Smooth critical points of planar harmonic mappings

Abstract : Lyzzaik studied the local properties of light harmonic mappings. More precisely, he classified their critical points and accordingly studied their topological and geometrical behaviour. One aim of our work is to shed some light on the case of smooth critical points, thanks to miscellaneous numerical invariants. Inspired by many computations, and with a crucial use of Milnor fibration theory, we get a fundamental and quite unexpected relation between three of these invariants. In the final part of the work we offer some examples providing significant differences between our harmonic setting and the real analytic one.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01023168
Contributeur : Michel Granger <>
Soumis le : vendredi 11 juillet 2014 - 15:23:58
Dernière modification le : lundi 5 février 2018 - 15:00:10
Document(s) archivé(s) le : samedi 11 octobre 2014 - 12:50:37

Fichiers

smooth-crit.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01023168, version 1

Collections

Citation

Mohammed El Ammrani, Michel Granger, Jean-Jacques Loeb, Lei Tan. Smooth critical points of planar harmonic mappings. 2014. 〈hal-01023168〉

Partager

Métriques

Consultations de la notice

200

Téléchargements de fichiers

72