Gradient bounds for nonlinear degenerate parabolic equations and application to large time behavior of systems

Abstract : We obtain new oscillation and gradient bounds for the viscosity solutions of fully nonlinear degenerate elliptic equations where the Hamiltonian is a sum of a sublinear and a superlinear part in the sense of Barles and Souganidis (2001). We use these bounds to study the asymptotic behavior of weakly coupled systems of fully nonlinear parabolic equations. Our results apply to some ``asymmetric systems'' where some equations contain a sublinear Hamiltonian whereas the others contain a superlinear one. Moreover, we can deal with some particular case of systems containing some degenerate equations using a generalization of the strong maximum principle for systems.
Type de document :
Article dans une revue
Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2016, 130, pp.76-101. <10.1016/j.na.2015.09.012>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01022962
Contributeur : Olivier Ley <>
Soumis le : vendredi 15 mai 2015 - 10:31:16
Dernière modification le : mercredi 12 juillet 2017 - 01:15:43
Document(s) archivé(s) le : mardi 15 septembre 2015 - 00:42:03

Fichiers

ley_nguyen_LTBsys_new.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Olivier Ley, Vinh Duc Nguyen. Gradient bounds for nonlinear degenerate parabolic equations and application to large time behavior of systems. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2016, 130, pp.76-101. <10.1016/j.na.2015.09.012>. <hal-01022962v2>

Partager

Métriques

Consultations de
la notice

306

Téléchargements du document

127