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Abstract

The interaction between ice sheets and offshore structures is of key im-

portance in the design of offshore platforms in the Arctic. Unfortunately,

due to the complexity of ice material the use of small-scale experiments

is problematic if one aims at drawing some conclusions about the forces

exerted on large-scale structures such as oil rigs.

As a preliminary work this paper proposes a discrete numerical model

to investigate the interaction between an ice sheet and a rigid structure.

The behavior of ice is modelled by a two dimensional lattice model, in

which inhomogeneity and possible failure of ice are incorporated. Accord-

ing to the numerical results such a model seems able to capture the main

trends involved in ice sheets cracking. This is an essential step towards

predicting interaction forces between ice and structure.

1 INTRODUCTION

The prediction of the forces exerted by ice sheets on oil rigs is of great interest
for designers of offshore structures. Over the last decades several experiments
have been performed in order to understand the ice load on the structures.
Such experiments fall into two categories: large-scale tests to quantify realistic
ice loads [1, 2, 3, 4], and medium or small-scale experiments to understand the
material behavior of ice under compression [5, 6, 7, 8]. The loads observed
in the small-scale experiments can not be scaled straightforwardly to predict
the ice loads on offshore structures [9]. The reason for that is an extremely
inhomogeneous character of ice already at the meso-level due to the existence
of very weak clusters and meso-cracks in the ice sheets.

A number of studies have employed empirical models to predict ice loads [10].
The drawback of such an approach is that it can not capture the physical mech-
anism of ice failure at the material level. To capture this mechanism, a model
of ice should account for the material and geometrical inhomogeneity of ice,
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as well as the non-deterministic nature of ice parameters [11]. The material
inhomogeneity should represent variation of the elastic and inertial properties,
as well as that of the strength. The geometrical inhomogeneity represents the
fact that all clusters in ice are of different sizes and different orientations just
as in the ice material. Finally the model should be analyzed statistically. As
the distribution of material properties and weaknesses vary from one ice sheet
to another, the ice loads should be predicted in a statistical sense [12].

The above requirements can be met by introducing a lattice model of ice.
The lattice models are known to be well-suited to reproduce the deformation
and failure of materials such as concrete and soil, which are inhomogeneous
at the meso-scale, like ice. The lattice model presented in this contribution is
composed of a two-dimensional network of ice clusters initially interconnected
by linear spring-dashpot elements. The failure of ice material is accounted for
by breakable elements: when an element is broken it is simply removed from
the model. Interaction with the structure, as well as friction between the faces
of meso-cracks in the ice bulk is taken into account using the Coulomb’s law.
An implicit time-stepping algorithm is used to solve for the lattice motion. The
aim of this preliminary contribution is to show the capability of the model to
capture a reasonable behavior of ice failure. However it is clear that further
studies are necessary to tune the model parameters against actual small and
large scale experiments.

The remainder of this paper is as follows. In the next section the lattice
model including failure of elements and internal friction along crack faces is
described. The treatment of friction in the contact area and the time algorithm
are given in Section 3. Section 4 presents examples of computations carried
out using this model and shows its capability to reproduce experimental results.
Concluding remarks and perspective of this work are reported in Section 5.

2 LATTICE MODEL OF A BREAKABLE ICE

SHEET

Among plenty of possible applications, lattice models are widely used in me-
chanics of strongly inhomogeneous media such as soil and concrete, especially
when local failures are of importance [13, 14, 15, 16, 17, 18, 19, 20]. Various
lattice models were used to simulate ice-structure interaction in [21, 22]. In
what follows we use a simple hexagonal network of axial spring-dashpot ele-
ments connecting each cluster of the ice sheet with its neighbours. Other type
of elements like Euler-Bernoulli beams or Reissner beams, involving rotational
rigidity, are often chosen to model a Cosserat continuum. We have chosen for
the network of purely axial elements because it is capable of describing all ma-
jor macro-parameters of ice (provided that the network is inhomogeneous) and
includes a relatively small number of the micro-parameters.
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Figure 1: TRIANGULAR LATTICE MESH.

2.1 Basic equations for the hexagonal lattice

We first consider a regular hexagonal lattice shown in Figure 1. The ice sheet
is modelled by an assembly of hexagonal particles, each of them represented by
a lumped mass at its center. A particle is connected to a neighbour j by an
axial spring-dashpot element. The derivation of the lattice properties is done by
assuming equivalence of the energy of the lattice with that of the corresponding
continuum under the plain-strain assumptions:

1

2

∫

Vi

σ ε dV =
1

2

∑

j

k̃ij ∆l̃ij
2

, (1)

1

2

∫

Vi

ρ ẋ
2 dV =

1

2
mi ẋ

2
i , (2)

with k̃ij and ∆l̃ij denoting the stiffness and the elongation of the half-element
ij, mi being the mass of node i and ρ and Vi being the density and the vol-
ume of the cell i. In the case where all springs have the same stiffness k, one
finds the following relations between the continuum (macro) and lattice (micro)
parameters:

E =
3
√

3 k

4 h
, ν =

1

4
, ρ Vi = mi. (3)

The dynamic equilibrium of a cell i subjected to external forces f
ext

i is given
by

mi ẍi = f
int

i (x, ẋ) + f
ext

i (t), (4)

where the internal force vector f
int

i contains the forces from the spring-dashpots
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Figure 2: THE SPRING-DASHPOT ELEMENT LOCAL COORDINATES.

elements connecting cell i and its neighbours j:

f
int

i =
∑

j

kij ∆lij uij +
∑

j

cij ∆vij uij , (5)

with uij and vij being the unit (normal and tangential, respectively) vectors
defining the local coordinates of the element, see Figure 2. kij and cij denote
the stiffness and the damping coefficient of the element ij, respectively. ∆lij
and ∆vij stands for the elongation of the element and its derivative with respect
to time.

By assembling Equation (4) for each cluster and by expressing ∆l and ∆v

by means of the locations X and velocities Ẋ we obtain the following matricial
form of the dynamic equilibrium:

MẌ = F
ext(t) + F

0(X) − K(X)X − C(X) Ẋ, (6)

with M, K, C denoting the mass matrix, stiffness matrix and damping matrix
respectively. F

ext is the assembly of external forces f
ext

i . F
0 stands for the

constant term due to the initial length of springs in Equation (5). Note that K,
C and F

0 depend on the current configuration which introduces geometrical non-
linearities due to large displacements in the problem. Once initial conditions
and boundary conditions are given, Equation (6) must be solved in the time
domain.

2.2 Failure of elements and friction between crack-lips

The failure criterion is described in terms of elongation of each element con-
necting node i and node j:

if |lij − l0ij | > ∆llimij , then Element ij breaks.
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Computationally speaking an element which is broken at time t is simply
removed from the model for following time steps. A crack is represented by
several elements broken along a curve.

To account for possible closure of a crack the model involves interaction
between nodes which are not yet connected by an (initial) element in case they
are close enough to interact with each other. In this case the internal force
between these two nodes “coming into contact” is composed of a spring-dashpot
element and a tangential friction element. The latter stands for the tangential
friction existing between nodes i and j of two crack lips:

f
friction
i = (kij ∆lij + cij ∆vij)uij + α µ |kij ∆lij + cij ∆vij |vij , (7)

where α gives the direction of the friction force: α = sign([ẋj − ẋi] · vij).

2.3 Geometrical and material randomness

To meet the requirements of inhomogeneity of ice material, some randomness
has to be included in the model. Geometrical randomness is introduced by a
random perturbation of the node location inside the cell. This turns the lattice
into a non-regular one and Equation (3) can be modified considering the length
of each spring.

Material inhomogeneity is introduced by a random distribution of lattice
properties. Spring stiffnesses kij , dashpot coefficients cij and maximal elonga-
tions ∆llimij are chosen according to a random gaussian distribution.

At last some weak elements are introduced in the model. Due to its history
an ice sheet contains several weak clusters who play a crucial role in initiation
and propagation of the cracks. These weak clusters are responsible for decreasing
the strength of the ice sheets compared to small-scale ice blocks. The weak
clusters are modelled by decreasing drastically the maximal elongation of a
number of elements.

3 ALGORITHMIC ASPECTS

3.1 Contact conditions

Let us consider interaction between the lattice and a rigid body. Let Γ be the
contact area, n the outward normal to Γ and t the tangential vector. u rep-
resents the relative displacement between the node considered and the contact
area while λ stands for the contact force. Contact is modelled by means of the
following unilateral contact equations:

u · n ≥ 0 (non penetration), (8)

λ · n ≤ 0 (unilateral contact), (9)

(u · n) · (λ · n) = 0 (complementary condition), (10)
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Figure 3: LOCAL COORDINATES FOR CONTACT.

and by Coulomb’s friction law:

if u̇ = 0, then |λ · t| ≤ µ |λ · n|, (11)

if u̇ 6= 0, then |λ · t| = µ |λ · n| and (u̇ · n) · (λ · n) ≤ 0. (12)

Several techniques have been developed to improve the treatment of contact
problems [23, 24, 25, 26, 27]. The technique which is used here is based on
an active set strategy that avoids computation of the Lagrange multipliers and
the displacements at the same time, thus decreasing the size of the problem.
Instead, the previous equations are replaced by the corresponding kinematic
relations in Equation (6):

ü · n = 0 (contact condition), (13)

ü · t = 0 (sticking condition), (14)

m ü · t = (fext + f
int) · t (slipping condition). (15)

Lagrange multipliers λ are computed a posteriori after solving Equation (6)
and active sets are then updated according to the frictional contact conditions
(8-12).

3.2 Implicit Time Integration Scheme

A time stepping algorithm is used to solve the problem in the time domain.
Explicit integration schemes are well-known to be only conditionally stable and
therefore the time step ∆t has to be very small, leading to a very large number
of time iterations. For that reason implicit schemes, yielding a larger time step,
are usually chosen. One of such scheme is the Newmark scheme in which

Xn+1 =Xn + ∆tẊn +
∆t

2

2 (

(1 − 2 β)Ẍn + 2 β Ẍn+1

)

, (16)

Ẋn+1 =Ẋn + ∆t
(

(1 − γ)Ẍn + γ Ẍn+1

)

, (17)
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with β and γ being the Newmark parameters. The subscript n indicates the
value of a continuous function at time step tn.

However, the unconditional stability is only valid for “smooth” problems like
linear elasticity. In our case, due to both element failure and contact conditions,
the gain achieved by decreasing the time step can not be as large as in smooth
problems. To avoid numerical problems artificial damping is often added like in
the HHT-α algorithm [28]. In the following the HHT scheme is used, leading to
a modification of Equation (6) which now reads:

MẌn+1 =(1 − α)
{

F
ext
n+1 + F

int
n+1

}

+ α
{

F
ext
n + F

int
n

}

=(1 − α)
{

F
ext
n+1 + F

0
n+1 − Kn+1 Xn+1 − Cn+1 Ẋn+1

}

+ α
{

F
ext
n + F

0
n − Kn Xn − Cn Ẋn

}

, (18)

with α being the HHT-α parameter chosen in the range [0, 1

3
]. Using the classi-

cal Newmark updating scheme in Equations (16-17) we get the following system
of equations:

{M +(1 − α)
(

β∆t2Kn+1 + γ∆tCn+1

)}

Ẍn+1 =

+ αF
int
n − (1 − α)Kn+1

{

Xn + ∆t Ẋn +
∆t

2

2

(1 − 2β)Ẍn

}

− (1 − α)Cn+1

{

Ẋn + ∆t(1 − γ) Ẍn

}

+ (1 − α)Fext
n+1 + αF

ext
n . (19)

This system is usually solved by an iterative algorithm. In our case ∆t is
sufficiently small (due to contact and fracture) for Kn+1 and Cn+1 to be close to
their value at the previous time step. Under this assumption the computation
of the new acceleration is straightforward and velocities, displacements and
matrices are then updated through Equations (16-17).

4 EXAMPLE OF COMPUTATIONS

This section presents some examples of ice failure computations which have
been obtained with the model described above. Here we show the capability
of the model to capture the behavior of ice qualitatively. To give reliable re-
sults, further steps are necessary, including tuning the model parameters against
experimental data and analyzing the numerical results in a statistical way.

4.1 Description of the simulation

Figure 4 presents a rectangular ice sheet modelled with the lattice described
in the previous sections. The size of the sheet is 70 x 40 m2. The lattice
is composed of 6, 560 nodes and 9, 677 elements. The average length of the
springs is 1 m. The velocity is prescribed on the left edge to let the ice sheet
impact on a plane rigid structure and then keep crashing against the structure.
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Figure 4: ICE SHEET BEFORE IMPACT WITH THE RIGID STRUCTURE.

We have performed a series of simulations with various prescribed velocities vice

in the range [0.1, 0.5] m s−1. The direction of the left edge is kept normal to the
surface of the structure. The time step ∆t is chosen according to the material
characteristic time such that it is ten times smaller than the critical time Tcrit,
where Tcrit satisfies the following relation with the compressive wave velocity in
the media:

Tcrit ≈ h

√

ρ

E
. (20)

The lattice properties are summarized in Table 1. The simulations are ended
when the left edge of the ice sheet has moved by 2.5 m.

4.2 Development of the crack pattern

Figure 5 shows the force computed with the described lattice model for the ice
speed vice = 0.1 m s−1. The deformed configurations at various time are plotted
on Figures 6 to 9.

At the beginning the total contact force increases to a maximum value of
about 1.898 106 N. Figure 6 shows that this increase is accompanied by failure
of several elements inside the ice sheet before reaching the maximum. These
broken elements can be referred to as meso-cracks. The locations of the broken
elements strongly depend on the distribution of weak elements in the lattice.
As the force reaches its maximum one of the meso-cracks becomes a critical one
and develops into a macro-crack which can be seen in Figure 7. The complete
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Young’s modulus 10 MPa
Ice density 920 kg m−3

Ice damping 0.01
Ice-structure friction 0.02
Ice-ice friction 0.1
Critical length of element 1 %
Percentage of weak element 10 %

Table 1: MATERIAL PROPERTIES OF THE SIMULATIONS.

vice (m s−1) max. force (106 N) time for max. (s)
0.1 1.898 3.43
0.2 3.122 3.38
0.3 2.678 1.81
0.4 2.914 1.76
0.5 2.670 1.71

Table 2: COMPARISONS OF THE RESULTS AT VARIOUS SPEEDS.

failure of the latter, see Figure 8, leads to a major drop in the force between the
ice sheet and the structure. After this drop the interaction force stays at a lower
level and is essentially governed by friction along the faces of the macro-crack.
Figure 9 shows that in this stage secondary cracks are created either by the
previously broken elements or by branching from the main damaged zone.

4.3 Interaction forces with respect to the speed of ice

Figure 10 shows the contact force for various speeds of ice. As the calculations
are ended when the ice sheet has moved by 2.5 m, the calculation time is dif-
ferent for each speed. According to the simulations, the velocity influences the
interaction forces in two ways. Firstly, the maximum force is strongly influ-
enced by the velocity. Due to the inertial forces and complex crack patterns the
maximum force is obtained with a low, but not the lowest, velocity vice = 0.2
m s−1. Secondly, the time when the maximum force is reached is also different
for the various ice speeds. It is almost the same for the highest velocities (0.3
m s−1 to 0.5 m s−1), but it changes for 0.1 m s−1 and 0.2 m s−1. These results
are summarized in Table 2.

Finally Figures 9 and 11 to 14 show the damaged ice sheet after crushing
for the different velocities. The crack pattern varies with the ice speed. For the
highest speeds we get more and more branching in the crack pattern. This has
to be further confirmed by experiments, but it shows that a static calculation
of these interactions would not be sufficient.
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Figure 5: CONTACT FORCE DURING THE CRUSHING AT SPEED vice =
0.1 m s−1.

5 CONCLUDING REMARKS

This paper presents a lattice model for the investigation of interaction forces
between an ice sheet and a rigid structure. The model seems capable of captur-
ing the ice behavior at a meso-scale, including crack initiation and propagation.
These preliminary results are promising but so far they are not sufficient for
gaining understanding of the ice-structure interaction. Indeed, further steps
must be made to get realistic simulations, including an identification of the
model parameters from experimental results, and, after that, a statistical inter-
pretation of the numerical results. These studies are currently undertaken.
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Figure 11: ICE SHEET DAMAGED AFTER CRASHING AGAINST THE
STRUCTURE AT SPEED vice = 0.2 m s−1 AT TIME t = 20 s.

Figure 12: ICE SHEET DAMAGED AFTER CRASHING AGAINST THE
STRUCTURE AT SPEED vice = 0.3 m s−1 AT TIME t = 15 s.
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Figure 13: ICE SHEET DAMAGED AFTER CRASHING AGAINST THE
STRUCTURE AT SPEED vice = 0.4 m s−1 AT TIME t = 10 s.

Figure 14: ICE SHEET DAMAGED AFTER CRASHING AGAINST THE
STRUCTURE AT SPEED vice = 0.5 m s−1 AT TIME t = 5 s.
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