+1),

= M t
nΣ

−1
n Mn + 2M t

nΣ
−1
n ∆Mn+1 +∆M t

n+1Σ
−1
n ∆Mn+1,

= Vn −M t
n(Σ

−1
n−1 − Σ−1

n )Mn + 2M t
nΣ

−1
n ∆Mn+1 +∆M t

n+1Σ
−1
n ∆Mn+1.

By summing over this identity, we obtain the main decomposition

(9.1) Vn+1 +An = V1 + Bn+1 +Wn+1

where

An =
n∑

k=1

M t
k(Σ

−1
k−1 − Σ−1

k )Mk,

Bn+1 = 2
n∑

k=1

M t
kΣ

−1
k ∆Mk+1 and Wn+1 =

n∑

k=1

∆M t
k+1Σ

−1
k ∆Mk+1.

Lemma 9.1. Assume that (εn) satisfies (H.1) to (H.5). Then, we have

(9.2) lim
n→∞

Wn

n
=

1

2
tr((I2 ⊗ A)−1/2L(I2 ⊗ A)−1/2) a.s.
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where A is the positive definite matrix given by (5.6). In addition, we also have

(9.3) Bn+1 = o(n) a.s.

and

(9.4) lim
n→∞

Vn+1 +An

n
=

1

2
tr((I2 ⊗ A)−1/2L(I2 ⊗ A)−1/2) a.s.

Proof. First of all, we have Wn+1 = Tn+1 +Rn+1 where

Tn+1 =
n∑

k=1

∆M t
k+1(I2 ⊗ A)−1∆Mk+1

|Tk|
,

Rn+1 =
n∑

k=1

∆M t
k+1(|Tk|Σ−1

k − (I2 ⊗ A)−1)∆Mk+1

|Tk|
.

One can observe that Tn+1 = tr((I2 ⊗ A)−1/2Hn+1(I2 ⊗ A)−1/2) where

Hn+1 =
n∑

k=1

∆Mk+1∆M t
k+1

|Tk|
.

Our aim is to make use of the strong law of large numbers for martingale trans-
forms, so we start by adding and subtracting a term involving the conditional ex-
pectation of ∆Hn+1 given Fn. We have thanks to relation (4.3) that for all n ≥ 0,
E[∆Mn+1∆M t

n+1|Fn] = Ln. Consequently, we can split Hn+1 into two terms

Hn+1 =
n∑

k=1

Lk

|Tk|
+Kn+1,

where

Kn+1 =
n∑

k=1

∆Mk+1∆M t
k+1 − Lk

|Tk|
.

It clearly follows from convergence (5.3) that

lim
n→∞

Ln

|Tn|
=

1

2
L a.s.

Hence, Cesaro convergence immediately implies that

(9.5) lim
n→∞

1

n

n∑

k=1

Lk

|Tk|
=

1

2
L a.s.

On the other hand, the sequence (Kn)n≥2 is obviously a square integrable martingale.
Moreover, we have

∆Kn+1 = Kn+1 −Kn =
1

|Tn|
(∆Mn+1∆M t

n+1 − Ln).

For all u ∈ R
4, denote Kn(u) = utKnu. It follows from tedious but straightforward

calculations, together with Lemma 5.2, that the increasing process of the martingale
(Kn(u))n≥2 satisfies 〈K(u)〉n = O(n) a.s. Therefore, we deduce from the strong law
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of large numbers for martingales that for all u ∈ R
4, Kn(u) = o(n) a.s. leading to

Kn = o(n) a.s. Hence, we infer from (9.5) that

(9.6) lim
n→∞

Hn+1

n
=

1

2
L a.s.

Via the same arguments as in the proof of convergence (5.3), we find that

(9.7) lim
n→∞

Σn

|Tn|
= I2 ⊗ A a.s.

where A is the positive definite matrix given by (5.6). Then, we obtain from (9.6)
that

lim
n→∞

Tn

n
=

1

2
tr((I2 ⊗ A)−1/2L(I2 ⊗ A)−1/2) a.s.

which allows us to say that Rn = o(n) a.s. leading to (9.2) We are now in position
to prove (9.3). Let us recall that

Bn+1 = 2
n∑

k=1

M t
kΣ

−1
k ∆Mk+1 = 2

n∑

k=1

M t
kΣ

−1
k Ψkξk+1.

Hence, (Bn)n≥2 is a square integrable martingale. In addition, we have

∆Bn+1 = 2M t
nΣ

−1
n ∆Mn+1.

Thus

E[(∆Bn+1)
2|Fn] = 4E[M t

nΣ
−1
n ∆Mn+1∆M t

n+1Σ
−1
n Mn|Fn] a.s.

= 4M t
nΣ

−1
n E[∆Mn+1∆M t

n+1|Fn]Σ
−1
n Mn a.s.

= 4M t
nΣ

−1
n LnΣ

−1
n Mn a.s.

We can observe that

Ln =
∑

k∈Gn

1

c2k

(
σ2
aXk + σ2

c ρ
ρ σ2

bXk + σ2
d

)
⊗
(
X2

k Xk

Xk 1

)

and

ΨnΨ
t
n =

∑

k∈Gn

1

ck
I2 ⊗

(
X2

k Xk

Xk 1

)
.

For α = max(σ2
a + σ2

b , σ
2
c + σ2

d), denote

∆n = αcnI2 −
(
σ2
aXn + σ2

c ρ
ρ σ2

bXn + σ2
d

)
.

It is not hard to see that ∆n is a positive definite matrix. As a matter of fact, we
deduce from the elementary inequality

(9.8) (σ2
a + σ2

b )Xn + σc + σ2
d ≤ αcn

that

tr(∆n) = 2αcn −
(
(σ2

a + σ2
b )Xn + σ2

c + σ2
d

)
≥ αcn > 0.
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In addition, we also have from (9.8) that

det(∆n) =
(
αcn − (σ2

aXn + σ2
c )
) (

αcn − (σ2
bXn + σ2

d)
)
− ρ2,

= α2c2n − αcn
(
(σ2

a + σ2
b )Xn + σ2

c + σ2
d

)

+ (σ2
aXn + σ2

c )(σ
2
bXn + σ2

d)− ρ2,

≥ σ2
aσ

2
bX

2
n + (σ2

aσ
2
d + σ2

bσ
2
c )Xn + σ2

cσ
2
d − ρ2,

≥ σ2
cσ

2
d − ρ2 > 0

thanks to (H.3). Consequently,
(
σ2
aXn + σ2

c ρ
ρ σ2

bXn + σ2
d

)
≤ αcnI2

which immediately implies that Ln ≤ αΨnΨ
t
n. Moreover, we can use Lemma B.1 of

[7] to say that
Σ−1

n ΨnΨ
t
nΣ

−1
n ≤ Σ−1

n−1 − Σ−1
n .

Hence

E[(∆Bn+1)
2|Fn] = 4M t

nΣ
−1
n LnΣ

−1
n Mn a.s.

≤ 4αM t
nΣ

−1
n ΨnΨ

t
nΣ

−1
n Mn a.s.

≤ 4αM t
n(Σ

−1
n−1 − Σ−1

n )Mn a.s.

leading to 〈B〉n ≤ 4αAn. Therefore it follows from the strong law of large numbers
for martingales that Bn = o(An). Finally, we deduce from decomposition (9.1) that

Vn+1 +An = o(An) +O(n) a.s.

leading to Vn+1 = O(n) and An = O(n) a.s. which implies that Bn = o(n) a.s. Fi-
nally we clearly obtain convergence (9.4) from the main decomposition (9.1) together
with (9.2) and (9.3), which completes the proof of Lemma 9.1. �

Lemma 9.2. Assume that (εn) satisfies (H.1) to (H.5). For all δ > 1/2, we have

(9.9) ‖Mn‖2 = o(|Tn|nδ) a.s.

Proof. Let us recall that

Mn =
∑

k∈Tn−1

1

ck




XkV2k

V2k

XkV2k+1

V2k+1


 .

Denote

Pn =
∑

k∈Tn−1

XkV2k

ck
and Qn =

∑

i∈Tn−1

V2k

ck
.

On the one hand, Pn can be rewritten as

Pn =
n∑

k=1

√
|Gk−1|fk where fn =

1√
|Gn−1|

∑

k∈Gn−1

XkV2k

ck
.
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We already saw in Section 3 that for all k ∈ Gn,

E[V2k|Fn] = 0 and E[V 2
2k|Fn] = σ2

aXk + σ2
c a.s.

In addition, for all k ∈ Gn,

E[V 4
2k|Fn] = 3σ4

aX
2
k +Xk(µ

4
a − 3σ4

a + 6σ2
aσ

2
c ) + µ4

c a.s.

which implies that

(9.10) E[V 4
2k|Fn] ≤ µ4

acc
2
k a.s..

where µ4
ac = µ4

a+µ4
c +6σ2

aσ
2
c . Consequently, E[fn+1|Fn] = 0 a.s. and we deduce from

(9.10) together with the Cauchy-Schwarz inequality that

E[f 4
n+1|Fn] =

1

|Gn|2
∑

k∈Gn

(
Xk

ck

)4

E[V 4
2k|Fn]

+
3

|Gn|2
∑

k∈Gn

∑

l∈Gn

l 6=k

(
Xk

ck

)2(
Xl

cl

)2

E[V 2
2k|Fn]E[V

2
2l|Fn] a.s.

≤ µ4
ac

|Gn|2
(1 + 3

√
|Gn|(|Gn| − 1))

∑

k∈Gn

c2k a.s.

≤ 3µ4
ac

|Gn|
∑

k∈Gn

c2k a.s.(9.11)

However, it follows from Lemma 5.2 that

lim
n→∞

1

|Tn|
∑

k∈Tn

c2k = E[(1 + T )2] a.s.

which is equivalent to say that

(9.12) lim
n→∞

1

|Gn|
∑

k∈Gn

c2k = E[(1 + T )2] a.s.

Therefore, we infer from (9.11) and (9.12) that

sup
n≥0

E[f 4
n+1|Fn] < ∞ a.s.

Hence, we obtain from Wei’s Lemma given in [26] page 1672 that for all δ > 1/2,

P 2
n = o(|Tn−1|nδ) a.s.

On the other hand, Qn can be rewritten as

Qn =
n∑

k=1

√
|Gk−1|gk where gn =

1√
|Gn−1|

∑

k∈Gn−1

V2k

ck
.

Via the same calculation as before, E[gn+1|Fn] = 0 a.s. and, as cn ≥ 1,

E[g4n+1|Fn] ≤
3µ4

bd

|Gn|
∑

k∈Gn

1

c2k
≤ 3µ4

bd a.s.
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Hence, we deduce once again from Wei’s Lemma that for all δ > 1/2,

Q2
n = o(|Tn−1|nδ) a.s.

In the same way, we obtain the same result for the two last components of Mn,
which completes the proof of Lemma 9.2. �

Proof of Theorem 5.4. We recall from (4.1) that θ̂n− θ = Σ−1
n−1Mn which implies

‖θ̂n − θ‖2 ≤ Vn

λmin(Σn−1)

where Vn = M t
nΣ

−1
n−1Mn. On the one hand, it follows from (9.4) that Vn = O(n) a.s.

On the other hand, we deduce from (9.7) that

lim
n→∞

λmin(Σn)

|Tn|
= λmin(A) > 0 a.s.

Consequently, we find that

‖θ̂n − θ‖2 = O
(

n

|Tn−1|

)
a.s.

We are now in position to prove the quadratic strong law (5.5). First of all a direct
application of Lemma 9.2 ensures that Vn = o(nδ) a.s. for all δ > 1/2. Hence, we
obtain from (9.4) that

(9.13) lim
n→∞

An

n
=

1

2
tr((I2 ⊗ A)−1/2L(I2 ⊗ A)−1/2) a.s.

Let us rewrite An as

An =
n∑

k=1

M t
k

(
Σ−1

k−1 − Σ−1
k

)
Mk =

n∑

k=1

M t
kΣ

−1/2
k−1 ∆kΣ

−1/2
k−1 Mk

where ∆k = I4 − Σ
1/2
k−1Σ

−1
k Σ

1/2
k−1. We already saw from (9.7) that

lim
n→∞

Σn

|Tn|
= I2 ⊗ A a.s.

which ensures that

lim
n→∞

∆n =
1

2
I4 a.s.

In addition, we deduce from (9.4) that An = O(n) a.s. which implies that

(9.14)
An

n
=

(
1

2n

n∑

k=1

M t
kΣ

−1
k−1Mk

)
+ o(1) a.s.
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Moreover we have

1

n

n∑

k=1

M t
kΣ

−1
k−1Mk =

1

n

n∑

k=1

(θ̂k − θ)tΣk−1(θ̂k − θ),

=
1

n

n∑

k=1

|Tk−1|(θ̂k − θ)t
Σk−1

|Tk−1|
(θ̂k − θ),

=
1

n

n∑

k=1

|Tk−1|(θ̂k − θ)t(I2 ⊗ A)(θ̂k − θ) + o(1) a.s.(9.15)

Therefore, (9.13) together with (9.14) and (9.15) lead to (5.5).

10. Proof of Theorem 5.5

First of all, we shall only prove (5.7) since the proof of (5.8) follows exactly the
same lines. We clearly have from (3.7) that

Qn−1(η̂n − ηn) =
∑

k∈Tn−1

1

dk
(V̂ 2

2k − V 2
2k)Φk,

=
n−1∑

l=0

∑

k∈Gl

1

dk
(V̂ 2

2k − V 2
2k)Φk,

=
n−1∑

l=0

∑

k∈Gl

1

dk

(
(V̂2k − V2k)

2 + 2(V̂2k − V2k)V2k

)
Φk.(10.1)

In addition, we already saw in Section 3 that for all l ≥ 0 and k ∈ Gl,

V̂2k − V2k = −
(
âl − a
ĉl − c

)t

Φk.

Consequently,

(V̂2k − V2k)
2 ≤ ‖Φk‖2

(
(âl − a)2 + (ĉl − c)2

)
.

Hence, we obtain that
∥∥∥∥∥
n−1∑

l=0

∑

k∈Gl

(V̂2k − V2k)
2

dk
Φk

∥∥∥∥∥ ≤
n−1∑

l=0

∑

k∈Gl

‖Φk‖3
dk

(
(âl − a)2 + (ĉl − c)2

)
,

≤
n−1∑

l=0

(
(âl − a)2 + (ĉl − c)2

)∑

k∈Gl

ck,

≤
n−1∑

l=0

(
(âl − a)2 + (ĉl − c)2

)
|Tl−1|

1

|Tl−1|
∑

k∈Gl

ck.(10.2)

Moreover, we can deduce from Lemma 5.2 that

(10.3) lim
n→∞

1

|Tn−1|
∑

k∈Gn

ck = E[1 + T ] a.s.
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Then, we find from (10.2) and (10.3) that
∥∥∥∥∥
n−1∑

l=0

∑

k∈Gl

(V̂2k − V2k)
2

dk
Φk

∥∥∥∥∥ = O
(

n−1∑

l=0

|Tl−1|
(
(âl − a)2 + (ĉl − c)2

)
)

a.s.

However, as Λ is positive definite, we obtain from (5.5) that

n−1∑

l=0

|Tl−1|
(
(âl − a)2 + (ĉl − c)2

)
= O(n) a.s.

which implies that

(10.4)

∥∥∥∥∥
n−1∑

l=0

∑

k∈Gl

(V̂2k − V2k)
2

dk
Φk

∥∥∥∥∥ = O(n) a.s.

Furthermore, denote

Pn =
n−1∑

l=0

∑

k∈Gl

(V̂2k − V2k)V2k

dk
Φk.

We clearly have

∆Pn+1 = Pn+1 − Pn =
∑

k∈Gn

(V̂2k − V2k)V2k

dk
Φk,

= −
∑

k∈Gn

V2k

dk
ΦkΦ

t
k

(
âl − a
ĉl − c

)
.

In addition, for all k ∈ Gn, E[V2k|Fn] = 0 a.s. and E[V 2
2k|Fn] = σ2

aXk + σ2
c ≤ αck

a.s. where α = max(σ2
a, σ

2
c ). Consequently, E[∆Pn+1|Fn] = 0 a.s. and

E[∆Pn+1∆P t
n+1|Fn] =

∑

k∈Gn

1

d2k
E[V 2

2k|Fn]ΦkΦ
t
k

(
âl − a
ĉl − c

)(
âl − a
ĉl − c

)t

ΦkΦ
t
k a.s.

=
∑

k∈Gn

σ2
aXk + σ2

c

d2k
ΦkΦ

t
k

(
âl − a
ĉl − c

)(
âl − a
ĉl − c

)t

ΦkΦ
t
k a.s.

Therefore, (Pn) is a square integrable vector martingale with increasing process 〈P 〉n
given by

〈P 〉n =
n−1∑

l=1

E[∆Pl+1∆P t
l+1|Fl] a.s.

=
n−1∑

l=1

∑

k∈Gl

σ2
aXk + σ2

c

d2k
ΦkΦ

t
k

(
âl − a
ĉl − c

)(
âl − a
ĉl − c

)t

ΦkΦ
t
k a.s.
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It immediately follows from the previous calculation that

‖〈P 〉n‖ ≤ α

n−1∑

l=0

(
(âl − a)2 + (ĉl − c)2

)∑

k∈Gl

‖Φk‖4ck
d2k

a.s.

≤ α

n−1∑

l=0

(
(âl − a)2 + (ĉl − c)2

)∑

k∈Gl

ck a.s.

leading to

‖〈P 〉n‖ = O(n) a.s.

Then, we deduce from the strong law of large numbers for martingale given e.g. in
Theorem 1.3.15 of [14] that

(10.5) ‖Pn‖ = o(n) a.s.

Hence, we find from (10.1), (10.4) and (10.5) that

‖Qn−1(η̂n − ηn)‖ = O(n) a.s.

Moreover, we infer once again from Lemma 5.2 that

(10.6) lim
n→∞

1

|Tn|
Qn = E

[(
T 2

(1+T )2
T

(1+T )2
T

(1+T )2
1

(1+T )2

)]
a.s.

which ensures that

‖η̂n − ηn‖ = O
(

n

|Tn−1|

)
a.s.

It remains to establish (5.9). Denote

Ŵn =

(
V̂2n

V̂2n+1

)
and Rn =

∑

k∈Tn−1

(
Ŵk −Wk

)t
JWk

where

J =

(
0 1
1 0

)
.

Then, we have

|Tn−1|(ρ̂n − ρn) =
∑

k∈Tn−1

(
V̂2k − V2k

)(
V̂2k+1 − V2k+1

)
+Rn.
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It is not hard to see that (Rn) is a square integrable real martingale with increasing
process given by

〈R〉n =
n−1∑

l=0

∑

k∈Gl

E

[
(Ŵk −Wk)

tJWkW
t
kJ(Ŵk −Wk)

∣∣∣Fn

]
a.s.

=
n−1∑

l=0

∑

k∈Gl

(Ŵk −Wk)
tJE

[
WkW

t
k

∣∣Fn

]
J(Ŵk −Wk) a.s.

=
n−1∑

l=0

∑

k∈Gl

(Ŵk −Wk)
tJ

(
σ2
aXk + σ2

c ρ
ρ σ2

bXk + σ2
d

)
J(Ŵk −Wk) a.s.

=
n−1∑

l=0

∑

k∈Gl

(Ŵk −Wk)
t

(
σ2
bXk + σ2

d ρ
ρ σ2

aXk + σ2
c

)
(Ŵk −Wk) a.s.

Consequently,

〈R〉n ≤
n−1∑

l=0

∑

k∈Gl

(
(σ2

a + σ2
b )Xk + σ2

c + σ2
d

)
‖Ŵk −Wk‖2 a.s.

≤ 2β
n−1∑

l=0

(
(âl − a)2 + (̂bl − b)2

)∑

k∈Gl

X2
kck

+ 2β
n−1∑

l=0

(
(ĉl − c)2 + (d̂l − d)2

)∑

k∈Gl

ck a.s.

where β = max(σ2
a + σ2

b , σ
2
c + σ2

d). As previously, we obtain through Lemma 5.2
together with (5.5) that 〈R〉n = O(n) a.s. which ensures that Rn = o(n) a.s. More-
over,
∣∣∣∣∣∣
∑

k∈Tn−1

(
V̂2k − V2k

)(
V̂2k+1 − V2k+1

)
∣∣∣∣∣∣
≤ 1

2

∑

k∈Tn−1

((
V̂2k − V2k

)2
+
(
V̂2k+1 − V2k+1

)2)
,

≤ 1

2

n−1∑

l=0

‖θ̂l − θ‖2
∑

k∈Gl

(1 +X2
k)

which implies via Lemma 5.2 and (5.5) that
∑

k∈Tn−1

(
V̂2k − V2k

)(
V̂2k+1 − V2k+1

)
= O(n) a.s.

Therefore, we obtain that

|Tn−1|(ρ̂n − ρn) = O(n) a.s.

which leads to (5.9). Finally, it only remains to prove the a.s. convergence of ηn, ζn
and ρn to η, ζ and ρ which will immediately lead to the a.s. convergence of η̂n, ζ̂n
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and ρ̂n through (5.7), (5.8) and (5.9), respectively. On the one hand,

(10.7) Qn−1(ηn − η) = Nn =
∑

k∈Tn

1

dk
Φkv2k

where we recall that v2n = V 2
2n − ηtΦn. It is clear that (Nn) is a square integrable

vector martingale with increasing process 〈N〉n given by

〈N〉n =
n−1∑

l=0

∑

k∈Gl

1

d2k
ΦkΦ

t
k(2σ

4
aX

2
k + (µ4

a − 3σ4
a + 4σ2

aσ
2
c )Xk + µ4

c − σ4
c ) a.s.

Hence,

〈N〉n ≤ γ

n−1∑

l=0

∑

k∈Gl

1

dk
ΦkΦ

t
k a.s.

where γ = µ4
a − σ4

a + 4σ2
aσ

2
c + µ4

c − σ4
c , which implies that

‖〈N〉n‖ = O(|Tn−1|) a.s.

Consequently,

‖Nn‖2 = O(n|Tn−1|) a.s.

which leads via (10.6) and (10.7) to the a.s. convergence of ηn to η and to the rate
of convergence of Remark 5.6. The proof of the a.s. convergence of ζn to ζ follows
exactly the same lines. On the other hand

(10.8) |Tn−1|(ρn − ρ) = Hn =
∑

k∈Tn−1

(V2kV2k+1 − ρ)

It is obvious to see that (Hn) is a square integrable real martingale with increasing
process 〈H〉n such that 〈H〉n = O(|Tn−1|) a.s. Finally, as H2

n = O(n|Tn−1|) a.s., we
deduce from (10.8) that ρn goes a.s. to ρ and that the rate of convergence of Remark
5.6 is verified, which completes the proof of Theorem 5.5.

11. Proof of Theorem 5.7

In order to establish the asymptotic normality of our estimators, we will exten-
sively make use of the central limit theorem for triangular arrays of vector martin-
gales given e.g. by Theorem 2.1.9 of [14]. First of all, instead of using the generation-
wise filtration (Fn), we will use the sister pair-wise filtration (Gn) given by

Gn = σ(X1, (X2k, X2k+1), 1 ≤ k ≤ n).

Proof of Theorem 5.7, first part. We focus our attention to the proof of the

asymptotic normality (5.10). Let M (n) = (M
(n)
k ) be the square integrable vector

martingale defined as

(11.1) M
(n)
k =

1√
|Tn|

k∑

i=1

Di
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where

Di =
1

ci




XiV2i

V2i

XiV2i+1

V2i+1


 .

We clearly have

(11.2) M
(n)
tn =

1√
|Tn|

tn∑

i=1

Di =
1√
|Tn|

Mn+1

where tn = |Tn|. Moreover, the increasing process associated to (M
(n)
k ) is given by

〈M (n)〉k =
1

|Tn|
k∑

i=1

E
[
DiD

t
i |Gi−1

]
,

=
1

|Tn|
k∑

i=1

1

c2i

(
σ2
aXi + σ2

c ρ
ρ σ2

bXi + σ2
d

)
⊗
(
X2

i Xi

Xi 1

)
a.s.

Consequently, it follows from convergence (5.3) that

lim
n→∞

〈M (n)〉tn = L a.s.

It is now necessary to verify Lindeberg’s condition by use of Lyapunov’s condition.
Denote

φn =
tn∑

k=1

E

[
‖M (n)

k −M
(n)
k−1‖4

∣∣∣Gk−1

]
.

We obtain from (11.1) that

φn =
1

|Tn|2
tn∑

k=1

E

[
(1 +X2

k)
2

c4k
(V 2

2k + V 2
2k+1)

2

∣∣∣∣Gk−1

]
,

≤ 2

|Tn|2
tn∑

k=1

(
E[V 4

2k|Gk−1] + E[V 4
2k+1|Gk−1]

)
.

In addition, we already saw in Section 9 that

E[V 4
2n|Gn−1] ≤ µ4

acc
2
n, E[V 4

2n+1|Gn−1] ≤ µ4
bdc

2
n a.s.

where µ4
ac = µ4

a + µ4
c + 6σ2

aσ
2
c and µ4

bd = µ4
b + µ4

d + 6σ2
bσ

2
d. Hence,

φn ≤ 2µ4

|Tn|2
tn∑

k=1

c2k a.s.

where µ4 = µ4
ac + µ4

bd. We can deduce from Lemma 5.2 that

lim
n→∞

1

|Tn|
∑

k∈Tn

c2k = E[(1 + T )2] a.s.
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which immediately implies that

lim
n→∞

φn = 0 a.s.

Therefore, Lyapunov’s condition is satisfied and Theorem 2.1.9 of [14] allows us to
say via (11.2) that

1√
|Tn−1|

Mn
L−→ N (0, L).

Finally, we infer from (4.1) together with (9.7) and Slutsky’s lemma that

√
|Tn−1|(θ̂n − θ)

L−→ N (0, (I2 ⊗A−1)L(I2 ⊗A−1)). �

Proof of Theorem 5.7, second part. We shall now establish the asymptotic

normality given by (5.11). Denote by N (n) = (N
(n)
k ) the square integrable vector

martingale defined as

N
(n)
k =

1√
|Tn|

k∑

i=1

v2i
di

Φi.

We immediately see from (10.7) that

(11.3) N
(n)
tn =

1√
|Tn|

Qn(ηn+1 − η) =
1√
|Tn|

Nn+1.

In addition, the increasing process associated to (N
(n)
k ) is given by

〈N (n)〉k =
1

|Tn|
k∑

i=1

E

[
v22i
d2i

ΦiΦ
t
i

∣∣∣∣Gi−1

]
,

=
1

|Tn|
k∑

i−1

1

d2i
ΦiΦ

t
i(2σ

4
aX

2
i + (µ4

a − 3σ4
a + 4σ2

aσ
2
c )Xi + µ4

c − σ4
c ) a.s.

Consequently, we obtain from Lemma 5.2 that

lim
n→∞

〈N (n)〉tn = E

[
2σ4

aT
2 + (µ4

a − 3σ4
a + 4σ2

aσ
2
c )T + (µ4

c − σ4
c )

(1 + T )4

(
T 2 T
T 1

)]
= Mac a.s.

In order to verify Lyapunov’s condition, let

φn =
tn∑

k=1

E

[
‖N (n)

k −N
(n)
k−1‖3

∣∣∣Gk−1

]
.

We clearly have

‖N (n)
k −N

(n)
k−1‖2 =

1

|Tn|
(1 +X2

k)v
2
2k

d2k
≤ 1

|Tn|
v22k
dk

,

which implies that

‖N (n)
k −N

(n)
k−1‖3 ≤

1

|Tn|3/2
|v2k|3

d
3/2
k

.
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However,

|v2k|3 = |V 2
2k − σ2

aXk − σ2
c |3 ≤ (V 2

2k + σ2
aXk + σ2

c )
3

≤ V 6
2k + 3V 4

2k(σ
2
aXk + σ2

c ) + 3V 2
2k(σ

2
aXk + σ2

c )
2 + (σ2

aXk + σ2
c )

3(11.4)

We already saw that E[V 2
2k|Gk−1] = σ2

aXk + σ2
c a.s. and it follows from (9.10) that

E[V 4
2k|Gk−1] ≤ µacc

2
k a.s.

It only remains to study E[V 6
2k|Gk−1]. Denote

Ak =

Xk∑

i=1

(Yk,i − a) and Bk = ε2k − c.

We clearly have from the identity V2k = Ak +Bk that

(11.5) E[V 6
2k|Gk−1] = E[A6

k|Gk−1] + 15E[A4
k|Gk−1]E[B

2
k|Gk−1]

+ 20E[A3
k|Gk−1]E[B

3
k|Gk−1] + E[A2

k|Gk−1]E[B
4
k|Gk−1] + E[B6

k|Gk−1].

On the one hand, E[A2
k|Gk−1] = σ2

aXk a.s. and

E[A4
k|Gk−1] = µ4

aXk + 3Xk(Xk − 1)σ4
a a.s.

Moreover, we have from Cauchy-Schwarz inequality that
∣∣E[A3

k|Gk−1]
∣∣ ≤ µ2

aσaXk a.s.

Furthermore, it follows from tedious but straightforward calculations that

E[A6
k|Gk−1] ≤ τ 6aXk + 15Xk(Xk − 1)µ4

aσ
2
a + 15σ6

aXk(Xk − 1)(Xk − 2)

+ 10µ6
aXk(Xk − 1) a.s.

Then, it exists some constant α > 0 such that

E[A6
k|Gk−1] ≤ αc3k a.s.

On the other hand, E[B2
k|Gk−1] = σ2

c a.s. and E[B4
k|Gk−1] = µ4

c a.s. In addition
∣∣E[B3

k|Gk−1]
∣∣ ≤ µ2

cσc and E[B6
k|Gk−1] ≤ τ 6c a.s.

Consequently, we deduce from (11.5) that it exists some constant β > 0 such that

E[V 6
2k|Gk−1] ≤ βc3k a.s.

which implies from (11.4) that for some constant γ > 0,

E[|v2k|3|Gk−1] ≤ γc3k a.s.

Then, as c2k = dk, we can conclude that

φn ≤ γ√
|Tn|

a.s.

which immediately leads to

lim
n→∞

φn = 0 a.s.
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Therefore, Lyapunov’s condition is satisfied and we find from Theorem 2.1.9 of [14]
and (11.3) that

(11.6)
1√

|Tn−1|
Nn

L−→ N (0,Mac).

Hence, we obtain from (10.6), (11.6) and Slutsky’s lemma that

√
|Tn−1|(ηn − η)

L−→ N (0, B−1MacB
−1).

Finally, (5.7) ensures that

√
|Tn−1|(η̂n − η)

L−→ N (0, B−1MacB
−1).

The proof of (5.12) follows exactly the same lines. �

Proof of Theorem 5.7, third part. It remains to establish the asymptotic

normality given by (5.13). Denote by H(n) = (H
(n)
k ) the square integrable martingale

defined as

(11.7) H
(n)
k =

1√
|Tn|

k∑

i=1

(V2iV2i+1 − ρ).

We clearly have from (10.8) that

H
(n)
tn =

√
|Tn|(ρn+1 − ρ) =

1√
|Tn|

Hn+1.

Moreover, the increasing process of (H
(n)
k ) is given by

〈H(n)〉k =
1

|Tn|
k∑

i=1

(
E[V 2

2iV
2
2i+1|Gn−1]− ρ2

)
.

As before, let

Ck =

Xk∑

i=1

(Zk,i − b) and Bk = ε2k+1 − d.

As V2k = Ak +Bk and V2k+1 = Ck +Dk, we clearly have

E
[
V 2
2kV

2
2k+1

∣∣Gk−1

]
= E

[
A2

k

∣∣Gk−1

] (
E
[
C2

k

∣∣Gk−1

]
+ E

[
D2

k

∣∣Gk−1

])

+ E
[
B2

k

∣∣Gk−1

]
E
[
C2

k

∣∣Gk−1

]
+ E

[
B2

kD
2
k

∣∣Gk−1

]
a.s.

Consequently,

(11.8) E
[
V 2
2kV

2
2k+1

∣∣Gk−1

]
= σ2

aσ
2
bX

2
k +

(
σ2
aσ

2
d + σ2

bσ
2
c

)
Xk + ν2 a.s.

Then, we deduce once again from Lemma 5.2 that

lim
n→∞

〈H(n)〉tn = σ2
ρ a.s.
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where σ2
ρ is given by (5.14). In order to verify Lyapunov’s condition, denote

φn =
tn∑

k=1

E

[
|H(n)

k −H
(n)
k−1|3

∣∣∣Gk−1

]
.

We obtain from (11.7) that

φn =
1

|Tn|3/2
tn∑

k=1

E
[
|V2kV2k+1 − ρ|3

∣∣Gk−1

]
,

≤ 1

|Tn|3/2
tn∑

k=1

(
E
[
|V2k|3|V2k+1|3

∣∣Gk−1

]
+ 3|ρ|E

[
V 2
2kV

2
2k+1

∣∣Gk−1

]
(11.9)

+ 3ρ2E [ |V2k||V2k+1|| Gk−1] + |ρ|3
)
.

It follows from Cauchy-Schwarz inequality together with the previous calculations
that it exists two constants α, β > 0 such that

E [ |V2k||V2k+1|| Gk−1] ≤ αck a.s.

and

E
[
|V2k|3|V2k+1|3

∣∣Gk−1

]
≤ βc3k a.s.

In addition, we already saw from (11.8) that for some constant γ > 0

E
[
V 2
2kV

2
2k+1

∣∣Gk−1

]
≤ γc2k a.s.

Consequently, we obtain from (11.9) that for some constant δ > 0

φn ≤ δ

|Tn|3/2
tn∑

k=1

c3k a.s.

which, via Lemma (5.2), leads to

lim
n→∞

φn = 0 a.s.

Hence, we can conclude that

H
(n)
tn

L−→ N (0, σ2
ρ).

In other words √
|Tn−1|(ρn − ρ)

L−→ N (0, σ2
ρ).

Finally, we find via (5.9) that

√
|Tn−1|(ρ̂n − ρ)

L−→ N (0, σ2
ρ)

which achieves the proof of Theorem 5.7. �

Acknowledgement. The authors are thankful to the anonymous reviewer for
his very careful reading of the manuscript.



36 BERNARD BERCU AND VASSILI BLANDIN

References

[1] Al-Osh, M. A., and Alzaid, A. A. First-order integer-valued autoregressive (INAR(1))
process. J. Time Ser. Anal. 8, 3 (1987), 261–275.

[2] Alzaid, A. A., and Al-Osh, M. An integer-valued pth-order autoregressive structure
(INAR(p)) process. J. Appl. Probab. 27, 2 (1990), 314–324.

[3] Bansaye, V. Proliferating parasites in dividing cells: Kimmel’s branching model revisited.
Ann. Appl. Probab. 18, 3 (2008), 967–996.

[4] Bansaye, V., and Tran, V. C. Branching Feller diffusion for cell division with parasite
infection. ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011), 95–127.

[5] Basawa, I. V., and Zhou, J. Non-Gaussian bifurcating models and quasi-likelihood estima-
tion. J. Appl. Probab. 41A (2004), 55–64. Stochastic methods and their applications.

[6] Bercu, B., and Blandin, V. A rademacher-menchov approach for random coefficient bifur-
cating autoregressive processes. arXiv math.PR/1210.5835, submitted for publication (2014).

[7] Bercu, B., De Saporta, B., and Gégout-Petit, A. Asymptotic analysis for bifurcating
autoregressive processes via a martingale approach. Electron. J. Probab. 14 (2009), no. 87,
2492–2526.

[8] Blandin, V. Asymptotic results for bifurcating random coefficient autoregressive processes.
To appear in Statistics 48 (2014).

[9] Cowan, R., and Staudte, R. G. The bifurcating autoregressive model in cell lineage studies.
Biometrics 42 (1986), 769–783.

[10] De Saporta, B., Gégout-Petit, A., and Marsalle, L. Parameters estimation for asym-
metric bifurcating autoregressive processes with missing data. Electron. J. Stat. 5 (2011),
1313–1353.

[11] De Saporta, B., Gégout-Petit, A., and Marsalle, L. Asymmetry tests for bifurcating
auto-regressive processes with missing data. Statist. Probab. Lett. 82, 7 (2012), 1439–1444.

[12] De Saporta, B., Gégout-Petit, A., and Marsalle, L. Statistical study of asymmetry
in cell lineage data. Comput. Statist. Data Anal. 69 (2014), 15–39.

[13] Delmas, J.-F., and Marsalle, L. Detection of cellular aging in a Galton-Watson process.
Stochastic Process. Appl. 120, 12 (2010), 2495–2519.

[14] Duflo, M. Random iterative models, vol. 34. Springer-Verlag, Berlin, 1997.
[15] Guyon, J. Limit theorems for bifurcating Markov chains. Application to the detection of

cellular aging. Ann. Appl. Probab. 17, 5-6 (2007), 1538–1569.
[16] Hall, P., and Heyde, C. C. Martingale limit theory and its application. Academic Press

Inc., New York, 1980. Probability and Mathematical Statistics.
[17] Heyde, C. C., and Seneta, E. Estimation theory for growth and immigration rates in a

multiplicative process. J. Appl. Probab. 9 (1972), 235–256.
[18] Huggins, R. M., and Basawa, I. V. Extensions of the bifurcating autoregressive model for

cell lineage studies. J. Appl. Probab. 36, 4 (1999), 1225–1233.
[19] Huggins, R. M., and Basawa, I. V. Inference for the extended bifurcating autoregressive

model for cell lineage studies. Aust. N. Z. J. Stat. 42, 4 (2000), 423–432.
[20] Huggins, R. M., and Staudte, R. G. Variance components models for dependent cell

populations. J. Amer. Statist. Assoc. 89, 425 (1994), 19–29.
[21] Kachour, M., and Yao, J. F. First-order rounded integer-valued autoregressive

(RINAR(1)) process. J. Time Series Anal. 30, 4 (2009), 417–448.
[22] McKenzie, E. Some simple models for discrete variate time series. J. Amer. Water Res.

Assoc. 21 (1985), 645–650.
[23] Nicholls, D. F., and Quinn, B. G. The estimation of random coefficient autoregressive

models. I. J. Time Ser. Anal. 1, 1 (1980), 37–46.
[24] Nicholls, D. F., and Quinn, B. G. Random coefficient autoregressive models: an introduc-

tion, vol. 11 of Lecture Notes in Statistics. Springer-Verlag, New York, 1982. Lecture Notes in
Physics, 151.



ASYMPTOTIC ANALYSIS FOR BINAR PROCESSES 37

[25] Quinn, B. G., and Nicholls, D. F. The estimation of random coefficient autoregressive
models. II. J. Time Ser. Anal. 2, 3 (1981), 185–203.

[26] Wei, C. Z. Adaptive prediction by least squares predictors in stochastic regression models
with applications to time series. Ann. Statist. 15, 4 (1987), 1667–1682.

[27] Wei, C. Z., and Winnicki, J. Estimation of the means in the branching process with
immigration. Ann. Statist. 18, 4 (1990), 1757–1773.

[28] Winnicki, J. Estimation of the variances in the branching process with immigration. Probab.
Theory Related Fields 88, 1 (1991), 77–106.

[29] Zhou, J., and Basawa, I. V. Least-squares estimation for bifurcating autoregressive pro-
cesses. Statist. Probab. Lett. 74, 1 (2005), 77–88.

[30] Zhou, J., and Basawa, I. V. Maximum likelihood estimation for a first-order bifurcating
autoregressive process with exponential errors. J. Time Ser. Anal. 26, 6 (2005), 825–842.

Université de Bordeaux, Institut de Mathématiques de Bordeaux, UMR CNRS

5251, 351 cours de la libération, 33405 Talence cedex, France.

E-mail address: bernard.bercu@math.u-bordeaux1.fr
E-mail address: vassili.blandin@math.u-bordeaux1.fr


